Academic literature on the topic 'Discrete sliding mode controller'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Discrete sliding mode controller.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Discrete sliding mode controller"

1

Wang, Jian, Hendrik Van Brussel, and Jan Swevers. "Robust Perfect Tracking Control With Discrete Sliding Mode Controller." Journal of Dynamic Systems, Measurement, and Control 125, no. 1 (March 1, 2003): 27–32. http://dx.doi.org/10.1115/1.1540994.

Full text
Abstract:
The closed-loop transfer function of a plant controlled with a classical feedback controller, depends on the dynamics of the plant. Since most feedforward tracking controllers are designed based on this closed-loop transfer function, they are not robust against plant model uncertainties. Sliding-mode controllers have the property that when the system is on the switching line, the closed-loop behavior is independent of the plant dynamics. As a result, it can be expected that a feedforward control design based on this closed-loop behavior is robust against plant model uncertainties. This paper studies this feedforward robustness issue in detail and verifies the results on an experimental test setup: a stage driven by a linear motor. An integrated procedure is proposed in designing the closed-loop discrete-time sliding mode controller using the reaching law method.
APA, Harvard, Vancouver, ISO, and other styles
2

Chan, C. Y. "Discrete adaptive sliding-mode tracking controller." Automatica 33, no. 5 (May 1997): 999–1002. http://dx.doi.org/10.1016/s0005-1098(97)00001-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chan, C. Y. "Robust discrete-time sliding mode controller." Systems & Control Letters 23, no. 5 (November 1994): 371–74. http://dx.doi.org/10.1016/0167-6911(94)90070-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pieper, Jeff K. "A Discrete Time Adaptive Sliding Mode Controller." IFAC Proceedings Volumes 29, no. 1 (June 1996): 5227–31. http://dx.doi.org/10.1016/s1474-6670(17)58511-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, C. Y. "Robust discrete quasi-sliding mode tracking controller." Automatica 31, no. 10 (October 1995): 1509–11. http://dx.doi.org/10.1016/0005-1098(95)00054-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Su, Te-Jen, Shih-Ming Wang, Tsung-Ying Li, Sung-Tsun Shih, and Van-Manh Hoang. "Design of hybrid sliding mode controller based on fireworks algorithm for nonlinear inverted pendulum systems." Advances in Mechanical Engineering 9, no. 1 (January 2017): 168781401668427. http://dx.doi.org/10.1177/1687814016684273.

Full text
Abstract:
The objective of this article is to optimize parameters of a hybrid sliding mode controller based on fireworks algorithm for a nonlinear inverted pendulum system. The proposed controller is a combination of two modified types of the classical sliding mode controller, namely, baseline sliding mode controller and fast output sampling discrete sliding mode controller. The simulation process is carried out with MATLAB/Simulink. The results are compared with a published hybrid method using proportional–integral–derivative and linear quadratic regulator controllers. The simulation results show a better performance of the proposed controller.
APA, Harvard, Vancouver, ISO, and other styles
7

Abid, Hafedh, Mohamed Chtourou, and Ahmed Toumi. "Robust Fuzzy Sliding Mode Controller for Discrete Nonlinear Systems." International Journal of Computers Communications & Control 3, no. 1 (March 1, 2008): 6. http://dx.doi.org/10.15837/ijccc.2008.1.2370.

Full text
Abstract:
In this work we are interested to discrete robust fuzzy sliding mode control. The discrete SISO nonlinear uncertain system is presented by the Takgi- Sugeno type fuzzy model state. We recall the principle of the sliding mode control theory then we combine the fuzzy systems with the sliding mode control technique to compute at each sampling time the control law. The control law comports two terms: equivalent control law and switching control law which has a high frequency. The uncertainty is replaced by its upper bound. Inverted pendulum and mass spring dumper are used to check performance of the proposed fuzzy robust sliding mode control scheme.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Zhi Hong. "T-S Fuzzy Model Establishment and Control of Discrete Chaotic System." Advanced Materials Research 787 (September 2013): 846–49. http://dx.doi.org/10.4028/www.scientific.net/amr.787.846.

