Academic literature on the topic 'Disease forecasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Disease forecasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Disease forecasting"
Fackelmann, Kathleen. "Forecasting Alzheimer's Disease." Science News 149, no. 20 (May 18, 1996): 312. http://dx.doi.org/10.2307/3979714.
Full textSusinthra, M. Juno Isabel, and S. Vinitha. "Artificial Intelligence Assisted Weather Based Plant Disease Forecasting System." International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (April 30, 2018): 2362–67. http://dx.doi.org/10.31142/ijtsrd12734.
Full textNath, R. K. "Plant Disease Forecasting Models." Indian Journal of Pure & Applied Biosciences 8, no. 4 (August 30, 2020): 454–61. http://dx.doi.org/10.18782/2582-2845.8280.
Full textRobbins, S., L. A. Kondili, S. Blach, I. Gamkrelidze, A. L. Zignego, M. R. Brunetto, G. Raimondo, et al. "Forecasting liver disease burden." Digestive and Liver Disease 50, no. 1 (February 2018): 10–11. http://dx.doi.org/10.1016/j.dld.2018.01.022.
Full textYuen, Jonathan. "Bayesian Approaches to Plant Disease Forecasting." Plant Health Progress 4, no. 1 (January 2003): 20. http://dx.doi.org/10.1094/php-2003-1113-06-rv.
Full textKshirsagar, D. P., C. V. Savalia, I. H. Kalyani, Rajeev Kumar, and D. N. Nayak. "Disease alerts and forecasting of zoonotic diseases: an overview." Veterinary World 6, no. 11 (October 14, 2013): 889–96. http://dx.doi.org/10.14202/vetworld.2013.889-896.
Full textHasanov, A. G., D. G. Shaybakov, S. V. Zhernakov, A. M. Men’shikov, F. F. Badretdinova, I. F. Sufiyarov, and J. R. Sagadatova. "Neural Networks in Forecasting Disease Dynamics." Creative surgery and oncology 10, no. 3 (November 30, 2020): 198–204. http://dx.doi.org/10.24060/2076-3093-2020-10-3-198-204.
Full textdel Castillo, Manuel ??lvarez, and Juan Manuel Nava Caballero. "Forecasting survival after acute neurologic disease." Current Opinion in Critical Care 6, no. 2 (April 2000): 110–16. http://dx.doi.org/10.1097/00075198-200004000-00006.
Full textJones, Rod. "Forecasting conundrum: a disease time cascade." British Journal of Healthcare Management 20, no. 2 (February 2014): 90–91. http://dx.doi.org/10.12968/bjhc.2014.20.2.90.
Full textKondratyev, Mikhail Alexandrovich. "Forecasting methods and models of disease spread." Computer Research and Modeling 5, no. 5 (October 2013): 863–82. http://dx.doi.org/10.20537/2076-7633-2013-5-5-863-882.
Full textDissertations / Theses on the topic "Disease forecasting"
Törmänen, Patrik. "Forecasting important disease spreaders from temporal contact data." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56747.
Full textLangston, David Barnes Jr. "The Role of Host, Environment, and Fungicide Use Patterns in Algorithms for Improving Control of Sclerotinia Blight of Peanut." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30434.
Full textPh. D.
Gessman, Daniel J. "Pollen Forecasting in Sarasota, Florida." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6845.
Full textPeterson, Kelly(Kelly Nicole). "Personalized Gaussian process-based machine learning models for forecasting Alzheimer's Disease progression." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121678.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 81-90).
In this thesis, I address the problem of predicting behavioral and cognitive metrics from highly heterogeneous datasets (e.g. genetic, clinical/patient history, neuropsychological, biohumoral, molecular) with missing or incomplete data, using Personalized Machine Learning (PML) [71, 72]. In specific, my thesis work focuses on exploring the application of personalized machine learning techniques to the problem of predicting behavioral and cognitive metrics given a pre-organized dataset containing multimodal subject data collected from the longitudinal Alzheimer's Disease Neuroimaging Initiative (ADNI) study. Thus, this thesis explores the impact of PML in the context of predicting the progression of Alzheimer's disease (AD) by predicting various cognitive, clinical, and behavioral metrics known to be indicative of AD diagnosis. To do this, we employ Gaussian Process (GP) Regression as a modeling framework. Using this framework, we design and implement two novel methods for personalized prediction of key cognitive metrics associated with the AD progression (e.g., ADAS-Cog13). Our experimental evaluations show that the proposed personalized model yields significant gains in performance over non-personalized ("one size fits all") approaches applied to the target estimation tasks using the ADNI database. The techniques proposed have the potential to advance and revolutionize disease treatment and clinical research in AD and other health-related domains. We also provide an extensive overview of methods that deal with missing data in ADNI dataset, being one of the main challenges when working with real-world data of AD.
by Kelly Peterson.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Lega, Joceline, and Heidi E. Brown. "Data-driven outbreak forecasting with a simple nonlinear growth model." ELSEVIER SCIENCE BV, 2016. http://hdl.handle.net/10150/622814.
