Academic literature on the topic 'Dirichlet conditions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dirichlet conditions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dirichlet conditions"

1

Guo, Bao Zhu. "Further results for a one-dimensional linear thermoelastic equation with Dirichlet-Dirichlet boundary conditions." ANZIAM Journal 43, no. 3 (January 2002): 449–62. http://dx.doi.org/10.1017/s1446181100012621.

Full text
Abstract:
AbstractWe show that a sequence of generalized eigenfunctions of a one-dimensional linear thermoelastic system with Dirichiet-Dirichlet boundary conditions forms a Riesz basis for the state Hilbert space. This develops a parallel result for the same system with Dirichlet-Neumann or Neumann-Dirichlet boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Altmann, Robert. "Moving Dirichlet boundary conditions." ESAIM: Mathematical Modelling and Numerical Analysis 48, no. 6 (October 10, 2014): 1859–76. http://dx.doi.org/10.1051/m2an/2014022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Rham, Claudia. "Massive gravity from Dirichlet boundary conditions." Physics Letters B 688, no. 2-3 (May 2010): 137–41. http://dx.doi.org/10.1016/j.physletb.2010.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arendt, W., and C. J. K. Batty. "Absorption semigroups and dirichlet boundary conditions." Mathematische Annalen 295, no. 1 (January 1993): 427–48. http://dx.doi.org/10.1007/bf01444895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liskevich, V. A., and Yu A. Semenov. "Self-adjointness conditions for Dirichlet operators." Ukrainian Mathematical Journal 42, no. 2 (February 1990): 253–57. http://dx.doi.org/10.1007/bf01071027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

D'Yakonov, E. "The dirichlet boundary conditions and related natural boundary conditions in strengthened sobolev spaces for discretized parabolic problems." Discrete Dynamics in Nature and Society 4, no. 4 (2000): 269–81. http://dx.doi.org/10.1155/s102602260000025x.

Full text
Abstract:
Correctness of initial boundary value problems and their discretizations are analyzed under unusual second-order boundary conditions, which can be considered as natural boundary conditions in strengthened Sobolev spaces and as improvements (in some cases) of the classical Dirichlet boundary conditions. Special attention is paid to optimal perturbation estimates for new variants of the penalty method with respect to the Dirichlet conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Dudko, Anastasia, and Vyacheslav Pivovarchik. "Three spectra problem for Stieltjes string equation and Neumann conditions." Proceedings of the International Geometry Center 12, no. 1 (February 28, 2019): 41–55. http://dx.doi.org/10.15673/tmgc.v12i1.1367.

Full text
Abstract:
Spectral problems are considered which appear in description of small transversal vibrations of Stieltjes strings. It is shown that the eigenvalues of the Neumann-Neumann problem, i.e. the problem with the Neumann conditions at both ends of the string interlace with the union of the spectra of the Neumann-Dirichlet problems, i.e. problems with the Neumann condition at one end and Dirichlet condition at the other end on two parts of the string. It is shown that the spectrum of Neumann-Neumann problem on the whole string, the spectrum of Neumann-Dirichlet problem on the left part of the string, all but one eigenvalues of the Neumann-Dirichlet problem on the right part of the string and total masses of the parts uniquely determine the masses and the intervals between them.
APA, Harvard, Vancouver, ISO, and other styles
8

Djida, Jean-Daniel, and Arran Fernandez. "Interior Regularity Estimates for a Degenerate Elliptic Equation with Mixed Boundary Conditions." Axioms 7, no. 3 (September 1, 2018): 65. http://dx.doi.org/10.3390/axioms7030065.

Full text
Abstract:
The Marchaud fractional derivative can be obtained as a Dirichlet-to–Neumann map via an extension problem to the upper half space. In this paper we prove interior Schauder regularity estimates for a degenerate elliptic equation with mixed Dirichlet–Neumann boundary conditions. The degenerate elliptic equation arises from the Bernardis–Reyes–Stinga–Torrea extension of the Dirichlet problem for the Marchaud fractional derivative.
APA, Harvard, Vancouver, ISO, and other styles
9

Hlaváček, Ivan. "Penalty method and extrapolation for axisymmetric elliptic problems with Dirichlet boundary conditions." Applications of Mathematics 35, no. 5 (1990): 405–17. http://dx.doi.org/10.21136/am.1990.104420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cao, Shunhua, and Stewart Greenhalgh. "Attenuating boundary conditions for numerical modeling of acoustic wave propagation." GEOPHYSICS 63, no. 1 (January 1998): 231–43. http://dx.doi.org/10.1190/1.1444317.