Full text
Abstract:
The problem of fuzzy sliding mode control of discrete chaotic system is studied. Discrete chaotic system is described based on T-S fuzzy models, and the system is translated into local linear model by fuzzy method. On the basis of Lyapunov stability theorem and approaching law method, a novel sliding mode controller is designed in the paper. The controller insures the stability of global fuzzy model. The controlled certain and uncertain Henon systems are simulated with Matlab, and the numerical results demonstrate the validity and robustness of the control scheme.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Rong Jun, and Yun Guo Shi. "Guided Rocket Control System Design Based on Discrete-Time Adaptive Sliding Mode." Applied Mechanics and Materials 541-542 (March 2014): 1159–63. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.1159.

Full text
Abstract:
The discrete-time adaptive sliding mode controller for spinning rockets in presence of parameter error is proposed. Considering the nonlinear characteristics for the system, input-output feedback linearization is utilized to transform the system model into two standard form subsystems. Then a discrete-time controller for guided rockets is designed based on discrete-time sliding mode control principle. In order to diminish the switch width of the discrete-time sliding mode system corresponding to parameter error, a dead-zone parameter adaptive law is designed. The stability of the uncertain closed-loop system is proved by Lyapunov theory, which make the controller have high robustness. Simulation result indicates that the proposed controller is robust with respect to large aerodynamic parametric uncertainty, and has excellent dynamic tracking performance.
APA, Harvard, Vancouver, ISO, and other styles
10

Dehri, Khadija, and Ahmed Said Nouri. "A discrete repetitive adaptive sliding mode control for DC-DC buck converter." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 235, no. 9 (March 29, 2021): 1698–708. http://dx.doi.org/10.1177/09596518211005576.

Full text
Abstract:
The problem of sensitivity to uncertainties and disturbances is still a challenging task in the theory of discrete sliding mode controller. In this article, a discrete repetitive adaptive sliding mode control using only input-output measurements of linear time-varying system with periodic disturbances is proposed. A new indirect adaptive algorithm taken into account the periodicity of disturbances is used to identify parameter variations of the considered system. Based on this identification, discrete sliding mode controller is developed. Then, the structure of plug-in repetitive control is integrated into the previous controller to reject harmonic disturbances. A robustness analysis is achieved to ensure the asymptotic stability of the proposed controller. An example of time-varying DC-DC buck converter subject to harmonic disturbances is carried out to illustrate the effectiveness of the designed discrete repetitive adaptive sliding mode control.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Discrete sliding mode controller"

1

Wang, Bin, and s3115026@student rmit edu au. "On Discretization of Sliding Mode Control Systems." RMIT University. Electrical and Computer Engineering, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080822.145013.

Full text
Abstract:
Sliding mode control (SMC) has been successfully applied to many practical control problems due to its attractive features such as invariance to matched uncertainties. The characteristic feature of a continuous-time SMC system is that sliding mode occurs on a prescribed manifold, where switching control is employed to maintain the state on the surface. When a sliding mode is realized, the system exhibits some superior robustness properties with respect to external matched uncertainties. However, the realization of the ideal sliding mode requires switching with an infinite frequency. Control algorithms are now commonly implemented in digital electronics due to the increasingly affordable microprocessor hardware although the essential conceptual framework of the feedback design still remains to be in the continuous-time domain. Discrete sliding mode control has been extensively studied to address some basic questions associated with the sliding mode control of discrete-time systems with relatively low switching frequencies. However, the complex dynamical behaviours due to discretization in continuous-time SMC systems have not yet been fully explored. In this thesis, the discretization behaviours of SMC systems are investigated. In particular, one of the most frequently used discretization schemes for digital controller implementation, the zero-order-holder discretization, is studied. First, single-input SMC systems are discretized, stability and boundary conditions of the digitized SMC systems are derived. Furthermore, some inherent dynamical properties such as periodic phenomenon, of the discretized SMC systems are studied. We also explored the discretization behaviours of the disturbed SMC systems. Their steady-state behaviours are discussed using a symbolic dynamics approach under the constant and periodic matched uncertainties. Next, discretized high-order SMC systems and sliding mode based observers are explored using the same analysis method. At last, the thesis investigates discretization effects on the SMC systems with multiple inputs. Some conditions are first derived for ensuring the
APA, Harvard, Vancouver, ISO, and other styles
2

