Journal articles on the topic 'Discharges in liquids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Discharges in liquids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wesołowski, Marcin, Sylwester Tabor, Paweł Kiełbasa, and Sławomir Kurpaska. "Electromagnetic and Thermal Phenomena Modeling of Electrical Discharges in Liquids." Applied Sciences 10, no. 11 (2020): 3900. http://dx.doi.org/10.3390/app10113900.
Full textSchmidt, Michael, Veronika Hahn, Beke Altrock, et al. "Plasma-Activation of Larger Liquid Volumes by an Inductively-Limited Discharge for Antimicrobial Purposes." Applied Sciences 9, no. 10 (2019): 2150. http://dx.doi.org/10.3390/app9102150.
Full textLebedev, Yuri A. "Microwave Discharges in Liquid Hydrocarbons: Physical and Chemical Characterization." Polymers 13, no. 11 (2021): 1678. http://dx.doi.org/10.3390/polym13111678.
Full textKovačević, Vesna V., Goran B. Sretenović, Bratislav M. Obradović, and Milorad M. Kuraica. "Low-temperature plasmas in contact with liquids—a review of recent progress and challenges." Journal of Physics D: Applied Physics 55, no. 47 (2022): 473002. http://dx.doi.org/10.1088/1361-6463/ac8a56.
Full textLu, Xu, Sen Wang, Renwu Zhou, Zhi Fang, and P. J. Cullen. "Discharge modes and liquid interactions for plasma-bubble discharges." Journal of Applied Physics 132, no. 7 (2022): 073303. http://dx.doi.org/10.1063/5.0094560.
Full textKondrat, Oleksandr, and Taras Shumilin. "Electrohydraulic Yutkin effect and electrospark discharges in liquids." Prospecting and Development of Oil and Gas Fields, no. 3 (June 29, 2023): 61–67. http://dx.doi.org/10.69628/pdogf/3.2023.61.
Full textMilardovich, N., M. Ferreyra, J. C. Chamorro, and L. Prevosto. "DISCHARGES IN CONTACT WITH LIQUIDS: ELECTRICAL CHARACTERIZATION OFA PULSED CORONA DISCHARGE." Anales AFA 33, Fluidos (2022): 6–10. http://dx.doi.org/10.31527/analesafa.2021.33.fluidos.6.
Full textMilardovich, N., M. Ferreyra, J. C. Chamorro, and L. Prevosto. "DISCHARGES IN CONTACT WITH LIQUIDS: ELECTRICAL CHARACTERIZATION OF A PULSED CORONA DISCHARGE." Anales AFA 33, Special (2022): 6–10. https://doi.org/10.31527/analesafa.2022.fluidos.6.
Full textNomine, A. V., Thomas Gries, Cédric Noël, et al. "(Invited) Mixing Elements in 2D Nanostructures Grown by Discharges in Liquids." ECS Meeting Abstracts MA2024-01, no. 24 (2024): 1409. http://dx.doi.org/10.1149/ma2024-01241409mtgabs.
Full textKorobeynikov, S. M., A. G. Ovsyannikov, A. V. Ridel, et al. "Study of partial discharges in liquids." Journal of Electrostatics 103 (January 2020): 103412. http://dx.doi.org/10.1016/j.elstat.2019.103412.
Full textThagard, Selma Mededovic, Kazunori Takashima, and Akira Mizuno. "Electrical Discharges in Polar Organic Liquids." Plasma Processes and Polymers 6, no. 11 (2009): 741–50. http://dx.doi.org/10.1002/ppap.200900017.
Full textBabula, E., A. Sierota, S. Zoledziowski, and J. H. Calderwood. "Surface Partial Discharges in Moist Dielectric Liquids." IEEE Transactions on Electrical Insulation EI-20, no. 2 (1985): 299–302. http://dx.doi.org/10.1109/tei.1985.348834.
Full textLebedev, Yu A. "Microwave Discharges in Liquids: Fields of Applications." High Temperature 56, no. 5 (2018): 811–20. http://dx.doi.org/10.1134/s0018151x18050280.
Full textHerchl, F., K. Marton, L. Tomčo, et al. "Breakdown and partial discharges in magnetic liquids." Journal of Physics: Condensed Matter 20, no. 20 (2008): 204110. http://dx.doi.org/10.1088/0953-8984/20/20/204110.
Full textAkiyama, H. "Streamer discharges in liquids and their applications." IEEE Transactions on Dielectrics and Electrical Insulation 7, no. 5 (2000): 646–53. http://dx.doi.org/10.1109/94.879360.
Full textHamdan, Ahmad. "(Invited) Nanosecond Electrical Discharges in Liquids: Applications in the Synthesis of Nanoparticles, Including Nanoalloys." ECS Meeting Abstracts MA2024-01, no. 24 (2024): 1398. http://dx.doi.org/10.1149/ma2024-01241398mtgabs.
