Academic literature on the topic 'Directed Energy Deposition Additive Manufacturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Directed Energy Deposition Additive Manufacturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Directed Energy Deposition Additive Manufacturing"
Böß, Volker, Berend Denkena, Marc-André Dittrich, Talash Malek, and Sven Friebe. "Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing." Journal of Manufacturing and Materials Processing 5, no. 1 (January 11, 2021): 9. http://dx.doi.org/10.3390/jmmp5010009.
Full textBöß, Volker, Berend Denkena, Marc-André Dittrich, Talash Malek, and Sven Friebe. "Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing." Journal of Manufacturing and Materials Processing 5, no. 1 (January 11, 2021): 9. http://dx.doi.org/10.3390/jmmp5010009.
Full textChen, Y., S. Clark, A. C. L. Leung, L. Sinclair, S. Marussi, R. Atwood, T. Connoley, M. Jones, G. Baxter, and P. D. Lee. "Melt pool morphology in directed energy deposition additive manufacturing process." IOP Conference Series: Materials Science and Engineering 861 (June 13, 2020): 012012. http://dx.doi.org/10.1088/1757-899x/861/1/012012.
Full textSaboori, Abdollah, Alberta Aversa, Giulio Marchese, Sara Biamino, Mariangela Lombardi, and Paolo Fino. "Application of Directed Energy Deposition-Based Additive Manufacturing in Repair." Applied Sciences 9, no. 16 (August 13, 2019): 3316. http://dx.doi.org/10.3390/app9163316.
Full textHauser, Tobias, Raven T. Reisch, Tobias Kamps, Alexander F. H. Kaplan, and Joerg Volpp. "Acoustic emissions in directed energy deposition processes." International Journal of Advanced Manufacturing Technology 119, no. 5-6 (January 7, 2022): 3517–32. http://dx.doi.org/10.1007/s00170-021-08598-8.
Full textKelly, J. P., J. W. Elmer, F. J. Ryerson, J. R. I. Lee, and J. J. Haslam. "Directed energy deposition additive manufacturing of functionally graded Al-W composites." Additive Manufacturing 39 (March 2021): 101845. http://dx.doi.org/10.1016/j.addma.2021.101845.
Full textHeigel, Jarred C., Pan Michaleris, and Todd A. Palmer. "Measurement of forced surface convection in directed energy deposition additive manufacturing." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230, no. 7 (October 30, 2015): 1295–308. http://dx.doi.org/10.1177/0954405415599928.
Full textHaley, James C., Baolong Zheng, Umberto Scipioni Bertoli, Alexander D. Dupuy, Julie M. Schoenung, and Enrique J. Lavernia. "Working distance passive stability in laser directed energy deposition additive manufacturing." Materials & Design 161 (January 2019): 86–94. http://dx.doi.org/10.1016/j.matdes.2018.11.021.
Full textSalmi, Mika. "Additive Manufacturing Processes in Medical Applications." Materials 14, no. 1 (January 3, 2021): 191. http://dx.doi.org/10.3390/ma14010191.
Full textBiegler, Max, Jiahan Wang, Lukas Kaiser, and Michael Rethmeier. "Automated Tool‐Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries." steel research international 91, no. 11 (May 8, 2020): 2000017. http://dx.doi.org/10.1002/srin.202000017.
Full textDissertations / Theses on the topic "Directed Energy Deposition Additive Manufacturing"
Nain, Vaibhav. "Efficient thermomechanical modeling of large parts fabricated by Directed Energy Deposition Additive Manufacturing processes." Thesis, Lorient, 2022. http://www.theses.fr/2022LORIS630.
Full textDirected Energy Deposition (DED) Additive Manufacturing technology offers a unique possibility of fabricating large-scale complex-shape parts. However, process-induced deformation in the fabricated part is still a big obstacle in successfully fabricating large-scale parts. Therefore, multiple numerical models have been developed to understand the accumulation of induced deformation in the fabricated part. The first model predicts the thermo-elastoplastic behaviour that captures the laser movement. The laser-material interaction and metal deposition are modeled by employing a double ellipsoid heat source and the Quiet/Active material activation method respectively. The model considers isotropic non-linear material hardening to represent actual metal behaviour. It also employs an instantaneous stress relaxation model to simulate the effects of physical phenomena like annealing, solid-state phase transformation, and melting. Using this model as a reference case, an efficient model is developed with an objective to reduce the computation time and make it feasible to simulate large-part. The model employs an Elongated Ellipsoid heat source that averages the heat source over the laser path which reduces the computational burden drastically. However, averaging over large laser path results in inaccurate results. Therefore, new parameters are developed that identify the best compromise between computation time reduction and accuracy. Both models are validated with experimental data obtained from several experiments with different process parameters. Finally, other Multi- scale methods such as the Layer-by-layer method and Inherent Strain-based methods are implemented and explored
Juhasz, Michael J. "In and Ex-Situ Process Development in Laser-Based Additive Manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu15870552278358.