Thome, De Faria Cassio. "Robust Model-Based Control of Nonlinear Systems for Bio-Inspired Autonomous Underwater Vehicles." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23792.

Full text
Abstract:
The growing need for ocean surveillance and exploration has pushed the development of novel autonomous underwater vehicle (AUV) technology. A current trend is to make use of bio-inspired propulsor to increase the overall system efficiency and performance, an improvement that has deep implications in the dynamics of the system. The goal of this dissertation is to propose a generic robust control framework specific for bio-inspired autonomous underwater vehicles (BIAUV). These vehicles utilize periodic oscillation of a flexible structural component to generate thrust, a propulsion mechanism that can be tuned to operate under resonance and consequently improve the overall system efficiency. The control parameter should then be selected to keep the system operating in such a condition. Another important aspect is to have a controller design technique that can address the time-varying behaviors, structured uncertainties and system nonlinearities. To address these needs a robust, model-based, nonlinear controller design technique is presented, called digital sliding mode controller (DSMC), which also takes into account the discrete implementation of these laws using microcontrollers. The control law is implemented in the control of a jellyfish-inspired autonomous underwater vehicle.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
3

Damazo, Graciliano Antonio. "Controle com modos deslizantes aplicado em sistemas com atraso e acesso somente à saída /." Ilha Solteira : [s.n.], 2008. http://hdl.handle.net/11449/87264.

Full text
Abstract:
Orientador: José Paulo Fernandes Garcia
Banca: Laurence Duarte Colvara
Banca: Ivan Nunes da Silva
Resumo: O enfoque principal do trabalho foi dado ao Controle Discreto com Modos Deslizantes(CDMD) aplicado em sistemas que possuem atraso no processamento do sinal de controle e acesso somente à saída do sistema. A estratégia de controle tem por objetivo a utilização de técnicas de controle com modos deslizantes para a elaboração de uma lei de controle simples e robusta às incertezas da planta e ao atraso. O observador de estados apresentado possui características de modo deslizante, o qual realiza a estimação robusta do vetor de estados que na maioria dos casos práticos não é totalmente acessível. Os métodos de projetos propostos podem ser aplicados no controle de plantas estáveis ou instáveis com atraso no sinal de controle e acesso somente à saída da planta. Para comprovar a eficiência dos projetos apresentados neste trabalho, analisou-se o controlador atuando com acesso a todos estados e o controlador atuando juntamente com o observador robusto para a estimação dos estados. Os resultados foram obtidos através de simulações no Sistema Bola e Viga, Sistema Pêndulo Invertido Linear e Sistema Pêndulo Invertido Rotacional que são exemplos de plantas de natureza instável.
Abstract: The main focus was placed on the Discrete Sliding Mode Control (DSMC) applied to systems that have a delay in the processing of the control signal and access to the system output only. The control strategy is intended to use control techniques of sliding modes to elaborate a simple and robust control law against the uncertainties of the plant and the delay. The states observer presented has the characteristics of a sliding mode, which performs the robust estimation of the states vector that, in most practical cases, is not fully accessible. The design methods proposed may be applied to the control of stable or unstable plants with delay on the control signal and access to the plant output only. In order to attest the efficiency of the design presented in this work, the controller was analyzed at work with access to all states and jointly with the robust observer to estimate the states. The results were obtained by means of simulations in the Ball and Beam System, Linear Inverted Pendulum System, and Rotational Inverted Pendulum System, which are examples of plants of unstable nature.
Mestre
APA, Harvard, Vancouver, ISO, and other styles
4