Full text
Abstract:
Four types of boundary conditions: Dirichlet, Neumann, transmitting, and modified transmitting, are derived by combining the damped wave equation with corresponding boundary conditions. The Dirichlet attenuating boundary condition is the easiest to implement. For an appropriate choice of attenuation parameter, it can achieve a boundary reflection coefficient of a few percent in a one‐wavelength wide zone. The Neumann‐attenuating boundary condition has characteristics similar to the Dirichlet attenuating boundary condition, but it is numerically more difficult to implement. Both the transmitting boundary condition and the modified transmitting boundary condition need an absorbing boundary condition at the termination of the attenuating region. The modified transmitting boundary condition is the most effective in the suppression of boundary reflections. For multidimensional modeling, there is no perfect absorbing boundary condition, and an approximate absorbing boundary condition is used.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dirichlet conditions"

1

Bouchard, Hugues. "Systèmes de diffusion-réaction avec conditions Dirichlet-périodiques." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0018/NQ56991.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bouchard, Hugues. "Systèmes de diffusion-réaction avec conditions Dirichlet-périodiques." Sherbrooke : Université de Sherbrooke, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bouchard, Hugues. "Systèmes de diffusion-réaction avec conditions Dirichlet-périodiques." Thèse, Université de Sherbrooke, 1998. http://savoirs.usherbrooke.ca/handle/11143/4983.

Full text
Abstract:
La présente thèse étudie l'existence et le calcul de solutions deux fois dérivables dans L2 de systèmes de diffusion-réaction avec conditions Dirichlet-périodiques. La méthode utilisée pour résoudre le problème consiste à ajouter une nouvelle inconnue et un problème adjoint au problème original. La partie linéaire du système est alors auto-adjointe et la partie non-linéaire est un potentiel. Ensuite, on associe au problème augmenté une fonctionnelle φ, définie sur un espace de Sobolev adéquat, dont les points critiques seront les solutions du système de diffusion-réaction augmenté. Pour montrer l'existence et calculer les points critiques de la fonctionnelle φ, on utilise une base Hilbertienne bien choisie pour l'espace de Hilbert sur lequel la fonctionnelle φ est définie; on montre que la restriction de φ au sous-espace engendré par un sous ensemble fini de la base possède toujours au moins un point critique; on montre finalement que les points critiques des restrictions en dimension finie de φ possèdent des points d'accumulation (selon une certaine topologie) et que ces points d'accumulation sont des points critiques de la fonctionnelle non restreinte.
APA, Harvard, Vancouver, ISO, and other styles
4

Hassanpour, Mehran. "Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc279227/.

Full text
Abstract:
In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form $$\eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}$$where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments.
APA, Harvard, Vancouver, ISO, and other styles
5

Matsui, Kazunori. "Asymptotic analysis of an ε-Stokes problem with Dirichlet boundary conditions." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-71938.

Full text
Abstract:
In this thesis, we propose an ε-Stokes problem connecting the Stokes problem and the corresponding pressure-Poisson equation using one pa- rameter ε > 0. We prove that the solution to the ε-Stokes problem, converges as ε tends to 0 or ∞ to the Stokes and pressure-Poisson prob- lem, respectively. Most of these results are new. The precise statements of the new results are given in Proposition 3.5, Theorem 4.1, Theorem 5.2, and Theorem 5.3. Numerical results illustrating our mathematical results are also presented.
STINT (DD2017-6936) "Mathematics Bachelor Program for Efficient Computations"
APA, Harvard, Vancouver, ISO, and other styles
6

Binz, Tim [Verfasser]. "Operators with dynamic bounary conditions and Dirichlet-to-Neumann operators / Tim Binz." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1219903817/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Saint-Guirons, Anne-Gaëlle. "Construction et analyse de conditions absorbantes de type Dirichlet-to-Neumann pour des frontières ellipsoïdales." Phd thesis, Université de Pau et des Pays de l'Adour, 2008. http://tel.archives-ouvertes.fr/tel-00356994.

