Academic literature on the topic 'Directional earth-fault protection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Directional earth-fault protection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Directional earth-fault protection"
Kutumov, Yu D., V. V. Tyutikov, T. Yu Shadrikova, and V. A. Shuin. "Dynamic stability of the functioning of current earth fault directional protection in networks with isolated neutral." Vestnik IGEU, no. 6 (2019): 30–41. http://dx.doi.org/10.17588/2072-2672.2019.6.030-041.
Full textStojanović, Zoran N., and Mileta D. Žarković. "Wide range algorithm for directional earth-fault protection without voltage inputs." IET Generation, Transmission & Distribution 14, no. 14 (July 17, 2020): 2829–38. http://dx.doi.org/10.1049/iet-gtd.2019.0763.
Full textOnah, Aniagboso John, and Edwin Ejiofor Ezema. "Transformer Differential Protection." European Journal of Engineering Research and Science 5, no. 8 (August 21, 2020): 891–98. http://dx.doi.org/10.24018/ejers.2020.5.8.2035.
Full textGivelberg, Myron, Efim Lysenko, and Roald Zelichonok. "Zero sequence directional earth-fault protection with improved characteristics for compensated distribution networks." Electric Power Systems Research 52, no. 3 (December 1999): 217–22. http://dx.doi.org/10.1016/s0378-7796(99)00032-2.
Full textAluynov, A., O. Vyatkina, E. Gracheva, and A. Nemirovskiy. "Modeling of operating modes of relay protection in electrical networks with insulated neutral." E3S Web of Conferences 288 (2021): 01100. http://dx.doi.org/10.1051/e3sconf/202128801100.
Full textLi, Zhen Xing, Qiu Li, and Tao Zhang. "Wide-Area Backup Protection Algorithm Based on Earth Impedance Comparison Principle." Applied Mechanics and Materials 513-517 (February 2014): 858–62. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.858.
Full textBakar, A. H. A., H. Mokhlis, H. A. Illias, and P. L. Chong. "The study of directional overcurrent relay and directional earth-fault protection application for 33kV underground cable system in Malaysia." International Journal of Electrical Power & Energy Systems 40, no. 1 (September 2012): 113–19. http://dx.doi.org/10.1016/j.ijepes.2012.02.011.
Full textZhankuanyshev, Martebe K., Bibara Zh Kushkimbayeva, Sofya Sh Egemberdieva, Zhanar S. Esdauletova, and Laura N. Yesmakhanova. "Method for automatic compensation of a single-phase earth fault." Bulletin of Electrical Engineering and Informatics 10, no. 3 (June 1, 2021): 1164–72. http://dx.doi.org/10.11591/eei.v10i3.3021.
Full textStipetić, Nina, Božidar Filipović-Grčić, Ivo Uglešić, Alain Xémard, and Naum Andres. "Earth-fault detection and localization in isolated industrial MV network – comparison of directional overcurrent protection and signal injection method." Electric Power Systems Research 197 (August 2021): 107313. http://dx.doi.org/10.1016/j.epsr.2021.107313.
Full textAbibie, Hafid, and Sulistyowati. "Kajian Koordinasi Sistem Proteksi Pada Sistem Transmisi 70 kV GI Banaran Kediri Transmission Line Bay Pare." ELPOSYS: Jurnal Sistem Kelistrikan 7, no. 3 (November 4, 2020): 51–57. http://dx.doi.org/10.33795/elposys.v7i3.21.
Full textDissertations / Theses on the topic "Directional earth-fault protection"
Hohn, Fabian. "Development of a Directional Definite-Time Overcurrent and Earth Fault Protection based on COTS Components." Thesis, KTH, Industriella informations- och styrsystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-176855.