Paula, André Luiz Alexandre de [UNESP]. "Detecção e acomodação de falhas em sistemas incertos com atraso no sinal de controle utilizando modo deslizante." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/87149.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:22:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2011Bitstream added on 2014-06-13T20:49:14Z : No. of bitstreams: 1 paula_ala_me_ilha.pdf: 1575411 bytes, checksum: 888f7fef0b727373d31bd42986d25a09 (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Usando dois controladores digitais com modos deslizantes, é proposto neste trabalho dois esquemas que minimizam os efeitos degenerativos causados pelo atraso no tempo de compu- tação do sinal de controle, que aqui é tratado como falha. Um observador robusto com modos deslizantes é utilizado neste trabalho, uma vez que nem sempre é possível ter acesso a todos os estados do sistema. Neste trabalho o observador tem um papel fundamental na detecção e acomodação da falha, pois através de um banco de observadores é gerado um resíduo que pos- sibilita a detecção da falha e determina qual controlador deve estar atuando sobre o sistema a ser controlado. Para validar os métodos propostos, são realizadas simulações e experimentos nos modelos do pêndulo invertido e no helicóptero 3DOF; ambos equipamentos da Quanser
Using two digital controllers with sliding mode schemes that minimizes the degenerative effects caused by the delay in the computation time of the control signal are proposed in this work, which is here treated as failure. A robust observer with sliding mode is shown in this work, since it is not always possible to have access to all system states, but in this work the observer has a key role in the failure detection and accommodation, as observers are generated through a residue that directs the performance of the controller on the system being controlled. To test the proposed methods, simulations and experiments are performed on models of the inverted pendulum and the helicopter 3DOF, both Quanser equipment
APA, Harvard, Vancouver, ISO, and other styles
5

Damazo, Graciliano Antonio [UNESP]. "Controle com modos deslizantes aplicado em sistemas com atraso e acesso somente à saída." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/87264.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:22:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-06-11Bitstream added on 2014-06-13T20:09:52Z : No. of bitstreams: 1 damazo_ga_me_ilha.pdf: 760851 bytes, checksum: d1a0f2a22e4917da6787ce545199a696 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O enfoque principal do trabalho foi dado ao Controle Discreto com Modos Deslizantes(CDMD) aplicado em sistemas que possuem atraso no processamento do sinal de controle e acesso somente à saída do sistema. A estratégia de controle tem por objetivo a utilização de técnicas de controle com modos deslizantes para a elaboração de uma lei de controle simples e robusta às incertezas da planta e ao atraso. O observador de estados apresentado possui características de modo deslizante, o qual realiza a estimação robusta do vetor de estados que na maioria dos casos práticos não é totalmente acessível. Os métodos de projetos propostos podem ser aplicados no controle de plantas estáveis ou instáveis com atraso no sinal de controle e acesso somente à saída da planta. Para comprovar a eficiência dos projetos apresentados neste trabalho, analisou-se o controlador atuando com acesso a todos estados e o controlador atuando juntamente com o observador robusto para a estimação dos estados. Os resultados foram obtidos através de simulações no Sistema Bola e Viga, Sistema Pêndulo Invertido Linear e Sistema Pêndulo Invertido Rotacional que são exemplos de plantas de natureza instável.
The main focus was placed on the Discrete Sliding Mode Control (DSMC) applied to systems that have a delay in the processing of the control signal and access to the system output only. The control strategy is intended to use control techniques of sliding modes to elaborate a simple and robust control law against the uncertainties of the plant and the delay. The states observer presented has the characteristics of a sliding mode, which performs the robust estimation of the states vector that, in most practical cases, is not fully accessible. The design methods proposed may be applied to the control of stable or unstable plants with delay on the control signal and access to the plant output only. In order to attest the efficiency of the design presented in this work, the controller was analyzed at work with access to all states and jointly with the robust observer to estimate the states. The results were obtained by means of simulations in the Ball and Beam System, Linear Inverted Pendulum System, and Rotational Inverted Pendulum System, which are examples of plants of unstable nature.
APA, Harvard, Vancouver, ISO, and other styles
6