Full textWalsh, Brenda. "Epidemiology and disease forecasting system for dollar spot caused by Sclerotinia homoeocarpa F.T. Bennett." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ56297.pdf.
Full textTwengström, Eva. "Epidemiology and forecasting of Sclerotinia stem rot on spring sown oilseed rape in Sweden /." Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 1999. http://epsilon.slu.se/avh/1999/91-576-5722-X.pdf.
Full textMorales, Nicolàs Gerard. "Integrated management of bacterial spot disease of stone fruits caused by Xanthomonas arboricola pv. pruni: development of a disease forecasting system." Doctoral thesis, Universitat de Girona, 2018. http://hdl.handle.net/10803/523516.
Full textLa taca bacteriana dels fruiters de pinyol, causada per Xanthomonas arboricola pv. pruni, té un gran impacte econòmic a les principals zones productores de tot el món. El control de la malaltia es basa principalment en mesures preventives, com ara una regulació de quarantena, la selecció de varietats d’hostes resistents o aplicacions preventives de coure, ja que no es disposa de cap mètode de control químic curatiu i efectiu. Per tant, l’estudi de l'epidemiologia de la malaltia pot ser un factor valuós en el desenvolupament d'estratègies per al seu maneig. L’objectiu d’aquesta tesi va ser el desenvolupament d'un sistema de predicció del desenvolupament de la taca bacteriana dels fruiters de pinyol, el qual es basa en tres components: i) el potencial d'inòcul epífit, ii) les condicions meteorològiques favorables en el procés d’infecció, i iii) l’aparició dels símptomes de la malaltia. Els efectes dels paràmetres ambientals i del potencial d'inòcul es van quantificar i modelar en diferents processos clau del cicle de la malaltia. Els resultats obtinguts aporten nous coneixements sobre l'epidemiologia de la taca bacteriana dels fruiters de pinyol que ofereixen noves possibilitats en el seu maneig
Cresswell, Mark Philip. "Developing an integrated approach to epidemic forecasting, through the monitoring and prediction of meteorological variables associated with disease." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250341.
Full textMacManus, Gerard P. V. "Development and extension of a disease forecasting and chemical control system for onion downy mildew /." St. Lucia, Qld, 2000. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16115.pdf.
Full textBooks on the topic "Disease forecasting"
Wells, N. E. J. The AIDSvirus: Forecasting its impact. London: Office of Health Economics, 1986.
Find full textWells, N. E. J. The AIDS virus: Forecasting its impact. London: Office of Health Economics, 1986.
Find full textWells, Nicholas E. J. The AIDS virus: Forecasting its impact. London: Office of Health Economics, 1986.
Find full textGoreham, Gary. Projected prevalence of Alzheimer's disease among North Dakota's elderly. Fargo, N.D: North Dakota Census Data Center, 1986.
Find full textNamibia. Ministry of Health and Social Services. Directorate of Special Programmes. Response Monitoring & Evaluation Subdivision. 2011/12 estimates and projections of the impact of HIV and AIDS in Namibia. Windhoek, Namibia: Ministry of Health and Social Services, Directorate of Special Programmes, Response Monitoring and Evaluation Sub-division, 2012.
Find full textFuture plagues: Biohazard, disease and pestilence : mankind's battle for survival. London: Blandford, 1997.
Find full textJoint WHO/FAO/UNEP/UNCHS Panel of Experts on Environmental Management for Vector Control. Guidelines for forecasting the vector-borne disease implications of water resources development. 2nd ed. Geneva: World Health Organization, 1991.
Find full textManton, Kenneth G. Chronic disease modelling: Measurement and evaluation of the risks of chronic disease processes. London: Charles Griffin & Co. Ltd., 1988.
Find full textEric, Stallard, ed. Chronic disease modelling: Measurement and evaluation of the risks of chronic disease processes. London: Charles Griffin & Co., 1988.
Find full textBook chapters on the topic "Disease forecasting"
Hardwick, N. V. "Disease forecasting." In The Epidemiology of Plant Diseases, 207–30. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-3302-1_10.
Full textSingh Saharan, Govind, Naresh Mehta, and Prabhu Dayal Meena. "Epidemiology and Forecasting." In Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management, 99–124. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0021-8_5.
Full textSaharan, Govind Singh, Naresh Mehta, and Prabhu Dayal Meena. "Epidemiology and Forecasting." In Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management, 183–98. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7500-1_9.
Full textSaharan, Govind Singh, Naresh K. Mehta, and Prabhu Dayal Meena. "Epidemiology and Disease Forecasting." In Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management, 145–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9853-7_6.