Full textGamaleev, Vladislav, Naoyuki Iwata, Masaru Hori, Mineo Hiramatsu, and Masafumi Ito. "Direct Treatment of Liquids Using Low-Current Arc in Ambient Air for Biomedical Applications." Applied Sciences 9, no. 17 (2019): 3505. http://dx.doi.org/10.3390/app9173505.
Full textKozioł, Michał. "Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids." Energies 13, no. 9 (2020): 2172. http://dx.doi.org/10.3390/en13092172.
Full textSun, Anbang, Chao Huo, and Jie Zhuang. "Formation mechanism of streamer discharges in liquids: a review." High Voltage 1, no. 2 (2016): 74–80. http://dx.doi.org/10.1049/hve.2016.0016.
Full textGaysin, A. F., F. M. Gaysin, L. N. Bagautdinova, A. A. Khafizov, R. I. Valiev, and E. V. Gazeeva. "Plasma-electrolyte discharges in a gas-liquid medium for the production of hydrogen." Power engineering: research, equipment, technology 23, no. 2 (2021): 27–35. http://dx.doi.org/10.30724/1998-9903-2021-23-2-27-35.
Full textKorzec, Dariusz, Florian Hoppenthaler, and Stefan Nettesheim. "Piezoelectric Direct Discharge: Devices and Applications." Plasma 4, no. 1 (2020): 1–41. http://dx.doi.org/10.3390/plasma4010001.
Full textHamdan, Ahmad, and Luc Stafford. "A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids." Nanomaterials 12, no. 20 (2022): 3603. http://dx.doi.org/10.3390/nano12203603.
Full textTsoukou, Evanthia, Maxime Delit, Louise Treint, Paula Bourke, and Daniela Boehm. "Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges." Applied Sciences 11, no. 3 (2021): 1178. http://dx.doi.org/10.3390/app11031178.
Full textNominé, A. V., N. Tarasenka, A. Nevar, et al. "Alloying nanoparticles by discharges in liquids: a quest for metastability." Plasma Physics and Controlled Fusion 64, no. 1 (2021): 014003. http://dx.doi.org/10.1088/1361-6587/ac35f0.
Full textNominé, A. V., Th Gries, C. Noel, A. Nominé, V. Milichko, and T. Belmonte. "Synthesis of nanomaterials by electrode erosion using discharges in liquids." Journal of Applied Physics 130, no. 15 (2021): 151101. http://dx.doi.org/10.1063/5.0040587.
Full textHimura, H., A. Irie, and S. Masamune. "Plasma Irradiation to Ionic Liquids using 2.45 GHz Microwave Discharges." Transactions of the Materials Research Society of Japan 36, no. 1 (2011): 59–63. http://dx.doi.org/10.14723/tmrsj.36.59.
Full textAuge, J. L., O. Lesaint, and A. T. Vu Thi. "Partial discharges in ceramic substrates embedded in liquids and gels." IEEE Transactions on Dielectrics and Electrical Insulation 20, no. 1 (2013): 262–74. http://dx.doi.org/10.1109/tdei.2013.6451366.
Full textThulin, Anders, Anders Molander, and Ulrich von Pidoll. "Electrostatic Discharges of Droplets of Various Liquids during Splash Filling." Chemical Engineering & Technology 39, no. 10 (2016): 1972–75. http://dx.doi.org/10.1002/ceat.201500687.
Full textFerreyra, M., B. Fina, N. Milardovich, J. C. Chamorro, B. Santamaría, and L. Prevosto. "WATER TREATMENT WITH A PULSED CORONA DISCHARGE." Anales AFA 33, Special Fluids (2022): 11–15. http://dx.doi.org/10.31527/analesafa.2022.fluidos.11.
Full textStuchala, Filip, and Pawel Rozga. "Comprehensive Comparison of Lightning Properties of Insulating Liquids in Relation to Mineral Oil Under Positive Lightning Impulse." Energies 18, no. 9 (2025): 2381. https://doi.org/10.3390/en18092381.
Full textTONG, Lizhu. "S0550402 Numerical Analysis of Electrohydrodynamics due to Electrical Discharges in Liquids." Proceedings of Mechanical Engineering Congress, Japan 2014 (2014): _S0550402——_S0550402—. http://dx.doi.org/10.1299/jsmemecj.2014._s0550402-.
Full textGidalevich, E., R. L. Boxman, and S. Goldsmith. "Hydrodynamic effects in liquids subjected to pulsed low current arc discharges." Journal of Physics D: Applied Physics 37, no. 10 (2004): 1509–14. http://dx.doi.org/10.1088/0022-3727/37/10/014.
Full textHamdan, Ahmad, Cédric Noël, Jaafar Ghanbaja, and Thierry Belmonte. "Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids." Plasma Chemistry and Plasma Processing 34, no. 5 (2014): 1101–14. http://dx.doi.org/10.1007/s11090-014-9564-y.