Paula, André Luiz Alexandre de. "Detecção e acomodação de falhas em sistemas incertos com atraso no sinal de controle utilizando modo deslizante /." Ilha Solteira : [s.n.], 2011. http://hdl.handle.net/11449/87149.

Full text
Abstract:
Orientador: José Paulo Fernandes Garcia
Banca: Jean Marcos de Souza Ribeiro
Banca: Cristiano Quevedo Andrea
Resumo: Usando dois controladores digitais com modos deslizantes, é proposto neste trabalho dois esquemas que minimizam os efeitos degenerativos causados pelo atraso no tempo de compu- tação do sinal de controle, que aqui é tratado como falha. Um observador robusto com modos deslizantes é utilizado neste trabalho, uma vez que nem sempre é possível ter acesso a todos os estados do sistema. Neste trabalho o observador tem um papel fundamental na detecção e acomodação da falha, pois através de um banco de observadores é gerado um resíduo que pos- sibilita a detecção da falha e determina qual controlador deve estar atuando sobre o sistema a ser controlado. Para validar os métodos propostos, são realizadas simulações e experimentos nos modelos do pêndulo invertido e no helicóptero 3DOF; ambos equipamentos da Quanser
Abstract: Using two digital controllers with sliding mode schemes that minimizes the degenerative effects caused by the delay in the computation time of the control signal are proposed in this work, which is here treated as failure. A robust observer with sliding mode is shown in this work, since it is not always possible to have access to all system states, but in this work the observer has a key role in the failure detection and accommodation, as observers are generated through a residue that directs the performance of the controller on the system being controlled. To test the proposed methods, simulations and experiments are performed on models of the inverted pendulum and the helicopter 3DOF, both Quanser equipment
Mestre
APA, Harvard, Vancouver, ISO, and other styles
7

