To see the other types of publications on this topic, follow the link: Direct-write.

Journal articles on the topic 'Direct-write'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Direct-write.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yun, Hae Young, Ho Chan Kim, and In Hwan Lee. "Fabrication of 3D-Printed Circuit Device using Direct-Write Technology." Journal of the Korean Society of Manufacturing Process Engineers 15, no. 2 (2016): 1–8. http://dx.doi.org/10.14775/ksmpe.2016.15.2.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arnold, Craig B., and Alberto Piqué. "Laser Direct-Write Processing." MRS Bulletin 32, no. 1 (2007): 9–15. http://dx.doi.org/10.1557/mrs2007.9.

Full text
Abstract:
AbstractDirect-write techniques enable computer-controlled two- and three-dimensional pattern formation in a serial fashion. Among these techniques, the versatility offered by laser-based direct-write methods is unique, given their ability to add, remove, and modify different types of materials without physical contact between a tool or nozzle and the material of interest. Laser pulses used to generate the patterns can be manipulated to control the composition, structure, and even properties of individual three-dimensional volumes of materials across length scales spanning six orders of magnit
APA, Harvard, Vancouver, ISO, and other styles
3

Donaldson, Laurie. "A direct-write approach." Materials Today 13, no. 9 (2010): 8. http://dx.doi.org/10.1016/s1369-7021(10)70148-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grushina, Anya. "Direct-write grayscale lithography." Advanced Optical Technologies 8, no. 3-4 (2019): 163–69. http://dx.doi.org/10.1515/aot-2019-0024.

Full text
Abstract:
Abstract Grayscale lithography is used to produce three-dimensional (3D) structures on micro- and nanoscale. During the last decade, micro-optics and other applications were actively pushing the market demand for such structures. Direct-write systems that use lasers and heated scanning probes can be used for high-precision grayscale micro- and nanolithography. They provide solutions for the most demanding applications in research and industrial manufacturing. At both the micro- and nanoscale, though, some challenges remain, mainly related to throughput. Ongoing R&D efforts and emerging new
APA, Harvard, Vancouver, ISO, and other styles
5

Ognev, A. V., A. G. Kolesnikov, Yong Jin Kim, et al. "Magnetic Direct-Write Skyrmion Nanolithography." ACS Nano 14, no. 11 (2020): 14960–70. http://dx.doi.org/10.1021/acsnano.0c04748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allen, Susan Davis. "Direct-write pyrolytic laser deposition." IEEE Circuits and Devices Magazine 2, no. 1 (1986): 32–36. http://dx.doi.org/10.1109/mcd.1986.6311768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Joshi-Imre, Alexandra, and Sven Bauerdick. "Direct-Write Ion Beam Lithography." Journal of Nanotechnology 2014 (2014): 1–26. http://dx.doi.org/10.1155/2014/170415.

Full text
Abstract:
Patterning with a focused ion beam (FIB) is an extremely versatile fabrication process that can be used to create microscale and nanoscale designs on the surface of practically any solid sample material. Based on the type of ion-sample interaction utilized, FIB-based manufacturing can be both subtractive and additive, even in the same processing step. Indeed, the capability of easily creating three-dimensional patterns and shaping objects by milling and deposition is probably the most recognized feature of ion beam lithography (IBL) and micromachining. However, there exist several other techni
APA, Harvard, Vancouver, ISO, and other styles
8