Full textTillverkare av elkraftskomponenter st°ar inf¨or ¨okade utmaningar f¨or att minska tiden f¨orproduktutveckling utan att kompromissa med kvalit´en.Utmaningen blir st¨orre n¨ar ett s¨akert och tillf¨orlitligt elkraftsystem m°aste uppfyllas. Ettav de viktigaste systemen f¨or att garantera dessa krav ¨ar skyddssystemet. Syftet meddetta examensarbete kommer f¨oljaktligen bli att utveckla ett skyddssystem som f¨orlitarsig p°a Commerciall-o↵-the-Shelf (COTS) komponenter och som dessutom tar h¨ansyn tillskyddssystems funktioner. Fr°an detta skyddssystem kan det p°avisas att det ¨ar m¨ojligt attunder ett begr¨ansat tidsspann uppfylla marknadens krav utan att ¨aventyra tillf¨orlitlighetenoch s¨akerheten.Detta projekt innefattar utvecklingen av ett riktat ¨overstr¨omsskydd och ett jordfelsskydd.Utvecklingsprocess bygger p°aen modellbaserad design, som omfattar faserna prestandakrav,konstruktionsfas, implementering och prestandatest av systemet. Som en del av detta arbetekommer varje steg beskrivas utf¨orligt och genomf¨oras. MATLAB/Simulink anv¨andessom utvecklingsverktyg, eftersom den har st¨od f¨or modellbaserad design. De prestandakravsom anses ¨ar f¨or det mesta baserad p°a IEC 60255-151 standarden. Den utvecklade skyddsalgoritmenimplementerat i ett Linux system i realtid, gr¨anssnittet f¨or processen ¨arbaserad p°a EtherCAT protokollet och deras korresponderade I/O moduler. Testfasen ˜A¤rindelat i fyra olika tester kallade prestandatest, typtest enligt IEC 60255-151, realtidstestoch utv¨ardering av EMC prestandan av de anv¨anda I/O modulerna.Resultatet av prestandatest visar att en IEC 60255-151 kompatibel l¨osningen g°ar attuppn°a. Dessutom visar prestandatestet att de utvecklade skyddsfunktionerna fungeradesom planerat f¨or olika fel scenarion. Realtidsprestanda av skyddssystemet beh¨overemellertid ytterligare analyseras och anpassas f¨or att uppn°atillfredsst¨allande resultat.
Bring, Hampus, and Olle Emanuelsson. "Vinkelfelet i mätkretsens påverkan på riktade jordfelsskydd." Thesis, Högskolan Väst, Avd för automationssystem, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-7511.
Full textThis bachelor's thesis examines the angular error in the measurement circuit for directional earth-fault protection and how this error affects the fault disconnection. Angular errors in the measurement circuit can affect the directional earth-fault protection in such a way that the real fault current and the measured fault current do not match. This can lead to missed or unwarranted fault disconnections. Vattenfall has a requirement which states that the angular error must not exceed ±2 degrees for the measurement circuit. Since the angular error in many cases has a high impact on the earth-fault accuracy, an investigation concerning what Vattenfalls angle requirement really means. The main cause of the angular error usually occurs in the current transformers and therefore two commonly used current transformers in the grid with different classifications and their impact on the angular error in the measurement circuit are examined. Ground fault is the most common fault which occurs in a distribution network, its size depends largely on the amount of capacitive current which the grid contributes with as well as the size of the neutral grounding resistor. The capacitive contribution of the grid compensates centrally in the distribution station and sometimes locally on the line. The maximum permitted centrally compensated part of a line is limited to 30 A, this central part can go up to 60 A in case the line needs to be fed from a second distribution station. The angular error has a higher impact if the capacitive contribution is high and for low values of the neutral grounding resistor. In many cases more than one earth-fault protection are found on the same line, in these cases selectivity is always pursued. The angular error may have a negative effect on the selectivity. By calculations, simulations and tests a number of conclusions can be drawn. Vattenfalls angle requirement gives an unclear picture concerning the permitted impact on the earthfault protection. Moreover selecting the correct current transformer demonstrates that the angular requirement can probably be sharpened. To reduce the influence of the angular error the maximum permitted centrally compensated part be reduced and/or the value of the neutral grounding resistor can be increased. A selectivity of 1000 Ω can not always be applied since certain cases require a selectivity of 2000 Ω. By setting the zero sequence voltage as the trigger condition and the zero sequence current as the realese condition, according to this study it may be possible to achieve a more accurate earth-fault protection.
Strapko, Miroslav. "Návrh systému chránění s použitím elektronických přístrojových transformátorů (senzorů) v rozvodně vysokého napětí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219395.
Full textHrycík, Tomáš. "Porovnání použití přístrojových transformátorů a senzorů v aplikacích s ochranou REF 542plus." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2010. http://www.nusl.cz/ntk/nusl-218429.
Full textConference papers on the topic "Directional earth-fault protection"
Hindle, P. J. "Conventional directional overcurrent and earth fault protection - not always straightforward." In 7th International Conference on Developments in Power Systems Protection (DPSP 2001). IEE, 2001. http://dx.doi.org/10.1049/cp:20010219.
Full textZarkovic, Mileta D., and Zoran N. Stojanovic. "Modified algorithm for directional earth-fault protection without voltage inputs." In 2015 IEEE Eindhoven PowerTech. IEEE, 2015. http://dx.doi.org/10.1109/ptc.2015.7232331.
Full textHohn, Fabian, Nicholas Honeth, and Lars Nordstrom. "Directional definite-time earth fault protection based on virtual polarisation and COTS components." In 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016. http://dx.doi.org/10.1109/pesgm.2016.7741216.
Full text