Full textKumara, Chamara. "Microstructure Modelling of Additive Manufacturing of Alloy 718." Licentiate thesis, Högskolan Väst, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-13197.
Full textCrisanti, Roberto. "Laser Direct Energy Deposition per la manifattura additiva: caratterizzazione del processo e prove sperimentali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textDaugherty, Timothy J. "Assessment of the ballistic performance of compositional and mesostructural functionally graded materials produced by additive manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1596474811965998.
Full textJonsson, Vannucci Tomas. "Investigating the Part Programming Process for Wire and Arc Additive Manufacturing." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74291.
Full textKalb, Andreas, Florian M. Dambietz, and Peter Hoffmann. "Maschinenkonzept zur additiven Fertigung großdimensionierter Titan-Bauteile." Thelem Universitätsverlag & Buchhandlung GmbH & Co. KG, 2021. https://tud.qucosa.de/id/qucosa%3A75868.
Full textFerraro, Mercedes M. "Quantitative Determination of Residual Stress on Additively Manufactured Ti-6Al-4V." Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu152640278957619.
Full textLindell, David. "Process Mapping for Laser Metal Deposition of Wire using Thermal Simulations : A prediction of material transfer stability." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85474.
Full textAdditiv tillverkning (AT) är en kraftigt växande tillverkningsmetod på grund av sin flexibilitet kring design och möjligheten att skapa komponenter som inte är tillverkningsbara med traditionell avverkande bearbetning. AT kan kraftigt minska tid- och materialåtgång och på så sett minskas kostnader och miljöpåverkan. Införandet av AT i flyg- och rymdindustrin kräver strikt kontroll och förutsägbarhet av processen för att försäkra sig om säkra flygningar. Lasermetalldeponering av tråd är den AT metod som hanteras i denna uppsats. Användandet av tråd som tillsatsmaterial skapar ett potentiellt problem, materialöverföringen från tråden till substratet. Detta kräver att alla processparametrar är i balans för att få en jämn materialöverföring. Är processen inte balanserad syns detta genom materialöverföringsstabiliteterna stubbning och droppning. Stubbning uppkommer då energin som tillförs på tråden är för låg och droppning uppkommer då energin som tillförs är för hög jämfört med vad som krävs för en stabil process. Dessa två fenomen minskar möjligheterna för en kontrollerbar och stabil tillverkning. På grund av detta har användandet utav termiska simuleringar för att prediktera materialöverföringsstabiliteten för lasermetalldeponering av tråd med Waspaloy som deponeringsmaterial undersökts. Det har visat sig vara möjligt att prediktera materialöverföringsstabiliteten med användning av termiska simuleringar och kriterier baserat på tidigare experimentell data. Kriteriet för stubbning kontrolleras om en slutförd simulering resulterar i en tråd som når under smältan. För droppning finns två fungerande kriterier, förhållandet mellan svetshöjd och penetrationsdjup om verktygshöjden är konstant, sker förändringar i verktygshöjden är det dimensionslös ”slenderness” talet ett bättre kriterium. Genom att använda dessa kriterier är det möjligt att kvalitativt kartlägga processfönstret och skapa en bättre förståelse för förhållandet mellan verktygshöjden och den deponerade tvärsnittsarean.
Sreekanth, Suhas. "Laser-Directed Energy Deposition : Influence of Process Parameters and Heat-Treatments." Licentiate thesis, Högskolan Väst, Avdelningen för svetsteknologi (SV), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-15767.
Full textBooks on the topic "Directed Energy Deposition Additive Manufacturing"
Department of Defense. Navy Additive Manufacturing: Adding Parts, Subtracting Steps - 3D Printing, Tooling, Aerospace, Binder Jetting, Directed Energy Deposition, Material Extrusion, Powder Fusion, Photopolymerization. Independently Published, 2017.
Find full textBook chapters on the topic "Directed Energy Deposition Additive Manufacturing"
Gibson, Ian, David Rosen, Brent Stucker, and Mahyar Khorasani. "Directed Energy Deposition." In Additive Manufacturing Technologies, 285–318. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56127-7_10.
Full textGibson, Ian, David Rosen, and Brent Stucker. "Directed Energy Deposition Processes." In Additive Manufacturing Technologies, 245–68. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2113-3_10.
Full textSrivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. "Additive Manufacturing Processes Utilizing Directed Energy Deposition Processes." In Additive Manufacturing, 155–66. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382-12.
Full textGokhale, Nitish P., and Prateek Kala. "Directed Energy Deposition for Metals." In Additive and Subtractive Manufacturing Processes, 259–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-13.
Full textVerdi, Davide, Shanshan Yang, Norman Soh, Grace Tay, and Alin Patran. "The Role of Powder Feedstock in Directed Energy Deposition Sustainability." In Progress in additive manufacturing 2020, 13–24. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp163720200088.