Schofield, W. C. E., and J. P. S. Badyal. "Direct write tethered protein arrays." Journal of Materials Chemistry 21, no. 36 (2011): 14072. http://dx.doi.org/10.1039/c1jm12667a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gu, Yuan, Donghun Park, Stephen Gonya, Joseph Jendrisak, Siddhartha Das, and Daniel R. Hines. "Direct-write printed broadband inductors." Additive Manufacturing 30 (December 2019): 100843. http://dx.doi.org/10.1016/j.addma.2019.100843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tan, Alvin T. L., Justin Beroz, Mathias Kolle, and A. John Hart. "Direct-Write Freeform Colloidal Assembly." Advanced Materials 30, no. 44 (2018): 1803620. http://dx.doi.org/10.1002/adma.201803620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Piqué, Alberto. "Laser Direct-Write of Polymer Nanocomposites." Journal of Laser Micro/Nanoengineering 1, no. 2 (2006): 102–5. http://dx.doi.org/10.2961/jlmn.2006.02.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tapalian, H, Charles, Jason Langseth, Ying Chen, James W. Anderegg, and Joseph Shinar. "Ultrafast laser direct-write actuable microstructures." Applied Physics Letters 93, no. 24 (2008): 243304. http://dx.doi.org/10.1063/1.2972116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Miskiewicz, Matthew N., and Michael J. Escuti. "Optimization of direct-write polarization gratings." Optical Engineering 54, no. 2 (2015): 025101. http://dx.doi.org/10.1117/1.oe.54.2.025101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Cao, Yu, Liangwen Zhou, Xiaoye Wang, Xiangyou Li, and Xiaoyan Zeng. "MicroPen direct-write deposition of polyimide." Microelectronic Engineering 86, no. 10 (2009): 1989–93. http://dx.doi.org/10.1016/j.mee.2008.12.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mitchell, James I. "Laser direct write of silicon nanowires." Optical Engineering 50, no. 10 (2011): 104301. http://dx.doi.org/10.1117/1.3630225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Joshi-Imre, A., L. Ocola, and J. Klingfus. "Direct-write Focused Ion Beam Lithography." Microscopy and Microanalysis 16, S2 (2010): 194–95. http://dx.doi.org/10.1017/s1431927610062872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Othon, Christina M., Arnaldo Laracuente, H. D. Ladouceur, and Bradley R. Ringeisen. "Sub-micron parallel laser direct-write." Applied Surface Science 255, no. 5 (2008): 3407–13. http://dx.doi.org/10.1016/j.apsusc.2008.09.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hayes, Donald. "Direct Write Opportunities in Printed Electronics." NIP & Digital Fabrication Conference 26, no. 1 (2010): 709. http://dx.doi.org/10.2352/issn.2169-4451.2010.26.1.art00086_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Plew, T. Y., K. H. Leong, and J. M. Redwing. "Direct write of resistive lines on SiC." Journal of Laser Applications 15, no. 1 (2003): 43–48. http://dx.doi.org/10.2351/1.1536650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Eastman, Tim, and Adam Cook. "Direct Write Electronics – Thick Films on LTCC." International Symposium on Microelectronics 2014, no. 1 (2014): 000893–97. http://dx.doi.org/10.4071/isom-thp53.

Full text
Abstract:
For low volume, high value microelectronic applications reducing cost and time to initial production parts in Low Temperature Cofired Ceramics (LTCC) play a big part in customer satisfaction. Using Direct Write Electronics (DWE) for conductor printing and other structures has the potential to reduce time to production through elimination of intermediate tooling and to reduce waste by applying expensive materials only where they are needed. Additional benefits may be realized by using DWE: wire bonds may be replaced by dispensed conductors; individual layers and parts may be uniquely labeled at
APA, Harvard, Vancouver, ISO, and other styles
21

Auyeung, Raymond C. Y. "Laser Direct-Write of Metallic Nanoparticle Inks." Journal of Laser Micro/Nanoengineering 2, no. 1 (2007): 21–25. http://dx.doi.org/10.2961/jlmn.2007.01.0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barth, Sven, Michael Huth, and Felix Jungwirth. "Precursors for direct-write nanofabrication with electrons." Journal of Materials Chemistry C 8, no. 45 (2020): 15884–919. http://dx.doi.org/10.1039/d0tc03689g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sato, T., E. Fearon, C. Curran, K. G. Watkins, G. Dearden, and D. Eckford. "Laser-assisted Direct Write for aerospace applications." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 224, no. 4 (2009): 519–26. http://dx.doi.org/10.1243/09544100jaero572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hoey, J. M., M. T. Reich, A. Halvorsen, et al. "Rapid Prototyping RFID Antennas Using Direct-Write." IEEE Transactions on Advanced Packaging 32, no. 4 (2009): 809–15. http://dx.doi.org/10.1109/tadvp.2009.2021768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bresin, M., M. Toth, and K. A. Dunn. "Direct-write 3D nanolithography at cryogenic temperatures." Nanotechnology 24, no. 3 (2012): 035301. http://dx.doi.org/10.1088/0957-4484/24/3/035301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Arnold, Craig B., Ryan C. Wartena, Karen E. Swider-Lyons, and Alberto Pique. "Direct-Write Planar Microultracapacitors by Laser Engineering." Journal of The Electrochemical Society 150, no. 5 (2003): A571. http://dx.doi.org/10.1149/1.1563650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Stewart, D. R., G. Gibson, G. Y. Jung, et al. "Direct-write programming of nanoscale demultiplexer arrays." Nanotechnology 18, no. 41 (2007): 415201. http://dx.doi.org/10.1088/0957-4484/18/41/415201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bakanas, R., A. Nikolskij, A. Bulanovs, and D. Brotherton-Ratcliffe. "Recent Works on Direct-Write Digital Holography." Latvian Journal of Physics and Technical Sciences 61, no. 5 (2024): 16–27. http://dx.doi.org/10.2478/lpts-2024-0033.