Full textKawamura, Tomohisa, Moriyuki Kanno, Sven Stauss, et al. "Generation and characterization of field-emitting surface dielectric barrier discharges in liquids." Journal of Applied Physics 123, no. 4 (2018): 043301. http://dx.doi.org/10.1063/1.5011445.
Full textNominé, A. V., M. Nazarov, T. Gries, et al. "Synthesis and growth mechanism of Bi2O2CO3 nanosheets by pulsed discharges in liquids." Applied Surface Science 674 (November 2024): 160844. http://dx.doi.org/10.1016/j.apsusc.2024.160844.
Full textPogoda, Alexander, Yuanyuan Pan, Monika Röntgen, and Sybille Hasse. "Plasma-Functionalized Liquids for Decontamination of Viable Tissues: A Comparative Approach." International Journal of Molecular Sciences 25, no. 19 (2024): 10791. http://dx.doi.org/10.3390/ijms251910791.
Full textDekhtyar, V. A., and A. E. Dubinov. "Visualization of Liquids Flows in Microfluidics and Plasma Channels in Nanosecond Spark Microdischarges by Means of Digital Microscopy." Scientific Visualization 15, no. 1 (2023): 1–16. http://dx.doi.org/10.26583/sv.15.1.01.
Full textPeta, Katarzyna. "Multiscale Wettability of Microtextured Irregular Surfaces." Materials 17, no. 23 (2024): 5716. http://dx.doi.org/10.3390/ma17235716.
Full textDanikas, M. G. "Breakdown in Nanofluids: A Short Review on Experimental Results and Related Mechanisms." Engineering, Technology & Applied Science Research 6, no. 5 (2018): 3300–3309. https://doi.org/10.5281/zenodo.1490300.
Full textSchaper, L., W. G. Graham, and K. R. Stalder. "Vapour layer formation by electrical discharges through electrically conducting liquids—modelling and experiment." Plasma Sources Science and Technology 20, no. 3 (2011): 034003. http://dx.doi.org/10.1088/0963-0252/20/3/034003.
Full textBezborodko, P., O. Lesaint, and R. Tobazeon. "Study of partial discharges and gassing phenomena within gaseous cavities in insulating liquids." IEEE Transactions on Electrical Insulation 27, no. 2 (1992): 287–97. http://dx.doi.org/10.1109/14.135600.
Full textBelmonte, T., A. Hamdan, F. Kosior, C. Noël, and G. Henrion. "Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis." Journal of Physics D: Applied Physics 47, no. 22 (2014): 224016. http://dx.doi.org/10.1088/0022-3727/47/22/224016.
Full textSanz, J., C. J. Renedo, A. Ortiz, P. J. Quintanilla, F. Ortiz, and D. F. García. "A Brief Review of the Impregnation Process with Dielectric Fluids of Cellulosic Materials Used in Electric Power Transformers." Energies 16, no. 9 (2023): 3673. http://dx.doi.org/10.3390/en16093673.
Full textSvarnas, Panagiotis, Michael Poupouzas, Konstantia Papalexopoulou, et al. "Water Modification by Cold Plasma Jet with Respect to Physical and Chemical Properties." Applied Sciences 12, no. 23 (2022): 11950. http://dx.doi.org/10.3390/app122311950.
Full textLoiselle, Luc, U. Mohan Rao, and Issouf Fofana. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions." Energies 13, no. 13 (2020): 3472. http://dx.doi.org/10.3390/en13133472.
Full textCorbella Roca, Carles, Sabine Portal, Madhusudhan Kundrapu, and Michael Keidar. "(Invited) Advances in Synthesis of Nanomaterials By Atmospheric Arc Discharge with Pulsed Power." ECS Meeting Abstracts MA2022-02, no. 19 (2022): 888. http://dx.doi.org/10.1149/ma2022-0219888mtgabs.
Full textTaubkin, Igor’ S. "Overview of Static Electricity in Some Industrial Operations with Petroleum Products." Theory and Practice of Forensic Science 13, no. 2 (2018): 54–64. http://dx.doi.org/10.30764/1819-2785-2018-13-2-54-64.
Full textEfremov, N. M., B. Yu Adamiak, V. I. Blochin, et al. "Experimental investigation of the action of pulsed electrical discharges in liquids on biological objects." IEEE Transactions on Plasma Science 28, no. 1 (2000): 224–29. http://dx.doi.org/10.1109/27.842908.
Full textJimenez, Francisco J., Marjan Radfar, Braedan Kirk, Richard D. Sydora, and Trent S. Hunter. "Shock waves in pulsed electrical discharges in liquids: numerical simulation and comparison to experiment." Journal of Physics D: Applied Physics 54, no. 7 (2020): 075202. http://dx.doi.org/10.1088/1361-6463/abc3ea.
Full textKawai, Jun, Seema Jagota, Takeo Kaneko, et al. "Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan." International Journal of Astrobiology 12, no. 4 (2013): 282–91. http://dx.doi.org/10.1017/s1473550413000116.
Full text