Full textJardon, Zoé, Julien Ertveldt, Michaël Hinderdael, and Patrick Guillaume. "Powder-Gas Jet Velocity Characterization during Coaxial Directed Energy Deposition Process." In Progress in Additive Manufacturing 2021, 37–58. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp164420210124.
Full textYa, Wei, and Kelvin Hamilton. "On-Demand Spare Parts for the Marine Industry with Directed Energy Deposition: Propeller Use Case." In Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, 70–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66866-6_7.
Full textSnyers, Charles, Julien Ertveldt, Jorge Sanchez-Medina, Zoé Jardon, and Jan Helsen. "Prediction of Melt Pool Temperature for Directed Energy Deposition Using Supervised Learning Methods on Optical Measurement Data." In Progress in Additive Manufacturing 2021, 59–73. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp164420210133.
Full textJardon, Zoé, Julien Ertveldt, and Patrick Guillaume. "Effect of Coaxial Powder Nozzle Jet Process Parameters on Single-Track Geometry for Laser Beam Directed Energy Deposition Process." In Progress in additive manufacturing 2020, 51–74. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp163720200108.
Full textDalpadulo, Enrico, Fabio Pini, and Francesco Leali. "Directed Energy Deposition Process Simulation to Sustain Design for Additive Remanufacturing Approaches." In Advances on Mechanics, Design Engineering and Manufacturing IV, 1067–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15928-2_93.
Full textConference papers on the topic "Directed Energy Deposition Additive Manufacturing"
Weisz-Patrault, Daniel. "Residual strains in directed energy deposition additive manufacturing." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026504.
Full textNain, Vaibhav, Thierry Engel, Muriel Carin, and Didier Boisselier. "Numerical modeling for large-scale parts fabricated by directed energy deposition." In 3D Printed Optics and Additive Photonic Manufacturing III, edited by Georg von Freymann, Alois M. Herkommer, and Manuel Flury. SPIE, 2022. http://dx.doi.org/10.1117/12.2624947.
Full textWeisz-Patrault, D., S. Sakout, and A. Ehrlacher. "Fast Simulation Of Temprature And Grain Growth In Directed Energy Deposition Additive Manufacturing." In 14th WCCM-ECCOMAS Congress. CIMNE, 2021. http://dx.doi.org/10.23967/wccm-eccomas.2020.143.
Full textGarg, Richie, Harish Singh Dhami, Priti Ranjan Panda, and Koushik Viswanathan. "Directed Energy Deposition Using Non-Spherical Metal Powders?" In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-84945.
Full textChen, Ze, Chengcheng Wang, Sastry Yagnanna Kandukuri, and Kun Zhou. "Additive Manufacturing of Monel K-500 via Directed Energy Deposition for Pressure Vessel Applications." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-85735.
Full textLandes, Scott, Trupti Suresh, Anamika Prasad, Todd Letcher, Paul Gradl, and David Ellis. "Investigation of Additive Manufactured GRCop-42 Alloy Developed by Directed Energy Deposition Methods." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24400.
Full textIshiyama, Keiya, Ryo Koike, Yasuhiro Kakinuma, Tetsuya Suzuki, and Takanori Mori. "Cooling Process for Directional Solidification in Directed Energy Deposition." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6437.
Full textMoylan, Shawn, Michael McGlauflin, Jared Tarr, and M. Alkan Donmez. "Geometric Performance Testing of Directed Energy Deposition Additive Manufacturing Machine Using Standard Tests for Machine Tools." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71737.
Full textNassar, Abdalla R., Edward W. Reutzel, Stephen W. Brown, John P. Morgan, Jacob P. Morgan, Donald J. Natale, Rick L. Tutwiler, David P. Feck, and Jeffery C. Banks. "Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University." In SPIE LASE, edited by Bo Gu, Henry Helvajian, and Alberto Piqué. SPIE, 2016. http://dx.doi.org/10.1117/12.2217855.
Full textLiu, Michael, and Mathew Kuttolamadom. "Characterization of Co-Cr-Mo Alloys Manufacturing via Directed Energy Deposition." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-64111.
Full textReports on the topic "Directed Energy Deposition Additive Manufacturing"
Tekalur, Arjun, Jacob Kallivayalil, Jason Carroll, Mike Killian, Benjamin Schultheis, Anil Chaudhary, Zackery McClelland, Jeffrey Allen, Jameson Shannon, and Robert Moser. Additive manufacturing of metallic materials with controlled microstructures : multiscale modeling of direct metal laser sintering and directed energy deposition. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33481.
Full textSlattery, Kevin, and Kirk A. Rogers. Internal Boundaries of Metal Additive Manufacturing: Future Process Selection. SAE International, March 2022. http://dx.doi.org/10.4271/epr2022006.
Full text