Academic literature on the topic 'Discontinous Galerkin method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discontinous Galerkin method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Discontinous Galerkin method"
Krasnov, Mikhail Mikhailovich, Marina Eugenievna Ladonkina, and Vladimir Fedorovich Tishkin. "Implementation of the Galerkin discontinous method in the DGM software package." Keldysh Institute Preprints, no. 245 (2018): 1–31. http://dx.doi.org/10.20948/prepr-2018-245.
Full textDolejší, V., M. Feistauer, and C. Schwab. "On discontinuous Galerkin methods for nonlinear convection-diffusion problems and compressible flow." Mathematica Bohemica 127, no. 2 (2002): 163–79. http://dx.doi.org/10.21136/mb.2002.134171.
Full textCockburn, B. "Discontinuous Galerkin methods." ZAMM 83, no. 11 (November 3, 2003): 731–54. http://dx.doi.org/10.1002/zamm.200310088.
Full textKrasnov, M. M., P. A. Kuchugov, M. E. Ladonkina, and V. F. Tishkin. "Efficient parallel software system for solving Navier-Stokes equations by the discontinuous Galerkin method." Computational Mathematics and Information Technologies 2 (2017): 148–55. http://dx.doi.org/10.23947/2587-8999-2017-2-148-155.
Full textZhang, Xu-jiu, Yong-sheng Zhu, Ke Yan, and You-yun Zhang. "A Front Tracking Method Based on Runge-Kutta Discontinuous Galerkin Methods." International Journal of Online Engineering (iJOE) 12, no. 12 (December 25, 2016): 67. http://dx.doi.org/10.3991/ijoe.v12i12.6453.
Full textXu, Liyang, Xinhai Xu, Xiaoguang Ren, Yunrui Guo, Yongquan Feng, and Xuejun Yang. "Stability evaluation of high-order splitting method for incompressible flow based on discontinuous velocity and continuous pressure." Advances in Mechanical Engineering 11, no. 10 (October 2019): 168781401985558. http://dx.doi.org/10.1177/1687814019855586.
Full textZhang, Rongpei, Xijun Yu, Jiang Zhu, Abimael F. D. Loula, and Xia Cui. "Weighted Interior Penalty Method with Semi-Implicit Integration Factor Method for Non-Equilibrium Radiation Diffusion Equation." Communications in Computational Physics 14, no. 5 (November 2013): 1287–303. http://dx.doi.org/10.4208/cicp.190612.010313a.
Full textZienkiewicz, O. C., R. L. Taylor, S. J. Sherwin, and J. Peiró. "On discontinuous Galerkin methods." International Journal for Numerical Methods in Engineering 58, no. 8 (August 6, 2003): 1119–48. http://dx.doi.org/10.1002/nme.884.
Full textHu, Qingjie, Yinnian He, Tingting Li, and Jing Wen. "A Mixed Discontinuous Galerkin Method for the Helmholtz Equation." Mathematical Problems in Engineering 2020 (May 4, 2020): 1–9. http://dx.doi.org/10.1155/2020/9582583.
Full textGopalakrishnan, J., and G. Kanschat. "A multilevel discontinuous Galerkin method." Numerische Mathematik 95, no. 3 (September 1, 2003): 527–50. http://dx.doi.org/10.1007/s002110200392.
Full textDissertations / Theses on the topic "Discontinous Galerkin method"
Ozisik, Sevtap. "Fully Computable Convergence Analysis Of Discontinous Galerkin Finite Element Approximation With An Arbitrary Number Of Levels Of Hanging Nodes." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614345/index.pdf.
Full textNytra, Jan. "Řešení problémů akustiky pomocí nespojité Galerkinovy metody." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232174.
Full textBonnasse-Gahot, Marie. "Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4125/document.