Full textManton, Kenneth G., Burton H. Singer, and Eric Stallard. "Cancer Forecasting: Cohort Models of Disease Progression and Mortality." In Forecasting the Health of Elderly Populations, 109–36. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9332-0_5.
Full textAttanayake, A. M. C. H., and S. S. N. Perera. "Time Series Analysis for Modeling the Transmission of Dengue Disease." In Recent Advances in Time Series Forecasting, 11–35. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003102281-2.
Full textTolley, H. Dennis, Kenneth G. Manton, and J. Richard Bumgarner. "Risk Factors Affecting Multiple-Disease Efficacy and Effectiveness of Intervention Programs." In Forecasting the Health of Elderly Populations, 183–203. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9332-0_8.
Full textKrakauer, Henry. "A Forecasting Model for the Assessment of Medical Technologies: End-Stage Renal Disease." In Forecasting the Health of Elderly Populations, 239–61. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9332-0_10.
Full textHolmes, G. J., C. E. Main, and Z. T. Keever. "Cucurbit Downy Mildew: A Unique Pathosystem for Disease Forecasting." In Advances in Downy Mildew Research — Volume 2, 69–80. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2658-4_3.
Full textManton, Kenneth G. "Biomedical Research and Changing Concepts of Disease and Aging: Implications for Long-Term Health Forecasts for Elderly Populations." In Forecasting the Health of Elderly Populations, 319–65. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9332-0_15.
Full textConference papers on the topic "Disease forecasting"
Banu, M. A. Nishara, and B. Gomathy. "Disease Forecasting System Using Data Mining Methods." In 2014 International Conference on Intelligent Computing Applications (ICICA). IEEE, 2014. http://dx.doi.org/10.1109/icica.2014.36.
Full textShi, Ming-wang, Qing-lian Wang, Xi-ling Chen, Ju-huai Zhai, Tian-fu Deng, Fan-bin Kong, Xue-yong Li, Qi-Li Liu, and Jian-fen Lang. "Plant Disease Forecasting System Based on Datacollection." In 2009 International Conference on Management and Service Science (MASS). IEEE, 2009. http://dx.doi.org/10.1109/icmss.2009.5301610.
Full textForster, Alina, Jens Behley, Jan Behmann, and Ribana Roscher. "Hyperspectral Plant Disease Forecasting Using Generative Adversarial Networks." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8898749.
Full textRekatsinas, Theodoros, Saurav Ghosh, Sumiko R. Mekaru, Elaine O. Nsoesie, John S. Brownstein, Lise Getoor, and Naren Ramakrishnan. "SourceSeer: Forecasting Rare Disease Outbreaks Using Multiple Data Sources." In Proceedings of the 2015 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2015. http://dx.doi.org/10.1137/1.9781611974010.43.
Full textPark, Sangshin, and Hyun Yoe. "System Framework of Livestock Disease Forecasting based on Cloud." In CIA 2015. Science & Engineering Research Support soCiety, 2015. http://dx.doi.org/10.14257/astl.2015.95.34.
Full textHua, Ting, Chandan K. Reddy, Lei Zhang, Lijing Wang, Liang Zhao, Chang-Tien Lu, and Naren Ramakrishnan. "Social Media based Simulation Models for Understanding Disease Dynamics." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/528.
Full textMakkar, Garima. "Real-Time Disease Forecasting using Climatic Factors: Supervised Analytical Methodology." In 2018 IEEE Punecon. IEEE, 2018. http://dx.doi.org/10.1109/punecon.2018.8745369.
Full textGomez, Carlos, Roberto Hornero, Angela Mediavilla, Alberto Fernandez, and Daniel Abasolo. "Nonlinear forecasting measurement of magnetoencephalogram recordings from Alzheimer's disease patients." In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4649620.
Full textТанченко, Ольга, Ol'ga Tanchenko, Светлана Нарышкина, and Svetlana Naryshkina. "FORECASTING METABOLIC SYNDROME IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE." In XII International Scientific Conference (correspondence, electronic) "System analysis in medicine" (SAM 2018). Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2018. http://dx.doi.org/10.12737/conferencearticle_5bdaacdd573097.07301550.
Full textZhang, Yanrong. "Study on the forest disease forecasting based on gray model." In Advanced Information Technology and Sensor Application 2014. Science & Engineering Research Support soCiety, 2014. http://dx.doi.org/10.14257/astl.2014.53.91.
Full textReports on the topic "Disease forecasting"
Mccabe, Kirsten, and Rebecca McDonald. Global Disease Modeling & Forecasting Center. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1671063.
Full textRay, Jaideep, Katherine Regina Cauthen, Sophia Lefantzi, and Lynne Burks. Conditioning multi-model ensembles for disease forecasting. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1492995.
Full textAtkeson, Andrew, Karen Kopecky, and Tao Zha. Estimating and Forecasting Disease Scenarios for COVID-19 with an SIR Model. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27335.
Full text