Full text
Abstract:
Dans cette thèse, nous proposons une nouvelle classe de conditions aux limites absorbantes locales de type DtN (ou Robin généralisées) à utiliser pour des frontières artificielles de forme elliptique (2D) ou sphéroïdale prolate (3D), c'est-à-dire adaptées à des obstacles de forme allongée. Ces nouvelles conditions absorbantes sont construites de façon à être exactes pour les premiers modes. Elles peuvent être facilement incorporées dans un code d'éléments finis tout en préservant la structure locale du système algébrique. De plus, comme elles sont adaptées à des obstacles allongés, elles permettent de prendre en compte un domaine de calcul plus petit, ce qui contribue à limiter les coûts numériques. Nous montrons que la condition DtN d'ordre 2 construite est performante en régime basse fréquence pour les problèmes de scattering 2D et 3D, dans le cadre d'une formulation On-Surface Radiation Condition (OSRC). Cette condition conserve sa précision quel que soit l'allongement de la frontière artificielle elliptique (2D) ou ellipsoïdale (3D). Pour des régimes de fréquences plus élevées, on étudie la formulation en volume du problème. On observe qu'il n'est pas nécessaire de trop éloigner la frontière pour avoir un bon niveau de précision, et tout particulièrement lorsque l'on considère la condition DtN d'ordre 2. Afin de préciser cette observation, nous avons mené une analyse haute fréquence pour mesurer l'amplitude des réflexions parasites générées par la frontière artificielle. On montre que le coefficient de réflexion associé à une famille de modes propagatifs tend vers 0 comme une puissance inverse de λka où λ exprime la distance entre l'obstacle et la frontière artificielle et ka désigne la fréquence. De plus, en choisissant une sous-classe particulière de modes, on affine ce résultat et on obtient que si l'excentricité est supérieure à 0.5, le coefficient de réflexion tend vers 0 de façon exponentielle et ce résultat est valable pour toute la sous-classe de modes considérés, qu'ils soient propagatifs, rampants ou évanescents.
APA, Harvard, Vancouver, ISO, and other styles
8

Berger, Amandine. "Optimisation du spectre du Laplacien avec conditions de Dirichlet et Neumann dans R² et R³." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM036/document.

Full text
Abstract:
Le problème de l'optimisation des valeurs propres du Laplacien est ancien puisqu'à la fin du XIXème siècle Lord Rayleigh conjecturait que la première valeur propre avec condition de Dirichlet était minimisée par le disque. Depuis le problème a été beaucoup étudié. Et les possibilités de recherches sont multiples : diverses conditions, ajout de contraintes, existence, description des optima ... Dans ce document on se limite aux conditions de Dirichlet et de Neumann, dans R^2 et dans R^3. On procède dans un premier temps à un état de l'art. On se focalise ensuite sur les disques et les boules. En effet, ils font partie des rares formes pour lesquelles il est possible de calculer explicitement et relativement facilement les valeurs propres. On verra malheureusement que ces formes ne sont la plupart du temps pas des minimiseurs. Enfin on s'intéresse aux simulations numériques possibles. En effet, puisque peu de calculs théoriques peuvent être faits il est intéressant d'obtenir numériquement des candidats. Cela permet ensuite d'avoir des hypothèses de travail théorique. `{A} cet effet nous donnerons des éléments de compréhension sur une méthode de simulation numérique ainsi que des résultats obtenus
The optimization of Laplacian eigenvalues is a classical problem. In fact, at the end of the nineteenth century, Lord Rayleigh conjectured that the first eigenvalue with Dirichlet boundary condition is minimized by a disk. This problem received a lot of attention since this first study and research possibilities are numerous: various conditions, geometrical constraints added, existence, description of optimal shapes... In this document we restrict us to Dirichlet and Neumann boundary conditions in R^2 and R^3. We begin with a state of the art. Then we focus our study on disks and balls. Indeed, these are some of the only shapes for which it is possible to explicitly and relatively easily compute the eigenvalues. But we show in one of the main result of this document that they are not minimizers for most eigenvalues. Finally we take an interest in the possible numerical experiments. Since we can do very few theoretical computations, it is interesting to get numerical candidates. Then we can deduce some theoretical working assumptions. With this in mind we give some keys to understand our numerical method and we also give some results obtained
APA, Harvard, Vancouver, ISO, and other styles
9

Couture, Chad. "Steady States and Stability of the Bistable Reaction-Diffusion Equation on Bounded Intervals." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37110.

