Journal articles on the topic 'Disease Prediction and Monitoring Modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Disease Prediction and Monitoring Modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Orakwue, Stella I., and Nkolika O. Nwazor. "Plant Disease Detection and Monitoring Using Artificial Neural Network." International Journal of Scientific Research and Management 10, no. 01 (2022): 715–22. http://dx.doi.org/10.18535/ijsrm/v10i1.ec01.
Full textWang, Y. P., N. H. Idris, F. M. Muharam, N. Asib, and Alvin M. S. Lau. "Comparison of different variable selection methods for predicting the occurrence of Metisa Plana in oil palm plantation using machine learning." IOP Conference Series: Earth and Environmental Science 1274, no. 1 (2023): 012008. http://dx.doi.org/10.1088/1755-1315/1274/1/012008.
Full textSharma, V., S. K. Ghosh, and S. Khare. "A PROPOSED FRAMEWORK FOR SURVEILLANCE OF DENGUE DISEASE AND PREDICTION." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLVIII-M-1-2023 (April 21, 2023): 317–23. http://dx.doi.org/10.5194/isprs-archives-xlviii-m-1-2023-317-2023.
Full textKAIMI, I., and P. J. DIGGLE. "A hierarchical model for real-time monitoring of variation in risk of non-specific gastrointestinal infections." Epidemiology and Infection 139, no. 12 (2011): 1854–62. http://dx.doi.org/10.1017/s0950268811000057.
Full textVychuzhanin, Vladimir, Alexey Vychuzhanin, Olga Guzun, and Oleg Zadorozhny. "Mathematical modelling of eye condition in glaucoma: Approaches to parameter analysis and their interactions." Information Technology and Computer Engineering 22, no. 1 (2025): 10–19. https://doi.org/10.63341/vitce/1.2025.09.
Full textAlodat, Iyas. "Analysing and predicting COVID-19 AI tracking using artificial intelligence." International Journal of Modeling, Simulation, and Scientific Computing 12, no. 03 (2021): 2141005. http://dx.doi.org/10.1142/s1793962321410051.
Full textDixon, Giles, Hannah Thould, Matthew Wells, et al. "A systematic review of the role of quantitative CT in the prognostication and disease monitoring of interstitial lung disease." European Respiratory Review 34, no. 176 (2025): 240194. https://doi.org/10.1183/16000617.0194-2024.
Full textLiebenstund, Lisa, Mark Coburn, Christina Fitzner, et al. "Predicting experimental success: a retrospective case-control study using the rat intraluminal thread model of stroke." Disease Models & Mechanisms 13, no. 12 (2020): dmm044651. http://dx.doi.org/10.1242/dmm.044651.
Full textEswaran, Sarojini, Bharathiraj L.T, and Jayanthi S. "Modelling of ambient air quality, Coimbatore, India." E3S Web of Conferences 117 (2019): 00002. http://dx.doi.org/10.1051/e3sconf/201911700002.
Full textCheng, Yunyun, Rong Cheng, Ting Xu, Xiuhui Tan, and Yanping Bai. "Machine Learning Techniques Applied to COVID-19 Prediction: A Systematic Literature Review." Bioengineering 12, no. 5 (2025): 514. https://doi.org/10.3390/bioengineering12050514.
Full textKulkarni, Mrunalini Harish, Chaitanya Kulkarni, K. Suresh Babu, Saima Ahmed Rahin, Shweta Singh, and D. Dinesh Kumar. "Data Fusion Approach for Managing Clinical Data in an Industrial Environment using IoT." Scientific Programming 2022 (May 23, 2022): 1–10. http://dx.doi.org/10.1155/2022/3603238.
Full textLuisa, Fernanda Velasquez, Otero Marta, Basile Boris, Pijuan Josep, and Corrado Giandomenico. "Current Trends and Perspectives on Predictive Models for Mildew Diseases in Vineyards." Microorganisms 11(1), Feature Collection in Environmental Microbiology Section (2022): 73. https://doi.org/10.3390/microorganisms11010073.
Full textJones, K. L., R. C. A. Thompson, and S. S. Godfrey. "Social networks: a tool for assessing the impact of perturbations on wildlife behaviour and implications for pathogen transmission." Behaviour 155, no. 7-9 (2018): 689–730. http://dx.doi.org/10.1163/1568539x-00003485.
Full textSethy, Prabira Kumar, Santi Kumari Behera, Nithiyakanthan Kannan, Sridevi Narayanan, and Chanki Pandey. "Smart paddy field monitoring system using deep learning and IoT." Concurrent Engineering 29, no. 1 (2021): 16–24. http://dx.doi.org/10.1177/1063293x21988944.