Full text
Abstract:
Abstract Direct-write digital holographic (DWDH) printing is a highly flexible technique for the generation of photoresist masters, which are required to produce the metallic shims used for the mass production of holograms in the security and packaging industries. Here we describe a new type of holographic feature, which can be combined with any other feature printable using DWDH: full-parallax, full-colour transmission masters containing limited animation. We will also describe a technique to print the fringe pattern of each hogel without using a reference beam. By programming the required fr
APA, Harvard, Vancouver, ISO, and other styles
29

Mogren, S. "Overlay accuracy tests for direct write implantation." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 4 (1998): 2469. http://dx.doi.org/10.1116/1.590192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sullivan, Amy C., Matthew W. Grabowski, and Robert R. McLeod. "Three-dimensional direct-write lithography into photopolymer." Applied Optics 46, no. 3 (2007): 295. http://dx.doi.org/10.1364/ao.46.000295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hopkins, John. "Argon lasers “direct-write” III–V devices." Physics World 4, no. 8 (1991): 27–28. http://dx.doi.org/10.1088/2058-7058/4/8/27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pu, Juan, Xiaojun Yan, Yadong Jiang, Chieh Chang, and Liwei Lin. "Piezoelectric actuation of direct-write electrospun fibers." Sensors and Actuators A: Physical 164, no. 1-2 (2010): 131–36. http://dx.doi.org/10.1016/j.sna.2010.09.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Winkler, Robert, Franz-Philipp Schmidt, Ulrich Haselmann, et al. "Direct-Write 3D Nanoprinting of Plasmonic Structures." ACS Applied Materials & Interfaces 9, no. 9 (2016): 8233–40. http://dx.doi.org/10.1021/acsami.6b13062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tohver, Valeria, Sherry L. Morissette, Jennifer A. Lewis, Bruce A. Tuttle, James A. Voigt, and Duane B. Dimos. "Direct-Write Fabrication of Zinc Oxide Varistors." Journal of the American Ceramic Society 85, no. 1 (2004): 123–28. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00052.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Abdou, Mohamed S. A., Zi Wei Xie, Albert M. Leung, and Steven Holdcroft. "Laser, direct-write microlithography of soluble polythiophenes." Synthetic Metals 52, no. 2 (1992): 159–70. http://dx.doi.org/10.1016/0379-6779(92)90304-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Arnold, C. B., H. Kim, and A. Piqué. "Laser direct write of planar alkaline microbatteries." Applied Physics A 79, no. 3 (2004): 417–20. http://dx.doi.org/10.1007/s00339-004-2736-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Roberson, David A., Eric MacDonald, Ken Church, and Ryan B. Wicker. "Failure Investigation of Direct Write Pen Tips." Journal of Failure Analysis and Prevention 10, no. 6 (2010): 504–7. http://dx.doi.org/10.1007/s11668-010-9387-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Higgins, MacCallister, and Emil J. Geiger. "Epifluorescent direct-write photolithography for microfluidic applications." Journal of Micro/Nanolithography, MEMS, and MOEMS 14, no. 1 (2015): 013504. http://dx.doi.org/10.1117/1.jmm.14.1.013504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Piqué, A., S. A. Mathews, B. Pratap, R. C. Y. Auyeung, B. J. Karns, and S. Lakeou. "Embedding electronic circuits by laser direct-write." Microelectronic Engineering 83, no. 11-12 (2006): 2527–33. http://dx.doi.org/10.1016/j.mee.2006.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hahmann, Peter, Lutz Bettin, Monika Boettcher, et al. "High resolution variable-shaped beam direct write." Microelectronic Engineering 84, no. 5-8 (2007): 774–78. http://dx.doi.org/10.1016/j.mee.2007.01.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mackus, A. J. M., S. A. F. Dielissen, J. J. L. Mulders, and W. M. M. Kessels. "Nanopatterning by direct-write atomic layer deposition." Nanoscale 4, no. 15 (2012): 4477. http://dx.doi.org/10.1039/c2nr30664f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dardona, Sameh, Alan Shen, and Cagatay Tokgoz. "Direct Write Fabrication of a Wear Sensor." IEEE Sensors Journal 18, no. 8 (2018): 3461–66. http://dx.doi.org/10.1109/jsen.2018.2810839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lindh, Erik Mattias, Andreas Sandström, Mats Roland Andersson, and Ludvig Edman. "Luminescent line art by direct-write patterning." Light: Science & Applications 5, no. 3 (2016): e16050-e16050. http://dx.doi.org/10.1038/lsa.2016.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pfeiffer, H. C., R. Butsch, and T. R. Groves. "EL-3+ electron beam direct write system." Microelectronic Engineering 17, no. 1-4 (1992): 7–10. http://dx.doi.org/10.1016/0167-9317(92)90004-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Torrey, Jessica D., Stephanie E. Vasko, Adnan Kapetanovic, Zihua Zhu, Andreas Scholl, and Marco Rolandi. "Scanning Probe Direct-Write of Germanium Nanostructures." Advanced Materials 22, no. 41 (2010): 4639–42. http://dx.doi.org/10.1002/adma.201001987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jang, Kyung-Jin, and Jwa-Min Nam. "Direct-Write Nanoparticle Microarrays for Cell Assays." Small 4, no. 11 (2008): 1930–35. http://dx.doi.org/10.1002/smll.200800270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Lamb-Camarena, Sebastian, Fabrizio Porrati, Alexander Kuprava, et al. "3D Magnonic Conduits by Direct Write Nanofabrication." Nanomaterials 13, no. 13 (2023): 1926. http://dx.doi.org/10.3390/nano13131926.