Bernardes, Thiago Araújo. "Controle sem sensores mecânicos para gerador síncrono a ímã permanente." Universidade Federal de Santa Maria, 2015. http://repositorio.ufsm.br/handle/1/3693.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This Thesis proposes sensorless vector control schemes that combine designed observers in the discrete-time domain to estimate the rotor position and speed for a permanent magnet synchronous generator of non-salient poles. Two control schemes are proposed. The first scheme is based on a discrete sliding mode current observer in series with an adaptive electromotive force observer. Then, the sliding conditions that assure the sliding motion around the sliding surface are derived to ensure the stability of the current observer as well as an innovative design procedure is proposed for it. Moreover, the electromotive force observer is designed using Lyapunov s Discrete Direct Method, which provides the estimated rotor position and speed. The second scheme extends the developed methodology for the former, considering the parametric uncertainties and eliminating the high frequency components of chattering. The second scheme uses a discrete sliding mode current observer as in the first scheme. However, the electromotive force observer is replaced by a phase-locked loop in series with a discrete sliding mode robust differentiator, which follows the proposed methodology for the discrete sliding mode current observer. Experimental results validate the theoretical analysis and demonstrate the performance of the proposed control schemes considering a small scale wind energy conversion system. In addition, proposed schemes are compared with others of the literature. It should be noticed that the whole approach is carried out in discrete time domain making it suitable for a microcontroller or digital signal processor implementation.
Esta Tese propõe esquemas de controle vetorial sem sensores mecânicos de posição e de velocidade que combinam observadores projetados no domínio de tempo discreto para estimar essas variáveis para um gerador síncrono a ímãs permanentes de polos não salientes. Dois esquemas de controle são propostos. O primeiro esquema baseiase em um observador de corrente por modos deslizantes discretos em série com um observador adaptativo de força eletromotriz. Então, as condições de deslizamento que asseguram os modos deslizantes em torno da superfície de deslizamento são estabelecidas no domínio de tempo discreto para garantir a estabilidade do observador de corrente e um inovador procedimento de projeto para ele é proposto. Em seguida, o observador de força eletromotriz é projetado usando o método direto de Lyapunov discreto, que fornece a posição e a velocidade rotóricas estimadas. O segundo esquema estende a metodologia desenvolvida para o primeiro, considerando as incertezas paramétricas bem como eliminando as componentes de alta frequência de chattering. O segundo esquema usa um observador de corrente por modos deslizantes discretos como o primeiro. Entretanto, o observador de força eletromotriz é substituído por um retentor de fase em série com um diferenciador robusto por modos deslizantes discretos, que segue a metodologia proposta para o observador de corrente. Resultados experimentais validam a análise teórica desenvolvida e demonstram o desempenho dos esquemas de controle propostos considerando um sistema de conversão de energia eólica de pequeno porte. Além disso, os esquemas propostos são comparados com outros da literatura. Ressalta-se que a toda abordagem é desenvolvida no domínio de tempo discreto tornando-a apta para uma implementação em microcontroladores e em processadores digitais de sinais.
APA, Harvard, Vancouver, ISO, and other styles
8

Ferraço, Igor Breda. "Controle ótimo por modos deslizantes via função penalidade." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-09112011-161224/.

Full text
Abstract:
Este trabalho aborda o problema de controle ótimo por modos deslizantes via função penalidade para sistemas de tempo discreto. Para resolver este problema será desenvolvido uma estrutura matricial alternativa baseada no problema de mínimos quadrados ponderados e funções penalidade. A partir desta nova formulação é possível obter a lei de controle ótimo por modos deslizantes, as equações de Riccati e a matriz do ganho de realimentação através desta estrutura matricial alternativa. A motivação para propormos essa nova abordagem é mostrar que é possível obter uma solução alternativa para o problema clássico de controle ótimo por modos deslizantes.
This work introduces a penalty function approach to deal with the optimal sliding mode control problem for discrete-time systems. To solve this problem an alternative array structure based on the problem of weighted least squares penalty function will be developed. Using this alternative matrix structure, the optimal sliding mode control law of, the matrix Riccati equations and feedback gain were obtained. The motivation of this new approach is to show that it is possible to obtain an alternative solution to the classic problem of optimal sliding mode control.
APA, Harvard, Vancouver, ISO, and other styles
9

Godwin, Bryan. "Discrete sliding mode control of drug infusions." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Edmonds, Shane. "Discrete sliding mode control of magnetic bearings." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0021/MQ49674.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Discrete sliding mode controller"

1

Sharma, Nalin Kumar, and Janardhanan Sivaramakrishnan. Discrete-Time Higher Order Sliding Mode. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00172-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patel, Keyurkumar, and Axaykumar Mehta. Discrete-Time Sliding Mode Protocols for Discrete Multi-Agent System. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6311-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Satnesh, and S. Janardhanan. Discrete-Time Stochastic Sliding Mode Control Using Functional Observation. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-32800-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shah, Dipesh H., and Axaykumar Mehta. Discrete-Time Sliding Mode Control for Networked Control System. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7536-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qayyum, S. Application of discrete time sliding mode control using derivative feedback. London: Universityof East London, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mehta, Axaykumar, and Bijnan Bandyopadhyay. Frequency-Shaped and Observer-Based Discrete-time Sliding Mode Control. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2238-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mexico) IEEE International Workshop on Variable Structure Systems (11th 2010 Mexico City. 2010 11th International Workshop on Variable Structure Systems (VSS 2010): Mexico City, Mexico, 26-28 June 2010. Piscataway, NJ: IEEE, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