Full textThe scientific context of this thesis is seismic imaging which aims at recovering the structure of the earth. As the drilling is expensive, the petroleum industry is interested by methods able to reconstruct images of the internal structures of the earth before the drilling. The most used seismic imaging method in petroleum industry is the seismic-reflection technique which uses a wave equation model. Seismic imaging is an inverse problem which requires to solve a large number of forward problems. In this context, we are interested in this thesis in the modeling part, i.e. the resolution of the forward problem, assuming a time-harmonic regime, leading to the so-called Helmholtz equations. The main objective is to propose and develop a new finite element (FE) type solver characterized by a reduced-size discrete operator (as compared to existing such solvers) without hampering the accuracy of the numerical solution. We consider the family of discontinuous Galerkin (DG) methods. However, as classical DG methods are much more expensive than continuous FE methods when considering steady-like problems, because of an increased number of coupled degrees of freedom as a result of the discontinuity of the approximation, we develop a new form of DG method that specifically address this issue: the hybridizable DG (HDG) method. To validate the efficiency of the proposed HDG method, we compare the results that we obtain with those of a classical upwind flux-based DG method in a 2D framework. Then, as petroleum industry is interested in the treatment of real data, we develop the HDG method for the 3D elastic Helmholtz equations
Galbraith, Marshall C. "A Discontinuous Galerkin Chimera Overset Solver." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384427339.
Full textGürkan, Ceren. "Extended hybridizable discontinuous Galerkin method." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/664035.
Full textEsta tesis propone una nueva técnica numérica: eXtended Hybridizable Discontinuous Galerkin (X-HDG), para resolver eficazmente problemas incluyendo fronteras en movimiento e interfaces. Su objetivo es superar las limitaciones de los métodos disponibles y mejorar los resultados, heredando propiedades del método Hybridizable Discontinuous Galerkin method (HDG), junto con una definición de interfaz explícita. X-HDG combina el método HDG con la filosofía de eXtended Finite Element method (X-FEM), con una descripción level-set de la interfaz, para obtener un método numérico hp convergente de orden superior sin ajuste de la malla a la interfaz o frontera. HDG supera a otros métodos de DG para los problemas implícitos con operadores autoadjuntos, debido a sus propiedades de hibridación y superconvergencia. El proceso de hibridación reduce drásticamente el número de grados de libertad en el problema discreto, similar a la condensación estática en el contexto de Continuous Galerkin (CG) de alto orden. Por otro lado, HDG se basa en una formulación mixta que, a diferencia de CG u otros métodos DG, es estable incluso cuando todas las variables (incógnitas primitivas y derivadas) se aproximan con polinomios del mismo grado k. Como resultado, la convergencia de orden k + 1 en la norma L2 se demuestra no sólo para la incógnita primal sino también para sus derivadas. Por lo tanto, un simple post-proceso elemento-a-elemento de las derivadas conduce a una aproximación superconvergente de las variables primales, con convergencia de orden k+2 en la norma L2. X-HDG hereda estas propiedades. Por otro lado, gracias a la descripción level-set de la interfaz, se evita caro remallado tratando las interfaces móviles. Este trabajo demuestra que X-HDG mantiene la convergencia óptima y la superconvergencia de HDG sin la necesidad de ajustar la malla a la interfaz. En los capítulos 2 y 3, se deduce e implementa el método X-HDG para resolver la ecuación de Laplace estacionaria en un dominio donde la interfaz separa un solo material del vacío y donde la interfaz separa dos materiales diferentes. La precisión y convergencia de X-HDG se prueba con ejemplos de soluciones fabricadas y se demuestra que X-HDG supera las propuestas anteriores mostrando convergencia óptima y superconvergencia de alto orden, junto con una reducción del tamaño del sistema gracias a su naturaleza híbrida, pero sin ajuste de la malla. En los capítulos 4 y 5, el método X-HDG se desarrolla e implementa para resolver el problema de interfaz de Stokes para interfaces vacías y bimateriales. Con X-HDG, de nuevo se muestra una convergencia de alto orden en mallas no adaptadas, para problemas de flujo incompresible. X-HDG para interfaces móviles se discute en el Capítulo 6. Se considera un problema térmico transitorio, donde el término dependiente del tiempo es discretizado usando el método de backward Euler. Un ejemplo de una interfaz circulas que se reduce, junto con el problema de Stefan de dos fases, se discute en la sección de ejemplos numéricos. Se demuestra que X-HDG ofrece un alto grado de convergencia óptima para problemas dependientes del tiempo. Además, con el problema de Stefan, usando un grado polinomial k, se demuestra una aproximación más exacta de la posición de la interfaz contra X-FEM, gracias a la aproximación del gradiente convergente k + 1 de X-HDG. Una vez más, se mejoran los resultados obtenidos por las propuestas anteriores
Elfverson, Daniel. "On discontinuous Galerkin multiscale methods." Licentiate thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-200260.