Full textNwobodo-Nzeribe, N. H., H. U. Odo, and P. C. Ozoemena. "Predictive Model for the Monitoring and Detection of Heart Disease using Wavelet Based Machine Learning Technique." American Journal of Applied Science and and Engineering 3, no. 5 (2022): 1–12. https://doi.org/10.5281/zenodo.7153890.
Full textVelasquez-Camacho, Luisa, Marta Otero, Boris Basile, Josep Pijuan, and Giandomenico Corrado. "Current Trends and Perspectives on Predictive Models for Mildew Diseases in Vineyards." Microorganisms 11, no. 1 (2022): 73. http://dx.doi.org/10.3390/microorganisms11010073.
Full textHelget, Lindsay N., David J. Dillon, Bethany Wolf, et al. "Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis." Lupus Science & Medicine 8, no. 1 (2021): e000489. http://dx.doi.org/10.1136/lupus-2021-000489.
Full textZhao, Hongwei, Naveed N. Merchant, Alyssa McNulty, et al. "COVID-19: Short term prediction model using daily incidence data." PLOS ONE 16, no. 4 (2021): e0250110. http://dx.doi.org/10.1371/journal.pone.0250110.
Full textJombart, Thibaut, Stéphane Ghozzi, Dirk Schumacher, et al. "Real-time monitoring of COVID-19 dynamics using automated trend fitting and anomaly detection." Philosophical Transactions of the Royal Society B: Biological Sciences 376, no. 1829 (2021): 20200266. http://dx.doi.org/10.1098/rstb.2020.0266.
Full textMasih, Adven, and Alexander N. Medvedev. "Evaluating the performance of support vector machines based on different kernel methods for forecasting air pollutants." Вестник ВГУ. Серия: Системный анализ и информационные технологии, no. 3 (September 30, 2020): 5–14. http://dx.doi.org/10.17308/sait.2020.3/3035.
Full textPrzybilla, Jens, Peter Ahnert, Holger Bogatsch, et al. "Markov State Modelling of Disease Courses and Mortality Risks of Patients with Community-Acquired Pneumonia." Journal of Clinical Medicine 9, no. 2 (2020): 393. http://dx.doi.org/10.3390/jcm9020393.
Full textANDERSON, D. P., D. S. L. RAMSEY, G. NUGENT, et al. "A novel approach to assess the probability of disease eradication from a wild-animal reservoir host." Epidemiology and Infection 141, no. 7 (2013): 1509–21. http://dx.doi.org/10.1017/s095026881200310x.
Full textChua, Felix, Rama Vancheeswaran, Adrian Draper, et al. "Early prognostication of COVID-19 to guide hospitalisation versus outpatient monitoring using a point-of-test risk prediction score." Thorax 76, no. 7 (2021): 696–703. http://dx.doi.org/10.1136/thoraxjnl-2020-216425.
Full textLin, Lingmin, Kailai Liu, Huan Feng, et al. "Glucose trajectory prediction by deep learning for personal home care of type 2 diabetes mellitus: modelling and applying." Mathematical Biosciences and Engineering 19, no. 10 (2022): 10096–107. http://dx.doi.org/10.3934/mbe.2022472.
Full textShi, Lei, Xiaoliang Feng, Longxing Qi, Yanlong Xu, and Sulan Zhai. "Modeling and Predicting the Influence of PM2.5 on Children’s Respiratory Diseases." International Journal of Bifurcation and Chaos 30, no. 15 (2020): 2050235. http://dx.doi.org/10.1142/s0218127420502351.
Full textSuzuki, Ayako, and Hiroshi Nishiura. "Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study." Mathematical Biosciences and Engineering 19, no. 6 (2022): 5998–6012. http://dx.doi.org/10.3934/mbe.2022280.
Full textMrara, Busisiwe, Fathima Paruk, Constance Sewani-Rusike, and Olanrewaju Oladimeji. "Development and validation of a clinical prediction model of acute kidney injury in intensive care unit patients at a rural tertiary teaching hospital in South Africa: a study protocol." BMJ Open 12, no. 7 (2022): e060788. http://dx.doi.org/10.1136/bmjopen-2022-060788.
Full textVakitbilir, Nuray, Abrar Islam, Alwyn Gomez, et al. "Multivariate Modelling and Prediction of High-Frequency Sensor-Based Cerebral Physiologic Signals: Narrative Review of Machine Learning Methodologies." Sensors 24, no. 24 (2024): 8148. https://doi.org/10.3390/s24248148.
Full textSibarani, Imelda Juliana Br, Katherina Meylda Loy S, and Suharjito Suharjito. "Enhancing Predictive Accuracy for Differentiated Thyroid Cancer (DTC) Recurrence Through Advanced Data Mining Techniques." TIN: Terapan Informatika Nusantara 5, no. 1 (2024): 11–22. http://dx.doi.org/10.47065/tin.v5i1.5237.