India) IEEE International Workshop on Variable Structure Systems (12th 2012 Mumbai. 2012 12th International Workshop on Variable Structure Systems (VSS 2012): Mumbai, Maharashtra, India, 12-14 January 2012. Piscataway, NJ: IEEE, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Discrete-time Sliding Mode Control. Berlin/Heidelberg: Springer-Verlag, 2006. http://dx.doi.org/10.1007/11524083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, Seong K. Sliding mode controller for robot manipulator. 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Discrete sliding mode controller"

1

Bandyopadhyay, Bijnan, Fulwani Deepak, and Kyung-Soo Kim. "High Performance Tracking Controller for Discrete Plant Using Nonlinear Surface." In Sliding Mode Control Using Novel Sliding Surfaces, 41–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03448-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khandekar, A. A., and B. M. Patre. "Design and Application of Discrete Sliding Mode Controller for TITO Process Control Systems." In Advances and Applications in Sliding Mode Control systems, 255–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11173-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dehri, Khadija, Majda Ltaief, and Ahmed Said Nouri. "Conditions of Disturbances Rejection for Discrete First, Second Order and Repetitive Sliding Mode Controllers." In Applications of Sliding Mode Control, 29–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2374-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shah, Dipesh H., and Axaykumar Mehta. "Multirate Output Feedback-Based Discrete-Time Sliding Mode Controller for NCS Having Deterministic Fractional Delay." In Discrete-Time Sliding Mode Control for Networked Control System, 93–107. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7536-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shah, Dipesh H., and Axaykumar Mehta. "Discrete-Time Sliding Mode Controller for NCS with Deterministic Type Fractional Delay: A Switching Type Algorithm." In Discrete-Time Sliding Mode Control for Networked Control System, 37–54. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7536-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shah, Dipesh H., and Axaykumar Mehta. "Discrete-Time Sliding Mode Controller for NCS with Deterministic Fractional Delay: A Non-switching Type Algorithm." In Discrete-Time Sliding Mode Control for Networked Control System, 55–91. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7536-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shah, Dipesh H., and Axaykumar Mehta. "Discrete-Time Sliding Mode Controller for NCS Having Random Type Fractional Delay and Single Packet Loss." In Discrete-Time Sliding Mode Control for Networked Control System, 109–33. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7536-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sarif, Nira Mawangi, Rafidah Ngadengon, Herdawatie Abdul Kadir, and Mohd Hafiz A. Jalil. "Discrete Sliding Mode Controller on Autonomous Underwater Vehicle in Steering Motion." In Lecture Notes in Electrical Engineering, 163–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5281-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Calanca, Andrea, Luca M. Capisani, Antonella Ferrara, and Lorenza Magnani. "An Inverse Dynamics-Based Discrete-Time Sliding Mode Controller for Robot Manipulators." In Lecture Notes in Control and Information Sciences, 137–46. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-974-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yadav, Nikhil K. "Artificial Intelligent-Based Sliding Mode Controller for State Feedback Discrete-Time System." In Intelligent Algorithms for Analysis and Control of Dynamical Systems, 23–32. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8045-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Discrete sliding mode controller"

1

Schirone, L., F. Celani, M. Macellari, and A. Schiaratura. "Discrete-time sliding mode controller for inverters." In 2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2010). IEEE, 2010. http://dx.doi.org/10.1109/speedam.2010.5542129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amini, Mohammad Reza, Mahdi Shahbakhti, Selina Pan, and J. Karl Hedrick. "Handling Model and Implementation Uncertainties via an Adaptive Discrete Sliding Mode Controller Design." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9732.