Full text
Abstract:
Magnonics is a rapidly developing domain of nanomagnetism, with application potential in information processing systems. Realisation of this potential and miniaturisation of magnonic circuits requires their extension into the third dimension. However, so far, magnonic conduits are largely limited to thin films and 2D structures. Here, we introduce 3D magnonic nanoconduits fabricated by the direct write technique of focused-electron-beam induced deposition (FEBID). We use Brillouin light scattering (BLS) spectroscopy to demonstrate significant qualitative differences in spatially resolved spin-
APA, Harvard, Vancouver, ISO, and other styles
48

van Hest, Maikel, Alex Miedaner, Calvin Curtis, et al. "Direct Write Methods for Low Cost Photovoltaics." NIP & Digital Fabrication Conference 23, no. 1 (2007): 824. http://dx.doi.org/10.2352/issn.2169-4451.2007.23.1.art00076_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hoey, Justin M., Artur Lutfurakhmanov, Douglas L. Schulz, and Iskander S. Akhatov. "A Review on Aerosol-Based Direct-Write and Its Applications for Microelectronics." Journal of Nanotechnology 2012 (2012): 1–22. http://dx.doi.org/10.1155/2012/324380.

Full text
Abstract:
Aerosol-based direct-write refers to the additive process of printing CAD/CAM features from an apparatus which creates a liquid or solid aerosol beam. Direct-write technologies are poised to become useful tools in the microelectronics industry for rapid prototyping of components such as interconnects, sensors, and thin film transistors (TFTs), with new applications for aerosol direct-write being rapidly conceived. This paper aims to review direct-write technologies, with an emphasis on aerosol-based systems. The different currently available state-of-the-art systems such as Aerosol Jet CAB-DW,
APA, Harvard, Vancouver, ISO, and other styles
50

Gafar, Abdoel, and Firman Tara. "PERBANDINGAN PENGGUNAAN MODEL PEMBELAJARAN KOOPERATIF TIPE STAD DENGAN MODEL PEMBELAJARAN LANGSUNG TERHADAP KEMAMPUAN MENULIS TEKS BERITA SISWA KELAS VIII SMP NEGERI 24 JAMBI." Jurnal Ilmiah Dikdaya 8, no. 2 (2018): 250. http://dx.doi.org/10.33087/dikdaya.v8i2.108.

Full text
Abstract:
This research aims to: (1) Describe the ability to write news text students are taught using STAD type cooperative learning model and students are taught using direct learning model; (2) Describe the ability to write high-priority student-language text texts that are taught using STAD-type cooperative models and are taught using direct learning models; (3) Describe the ability to write low-priority student-language text texts that are taught using STAD-type cooperative models and are taught using direct learning models, and (4) Describe the interaction of cooperative learning model type STAD a
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!