Full textVoonna, Kiran. "Development of discontinuous galerkin method for 1-D inviscid burgers equation." ScholarWorks@UNO, 2003. http://louisdl.louislibraries.org/u?/NOD,75.
Full textTitle from electronic submission form. "A thesis ... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Mechanical Engineering"--Thesis t.p. Vita. Includes bibliographical references.
Casoni, Rero Eva. "Shock capturing for discontinuous Galerkin methods." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/51571.
Full textThis thesis proposes shock-capturing methods for high-order Discontinuous Galerkin (DG) formulations providing highly accurate solutions for compressible flows. In the last decades, research in DG methods has been very active. The success of DG in hyperbolic problems has driven many studies for nonlinear conservation laws and convection-dominated problems. Among all the advantages of DG, their inherent stability and local conservation properties are relevant. Moreover, DG methods are naturally suited for high-order approximations. Actually, in recent years it has been shown that convection-dominated problems are no longer restricted to low-order elements. In fact, highly accurate numerical models for High-Fidelity predictions in CFD are necessary. Under this rationale, two shock-capturing techniques are presented and discussed. First, a novel and simple technique based on on the introduction of a new basis of shape functions is presented. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization thanks to the numerical fluxes, thus exploiting DG inherent properties. Large high-order elements can therefore be used and shocks are captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Second, a classical and, apparently simple, technique is advocated: the introduction of artificial viscosity. First, a one-dimensional study is perfomed. Viscosity of the order O(hk) with 1≤ k≤ p is obtained, hence inducing a shock width of the same order. Second, the study extends the accurate one-dimensional viscosity to triangular multidimensional meshes. The extension is based on the projection of the one-dimensional viscosity into some characteristic spatial directions within the elements. It is consistently shown that the introduced viscosity scales, at most, withthe DG resolutions length scales, h/p. The method is especially reliable for highorder DG approximations, say p≥3. A wide range of different numerical tests validate both methodologies. In some examples the proposed methods allow to reduce by an order of magnitude the number of degrees of freedom necessary to accurately capture the shocks, compared to standard low order h-adaptive approaches.
Dong, Zhaonan. "Discontinuous Galerkin methods on polytopic meshes." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/39140.
Full textElfverson, Daniel. "Discontinuous Galerkin Multiscale Methods for Elliptic Problems." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-138960.
Full textBooks on the topic "Discontinous Galerkin method"
Dolejší, Vít, and Miloslav Feistauer. Discontinuous Galerkin Method. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3.
Full textCockburn, Bernardo, George E. Karniadakis, and Chi-Wang Shu, eds. Discontinuous Galerkin Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59721-3.
Full textHesthaven, Jan S., and Tim Warburton. Nodal Discontinuous Galerkin Methods. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72067-8.
Full textBottasso, Carlo L. Discontinuous dual-primal mixed finite elements for elliptic problems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Find full textPietro, Daniele Antonio Di. Mathematical aspects of discontinuous galerkin methods. Berlin: Springer, 2012.
Find full text1967-, Ern Alexandre, ed. Mathematical aspects of discontinuous galerkin methods. Berlin: Springer, 2012.
Find full textDi Pietro, Daniele Antonio, and Alexandre Ern. Mathematical Aspects of Discontinuous Galerkin Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22980-0.
Full textHu, Chang-Qing. A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textCockburn, B. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Hampton, VA: ICASE, NASA Langley Research Center, 2000.
Find full textYan, Jue. Local discontinuous Galerkin methods for partial differential equations with higher order derivates. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2002.
Find full textBook chapters on the topic "Discontinous Galerkin method"
Dolejší, Vít, and Miloslav Feistauer. "Space-Time Discontinuous Galerkin Method." In Discontinuous Galerkin Method, 223–335. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_6.
Full textDolejší, Vít, and Miloslav Feistauer. "Space-Time Discretization by Multistep Methods." In Discontinuous Galerkin Method, 171–222. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_5.
Full textDolejší, Vít, and Miloslav Feistauer. "Introduction." In Discontinuous Galerkin Method, 1–23. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_1.
Full textDolejší, Vít, and Miloslav Feistauer. "Fluid-Structure Interaction." In Discontinuous Galerkin Method, 521–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.
Full textDolejší, Vít, and Miloslav Feistauer. "DGM for Elliptic Problems." In Discontinuous Galerkin Method, 27–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_2.