Full text
Abstract:
Reaction-diffusion equations have been used to study various phenomena across different fields. These equations can be posed on the whole real line, or on a subinterval, depending on the situation being studied. For finite intervals, we also impose diverse boundary conditions on the system. In the present thesis, we solely focus on the bistable reaction-diffusion equation while working on a bounded interval of the form $[0,L]$ ($L>0$). Furthermore, we consider both mixed and no-flux boundary conditions, where we extend the former to Dirichlet boundary conditions once our analysis of that system is complete. We first use phase-plane analysis to set up our initial investigation of both systems. This gives us an integral describing the transit time of orbits within the phase-plane. This allows us to determine the bifurcation diagram of both systems. We then transform the integral to ease numerical calculations. Finally, we determine the stability of the steady states of each system.
APA, Harvard, Vancouver, ISO, and other styles
10

Szeftel, Jérémie. "Calcul pseudodifférentiel et paradifférentiel pour l'étude de conditions aux limites absorbantes et de propriétés qualitatives d'équations aux dérivées partielles non linéaires." Paris 13, 2004. http://www.theses.fr/2004PA132001.

Full text
Abstract:
Nous construisons dans ce travail des conditions aux limites absorbantes pour des équations aux dérivées partielles non linéaires. Il s'agit d'une méthode permettant d'approcher les solutions de telles équations posées sur des domaines non bornés. La pertinence de ce travail est justifiée en particulier par l'intérêt pratique de telles méthodes et par l'absence de résultat pour les problèmes non linéaires dans la littérature scientifique jusqu'à présent. Dans un premier temps, nous construisons des conditions aux limites absorbantes pour l'équation de Schrödinger. Puis nous abordons les problèmes non linéaires et nous proposons deux méthodes: la première stratégie repose sur la linéarisation et l'emploi du calcul pseudodifférentiel, et la seconde stratégie est purement non linéaire et utilise le calcul paradifférentiel. L'atout de ces deux méthodes est qu'elles donnent lieu à des problèmes bien posés, faciles à mettre en oeuvre pour un faible coût numérique
In this work, we design absorbing boundary conditions for nonlinear partial differential equations. The aim consists in approximating the solutions of such equations set on unbounded domains. The relevance of this work is justified by the practical interest of such methods and by the lack of results for nonlinear problems in the literature until now. First, we design absorbing boundary conditions for the Schrödinger equation. Then, we deal with nonlinear problems using two methods. The first strategy relies on linearization and on the use of the pseudodifferential calculus. The second strategy is purely nonlinear and relies on the use of the paradifferential calculus. The strength of these methods is to yield well-posed problems which are easy to implement for a low numerical cost
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Dirichlet conditions"

1

J, Liandrat, and Institute for Computer Applications in Science and Engineering., eds. On the effective construction of compactly supported wavelets satisfying homogenous boundary conditions on the interval. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adi, Ditkowski, and Institute for Computer Applications in Science and Engineering., eds. Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adi, Ditkowski, and Institute for Computer Applications in Science and Engineering., eds. Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adi, Ditkowski, and Institute for Computer Applications in Science and Engineering., eds. Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Multi-dimensional asymptotically stable 4th order accurate schemes for the diffusion equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mann, Peter. The Stationary Action Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0007.

Full text
Abstract:
This crucial chapter focuses on the stationary action principle. It introduces Lagrangian mechanics, using first-order variational calculus to derive the Euler–Lagrange equation, and the inverse problem is described. The chapter then considers the Ostrogradsky equation and discusses the properties of the extrema using the second-order variation to the action. It then discusses the difference between action functions (of Dirichlet boundary conditions) and action functionals of the extremal path. The different types of boundary conditions (Dirichlet vs Neumann) are elucidated. Topics discussed include Hessian conditions, Douglas’s theorem, the Jacobi last multiplier, Helmholtz conditions, Noether-type variation and Frenet–Serret frames, as well as concepts such as on shell and off shell. Actions of non-continuous extremals are examined using Weierstrass–Erdmann corner conditions, and the action principle is written in the most general form as the Hamilton–Suslov principle. Important applications of the Euler–Lagrange formulation are highlighted, including protein folding.
APA, Harvard, Vancouver, ISO, and other styles
7

Bounded error schemes for the wave equation on complex domains. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Edmunds, D. E., and W. D. Evans. Second-Order Differential Operators on Arbitrary Open Sets. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0007.