Full textThomas, Charlotte M., Joseph F. Standing, Catherine Smith, et al. "BT34 Minimizing drug exposure in psoriasis using a therapeutic drug monitoring dashboard." British Journal of Dermatology 191, Supplement_1 (2024): i204—i205. http://dx.doi.org/10.1093/bjd/ljae090.431.
Full textFerrari, Simone, Alessandro Santus, and Luca Tendas. "Validation of a numerical software for the simulation of the pollutant dispersion from traffic in a real case: Some preliminary results." EPJ Web of Conferences 299 (2024): 01010. http://dx.doi.org/10.1051/epjconf/202429901010.
Full textMorlighem, Camille, Chibuzor Christopher Nnanatu, Corentin Visée, Atoumane Fall, and Catherine Linard. "Spatial interpolation of health and demographic variables: Predicting malaria indicators with and without covariates." PLOS One 20, no. 5 (2025): e0322819. https://doi.org/10.1371/journal.pone.0322819.
Full textRayner, Fiona, Shaun Hiu, Andrew Melville, et al. "Clinical predictors of flare and drug-free remission in rheumatoid arthritis: preliminary results from the prospective BIO-FLARE experimental medicine study." BMJ Open 15, no. 4 (2025): e092478. https://doi.org/10.1136/bmjopen-2024-092478.
Full textStefanescu, Simona, Relu Cocoș, Adina Turcu-Stiolica, et al. "Prediction of Treatment Outcome with Inflammatory Biomarkers after 2 Months of Therapy in Pulmonary Tuberculosis Patients: Preliminary Results." Pathogens 10, no. 7 (2021): 789. http://dx.doi.org/10.3390/pathogens10070789.
Full textHamid, Saima, S. S. Pathania, Tamjeeda Nisar, et al. "Unveiling Pest Resilience in Bottle Gourd: A Comprehensive Review of Field Monitoring and Statistical Insights." UTTAR PRADESH JOURNAL OF ZOOLOGY 46, no. 13 (2025): 1–9. https://doi.org/10.56557/upjoz/2025/v46i135079.
Full textDrake, Wonder P., Connie Hsia, Lobelia Samavati, et al. "Risk Indicators of Sarcoidosis Evolution-Unified Protocol (RISE-UP): protocol for a multi-centre, longitudinal, observational study to identify clinical features that are predictive of sarcoidosis progression." BMJ Open 13, no. 4 (2023): e071607. http://dx.doi.org/10.1136/bmjopen-2023-071607.
Full textKissi, Solomon Agyiri, Md Golam Muttaquee Talukder, and Muhammad Zahid Iqbal. "Data-Driven Predictive Modelling of Lifestyle Risk Factors for Cardiovascular Health." Electronics 14, no. 14 (2025): 2906. https://doi.org/10.3390/electronics14142906.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textGerasimenko, Petr V. "Modeling the number of COVID-19 cases in St. Petersburg in the period 2020–2022." City Healthcare 3, no. 3 (2022): 30–38. http://dx.doi.org/10.47619/2713-2617.zm.2022.v.3i3;30-38.
Full textCowled, Brendan D., Fiona Giannini, Sam D. Beckett, et al. "Feral pigs: predicting future distributions." Wildlife Research 36, no. 3 (2009): 242. http://dx.doi.org/10.1071/wr08115.
Full textBritton, Tom, and Gianpaolo Scalia Tomba. "Estimation in emerging epidemics: biases and remedies." Journal of The Royal Society Interface 16, no. 150 (2019): 20180670. http://dx.doi.org/10.1098/rsif.2018.0670.
Full textGlauche, Ingmar, Hendrik Liebscher, Christoph Baldow, et al. "A New Computational Method to Predict Long-Term Minimal Residual Disease and Molecular Relapse after TKI-Cessation in CML." Blood 128, no. 22 (2016): 3099. http://dx.doi.org/10.1182/blood.v128.22.3099.3099.
Full textMaciukiewicz, M., J. Schniering, H. Gabrys, et al. "OP0150 MACHINE LEARNING APPROACHES FOR RISK MODELLING IN INTERSTITIAL LUNG DISEASE ASSOCIATED WITH SYSTEMIC SCLEROSIS USING HIGH DIMENSIONAL IMAGE ANALYSIS." Annals of the Rheumatic Diseases 80, Suppl 1 (2021): 90. http://dx.doi.org/10.1136/annrheumdis-2021-eular.2517.
Full textEjma-Multański, Adam, Anna Wajda, and Agnieszka Paradowska-Gorycka. "Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases." Cells 12, no. 20 (2023): 2489. http://dx.doi.org/10.3390/cells12202489.
Full textSkendžić, Sandra, Monika Zovko, Ivana Pajač Živković, Vinko Lešić, and Darija Lemić. "The Impact of Climate Change on Agricultural Insect Pests." Insects 12, no. 5 (2021): 440. http://dx.doi.org/10.3390/insects12050440.
Full text