Full textDolejší, Vít, and Miloslav Feistauer. "Methods Based on a Mixed Formulation." In Discontinuous Galerkin Method, 85–115. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_3.
Full textDolejší, Vít, and Miloslav Feistauer. "DGM for Convection-Diffusion Problems." In Discontinuous Galerkin Method, 117–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_4.
Full textDolejší, Vít, and Miloslav Feistauer. "Generalization of the DGM." In Discontinuous Galerkin Method, 337–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_7.
Full textDolejší, Vít, and Miloslav Feistauer. "Inviscid Compressible Flow." In Discontinuous Galerkin Method, 401–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_8.
Full textDolejší, Vít, and Miloslav Feistauer. "Viscous Compressible Flow." In Discontinuous Galerkin Method, 477–519. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_9.
Full textConference papers on the topic "Discontinous Galerkin method"
Lörcher, Frieder, Gregor Gassner, and Claus-Dieter Munz. "Space-Time Discontinous Galerkin Method for Unsteady Compressible Navier-Stokes Equations." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3477.
Full textBagherli, Hamid, and Ian Jeffrey. "H-matrix compression of discontinous Galerkin method exact radiating boundary conditions." In 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE, 2016. http://dx.doi.org/10.1109/antem.2016.7550229.
Full textDurochat, C., S. Lanteri, L. Moya, J. Viquerat, S. Descombes, and C. Scheid. "Some recent developments of the discontinous Galerkin method for time-domain electromagnetics." In THE FIFTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANO-PHOTONICS: TaCoNa-Photonics 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4750079.
Full textWang, Junfeng, Chunlei Liang, and Charles A. Garris. "Two-Dimensional Discontinous Galerkin Simulations of Crypto-Steady Supersonic Pressure Exchange." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65818.
Full textMeilin Liu and H. Bagci. "A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations." In 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5997233.
Full textBusch, Kurt. "Discontinuous Galerkin Methods in Nanophotonics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/iprsn.2012.im3b.1.
Full textCockburn, Bernardo. "The Hybridizable Discontinuous Galerkin Methods." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0166.
Full textPeyret, Christophe, and Philippe Delorme. "Discontinuous Galerkin Method for Computational Aeroacoustics." In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-2568.
Full textKim, Cheolwan, H. Chang, and Jang Yeon Lee. "Compact Higher-order Discontinuous Galerkin Method." In 11th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-2824.
Full textCollis, S. Scott, and Kaveh Ghayour. "Discontinuous Galerkin Methods for Compressible DNS." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45632.
Full textReports on the topic "Discontinous Galerkin method"
Lin, Guang, and George E. Karniadakis. A Discontinuous Galerkin Method for Two-Temperature Plasmas. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada458981.
Full textGarikipati, Krishna, and Jakob T. Ostien. Discontinuous Galerkin finite element methods for gradient plasticity. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1008112.
Full textWatkins, Jerry. Current Status of Discontinuous Galerkin (DG) methods in SPARC. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1564038.
Full textShu, Chi-Wang. Final Technical Report: High Order Discontinuous Galerkin Method and Applications. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1499046.
Full textXia, Yinhua, Yan Xu, and Chi-Wang Shu. Local Discontinuous Galerkin Methods for the Cahn-Hilliard Type Equations. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada464873.
Full textRomkes, A., S. Prudhomme, and J. T. Oden. A Posteriori Error Estimation for a New Stabilized Discontinuous Galerkin Method. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada438102.
Full textNourgaliev, R., H. Luo, S. Schofield, T. Dunn, A. Anderson, B. Weston, and J. Delplanque. Fully-Implicit Orthogonal Reconstructed Discontinuous Petrov-Galerkin Method for Multiphysics Problems. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1178386.
Full textLaeuter, Matthias, Francis X. Giraldo, Doerthe Handorf, and Klaus Dethloff. A Discontinuous Galerkin Method for the Shallow Water Equations in Spherical Triangular Coordinates. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada486030.
Full textBui-Thanh, Tan, and Omar Ghattas. Analysis of an Hp-Non-conforming Discontinuous Galerkin Spectral Element Method for Wave. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada555327.
Full textWang, Wei, Xiantao Li, and Chi-Wang Shu. The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada472151.
Full text