Full text
Abstract:
In this chapter, three different methods are described for obtaining nice operators generated in some L2 space by second-order differential expressions and either Dirichlet or Neumann boundary conditions. The first is based on sesquilinear forms and the determination of m-sectorial operators by Kato’s First Representation Theorem; the second produces an m-accretive realization by a technique due to Kato using his distributional inequality; the third has its roots in the work of Levinson and Titchmarsh and gives operators T that are such that iT is m-accretive. The class of such operators includes the self-adjoint operators, even ones that are not bounded below. The essential self-adjointness of Schrödinger operators whose potentials have strong local singularities are considered, and the quantum-mechanical interpretation of essential self-adjointness is discussed.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dirichlet conditions"

1

Feltrin, Guglielmo. "Dirichlet Boundary Conditions." In Positive Solutions to Indefinite Problems, 3–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Droniou, Jérôme, Robert Eymard, Thierry Gallouët, Cindy Guichard, and Raphaèle Herbin. "Dirichlet Boundary Conditions." In Mathématiques et Applications, 17–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79042-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tartar, Luc. "Holes with Dirichlet Conditions." In Lecture Notes of the Unione Matematica Italiana, 167–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05195-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Motreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Nonlinear Elliptic Equations with Dirichlet Boundary Conditions." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 303–85. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leung, Anthony W. "Interacting Population Reaction-Diffusion Systems, Dirichlet Conditions." In Systems of Nonlinear Partial Differential Equations, 47–109. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-3937-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Jin-Liang, Huai-Ning Wu, Tingwen Huang, and Shun-Yan Ren. "Passivity Analysis of CRDNNs with Dirichlet Boundary Conditions." In Analysis and Control of Coupled Neural Networks with Reaction-Diffusion Terms, 161–84. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4907-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stals, Linda, and Stephen Roberts. "Smoothing and Filling Holes with Dirichlet Boundary Conditions." In Modeling, Simulation and Optimization of Complex Processes, 521–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-79409-7_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bonaccorsi, S., and G. Guatteri. "Classical Solutions for SPDEs with Dirichlet Boundary Conditions." In Seminar on Stochastic Analysis, Random Fields and Applications III, 33–44. Basel: Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8209-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ashyralyyev, Charyyar. "Identification Elliptic Problem with Dirichlet and Integral Conditions." In Springer Proceedings in Mathematics & Statistics, 63–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69292-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fernández, F. M., and E. A. Castro. "Hypervirial Theorems for 1D Finite Systems. Dirichlet Boundary Conditions." In Lecture Notes in Chemistry, 196–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-93349-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dirichlet conditions"

1

Nikolić, B., and B. Sazdović. "From Neuman to Dirichlet boundary conditions." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mekhlouf, Reda, Abdelkader Baggag, and Lakhdar Remaki. "Assessment of Nitsche’s Method for Dirichlet Boundary Conditions Treatment." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2016. http://dx.doi.org/10.11159/ffhmt16.176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pavlačková, Martina, Luisa Malaguti, and Jan Andres. "Hartman-type conditions for multivalued Dirichlet problem in abstract spaces." In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nowakowski, Andrzej. "Sufficient optimality conditions for Dirichlet boundary control of wave equations." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuryliak, D. B., and Z. T. Nazarchuk. "Wave scattering by wedge with Dirichlet and Neumann boundary conditions." In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rogers, George W., Arthur W. Mansfield, Houra Rais, and Paul L. Poehler. "IFSAR phase unwrapping in the presence of Dirichlet boundary conditions." In Aerospace/Defense Sensing and Controls, edited by Edmund G. Zelnio. SPIE, 1998. http://dx.doi.org/10.1117/12.321832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BARTKIEWICZ, M., and S. WALCZAK. "OPTIMAL CONTROL OF SYSTEMS WITH PERIODIC AND DIRICHLET BOUNDARY CONDITIONS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cahill, Nathan D., J. Alison Noble, David J. Hawkes, and Lawrence A. Ray. "FAST FLUID REGISTRATION WITH DIRICHLET BOUNDARY CONDITIONS: A TRANSFORM-BASED APPROACH." In 2007 4th IEEE International Symposium on Biomedical Imaging: Macro to Nano. IEEE, 2007. http://dx.doi.org/10.1109/isbi.2007.356951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yan, Ping. "Stability of Delayed Cohen-Grossberg Neural Networks with Dirichlet Boundary Conditions." In 2009 International Workshop on Intelligent Systems and Applications. IEEE, 2009. http://dx.doi.org/10.1109/iwisa.2009.5073117.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Dirichlet conditions"

1

Babuska, Ivo, Victor Nistor, and Nicolae Tarfulea. Approximate Dirichlet Boundary Conditions in the Generalized Finite Element Method (PREPRINT). Fort Belvoir, VA: Defense Technical Information Center, February 2006. http://dx.doi.org/10.21236/ada478502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Babuska, Ivo, B. Guo, and Manil Suri. Implementation of Nonhomogeneous Dirichlet Boundary Conditions in the p- Version of the Finite Element Method. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada207799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography