Academic literature on the topic 'Discrete Liquid Flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discrete Liquid Flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Discrete Liquid Flow"

1

Jia, Yun Fei, and De Ren Kong. "A Study on Measurement Uncertainty of a Vortex Flow Meter in Discrete Liquid Phase." Advanced Materials Research 346 (September 2011): 593–99. http://dx.doi.org/10.4028/www.scientific.net/amr.346.593.

Full text
Abstract:
The measurement uncertainty of vortex flowmeter was examined when the gas flow measured was injected with liquid. This test was performed in a multiphase flow calibration facility. A vortex flowmeter of 50 mm in diameter was installed in a 100 mm test section. The gas volume flow rate was held in 141m3/h and the liquid was injected into the gas flow. The liquid volume fractions used at the gas volume flow rate were 0.0106%, 0.0213%,0.0355%,0.0496%,0.0638%,0.0780% and 0.0922%. The small amount of liquid in the gas as discrete droplet is called discrete liquid phase. Analysis on the vortex shedd
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Liang Chao. "CFD-DPM Modeling of Gas-Liquid Flow in a Stirred Vessel." Advanced Materials Research 550-553 (July 2012): 979–83. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.979.

Full text
Abstract:
Gas-liquid flow in a stirred vessel was simulated numerically with computational fluid dynamics(CFD). Gas was treated as discrete phase and described by discrete phase model (DPM), while the liquid was considered as a continuum and solved under Euler reference frame. The liquid velocity, gas holdup and gas residence time distribution in the stirred vessel were predicted. The simulation results show that gas dispersion in the stirred vessel is very non-uniformity and high gas holdup is found in the centre of the stirred vessel and vortexes while relatively low in bottom region and region betwee
APA, Harvard, Vancouver, ISO, and other styles
3

Chaitanya, G. V. A., and G. S. Gupta. "Liquid flow in heap leaching using the discrete liquid flow model and graph-based void search algorithm." Hydrometallurgy 221 (August 2023): 106151. http://dx.doi.org/10.1016/j.hydromet.2023.106151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hagen, Thijmen, Stefan Luding, Devaraj van der Meer, Vanessa Magnanimo, and Ahmed Jarray. "Liquid migration in flowing granular materials." EPJ Web of Conferences 249 (2021): 09001. http://dx.doi.org/10.1051/epjconf/202124909001.

Full text
Abstract:
In partially wet granular beds, liquid migrates between particles due to collisions and contacts. This, in turn, influences the flow behaviour of the granular bed. We investigate liquid redistribution in moving monodisperse particles in a rotating drum using Discrete Element Method (DEM) simulations. For weak capillary forces, liquid re-distribution, induced by the continuous flow of particles, leads to concentration of the liquid in the core of the bed, where the flow is quasi-static. High capillary forces reduce the surface flow speed and granular temperature. This decreases liquid bridges r
APA, Harvard, Vancouver, ISO, and other styles
5

Gadi, Venkat Arunchaitanya, and Govind Sharan Gupta. "Discrete Liquid Flow Behavior in a 2D Random Packed Bed." ISIJ International 63, no. 5 (2023): 810–21. http://dx.doi.org/10.2355/isijinternational.isijint-2022-529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Junping, Norman Epstein, John R. Grace, and Kokseng Lim. "Bubble Characteristics in a Developing Vertical Gas–Liquid Upflow Using a Conductivity Probe." Journal of Fluids Engineering 122, no. 1 (1999): 138–45. http://dx.doi.org/10.1115/1.483250.

Full text
Abstract:
Experiments were carried out in an 82.6-mm-dia column with a perforated distributor plate. Conductivity probes on the axis of the column were used to measure local bubble properties in the developing flow region for superficial air velocities from 0.0018 to 6.8 m/s and superficial water velocities from 0 to 0.4 m/s, corresponding to the discrete bubble, dispersed bubble, coalesced bubble, slug, churn, bridging, and annular flow regimes. Bubble frequency increased linearly with gas velocity in the discrete and dispersed bubble regimes. Bubble frequency also increased with gas velocity in the sl
APA, Harvard, Vancouver, ISO, and other styles
7

Roques, J. F., V. Dupont, and J. R. Thome. "Falling Film Transitions on Plain and Enhanced Tubes." Journal of Heat Transfer 124, no. 3 (2002): 491–99. http://dx.doi.org/10.1115/1.1458017.

Full text
Abstract:
In falling film heat transfer on horizontal tube bundles, liquid flow from tube to tube occurs as a falling jet that can take on different flow modes. At low flow rates, the liquid film falls as discrete droplets. At higher flow rates, these droplets form discretely spaced liquid columns. At still higher flow rates, the film falls as a continuous sheet of liquid. Predicting the flow transitions between these flow modes is an essential step in determining the heat transfer coefficient for the particular flow mode, whether for a single phase process or for falling film condensation or evaporatio
APA, Harvard, Vancouver, ISO, and other styles
8

李, 静. "A Second-Order Fully Discrete Scheme for Nematic Liquid Crystal Flow." Advances in Applied Mathematics 11, no. 04 (2022): 1700–1707. http://dx.doi.org/10.12677/aam.2022.114185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Cheng Jun, Long Li, Chang Guo Xue, and Qiong Liu. "Research on the Influence of Multidimensional Vibration on Casting Filling Capacity Based on Discrete Element Method." Key Engineering Materials 693 (May 2016): 1263–71. http://dx.doi.org/10.4028/www.scientific.net/kem.693.1263.

Full text
Abstract:
To analyze liquid metal flow in mold under multidimensional vibration condition, discrete element method (DEM) is taken to approximately stimulate liquid metal flow and to simulate numerically liquid metal flow filling process in casting technique under multidimensional vibration. The orthogonal experiment design is taken to study vibration dimension, frequency as well as amplitude influence on liquid metal filling capacity; Through EDEM platform, numerical simulation research in each test scheme can be carried out to get influence of filling time upon sensitivity degree of each parameter inde
APA, Harvard, Vancouver, ISO, and other styles
10

FAN, XIAOFENG, and JIANGFENG WANG. "A MARKER-BASED EULERIAN-LAGRANGIAN METHOD FOR MULTIPHASE FLOW WITH SUPERSONIC COMBUSTION APPLICATIONS." International Journal of Modern Physics: Conference Series 42 (January 2016): 1660159. http://dx.doi.org/10.1142/s2010194516601599.

Full text
Abstract:
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass excha
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!