Full text
Abstract:
Analog-to-digital conversion (ADC) and uncertainties in modeling the plant dynamics are the main sources of imprecisions in the design cycle of model-based controllers. These implementation and model uncertainties should be addressed in the early stages of the controller design, otherwise they could lead to failure in the controller performance and consequently increase the time and cost required for completing the controller verification and validation (V&V) with more iterative loops. In this paper, a new control approach is developed based on a nonlinear discrete sliding mode controller (DSMC) formulation to mitigate the ADC imprecisions and model uncertainties. To this end, a DSMC design is developed against implementation imprecisions by incorporating the knowledge of ADC uncertainties on control inputs via an online uncertainty prediction and propagation mechanism. Next, a generic online adaptive law will be derived to compensate for the impact of an unknown parameter in the controller equations that is assumed to represent the model uncertainty. The final proposed controller is an integrated adaptive DSMC with robustness to implementation and model uncertainties that includes (i) an online ADC uncertainty mechanism, and (ii) an online adaptation law. The proposed adaptive control approach is evaluated on a nonlinear automotive engine control problem in real-time using a processor-in-the-loop (PIL) setup with an actual electronic control unit (ECU). The results reveal that the proposed adaptive control technique removes the uncertainty in the model fast, and significantly improves the robustness of the controllers to ADC imprecisions. This provides up to 60% improvement in the performance of the controller under implementation and model uncertainties compared to a baseline DSMC, in which there are no incorporated ADC imprecisions.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghosh, Aparna B., and P. S. Lal Priya. "Adaptive Discrete Sliding Mode Controller for Networked Control Systems." In 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). IEEE, 2018. http://dx.doi.org/10.1109/iccsdet.2018.8821145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dong-Jun Kim, Moon-Ho Son, and Kang-Bak Park. "Stability of equivalent control based discrete sliding mode controller." In 2007 International Conference on Control, Automation and Systems. IEEE, 2007. http://dx.doi.org/10.1109/iccas.2007.4406818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Elhajji, Zina, Khadija Dehri, and Ahmed Said Nouri. "Discrete-time terminal sliding mode controller based on input-output model." In 2017 6th International Conference on Systems and Control (ICSC). IEEE, 2017. http://dx.doi.org/10.1109/icosc.2017.7958719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arunshankar, J., M. Umapathy, and B. Bandhopadhyay. "Performance of discrete time sliding mode controller with data fusion." In 2010 11th International Workshop on Variable Structure Systems (VSS 2010). IEEE, 2010. http://dx.doi.org/10.1109/vss.2010.5544695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mitrevska, Maria, Zhenwei Cao, Jinchuan Zheng, Edi Kurniawan, and Zhihong Man. "Design of a discrete-time terminal sliding mode repetitive controller." In 2016 14th International Workshop on Variable Structure Systems (VSS). IEEE, 2016. http://dx.doi.org/10.1109/vss.2016.7506904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Latosinski, Pawel. "Reaching law based discrete time switching quasi-sliding mode controller." In 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2017. http://dx.doi.org/10.1109/mmar.2017.8046863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mitrevska, Maria, Zhenwei Cao, Jinchuan Zheng, and Edi Kurniawan. "Design of a robust discrete time sliding mode repetitive controller." In 2015 23th Mediterranean Conference on Control and Automation (MED). IEEE, 2015. http://dx.doi.org/10.1109/med.2015.7158821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Monsees, G., and J. M. A. Scherpen. "Adaptive switching gain for a discrete-time sliding mode controller." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.879479.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Discrete sliding mode controller"

1

Shtessel, Yuri B. Smooth Sliding Mode Controller Design for Robust Missile Autopilot. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada396963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Figueroa-Estrada, Juan Carlos, María Isabel Neria-González, and Ricardo Aguilar-López. Design of a Class of Super Twisting Sliding-mode Controller: Application to Bioleaching Process. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2019. http://dx.doi.org/10.7546/crabs.2019.07.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography