Academic literature on the topic 'Disinformative data'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Disinformative data.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Disinformative data"
Kauffeldt, A., S. Halldin, A. Rodhe, C. Y. Xu, and I. K. Westerberg. "Disinformative data in large-scale hydrological modelling." Hydrology and Earth System Sciences 17, no. 7 (July 22, 2013): 2845–57. http://dx.doi.org/10.5194/hess-17-2845-2013.
Full textKauffeldt, A., S. Halldin, A. Rodhe, C. Y. Xu, and I. K. Westerberg. "Disinformative data in large-scale hydrological modelling." Hydrology and Earth System Sciences Discussions 10, no. 1 (January 14, 2013): 487–517. http://dx.doi.org/10.5194/hessd-10-487-2013.
Full textBeven, K., P. J. Smith, and A. Wood. "On the colour and spin of epistemic error (and what we might do about it)." Hydrology and Earth System Sciences 15, no. 10 (October 13, 2011): 3123–33. http://dx.doi.org/10.5194/hess-15-3123-2011.
Full textBeven, K., P. J. Smith, and A. Wood. "On the colour and spin of epistemic error (and what we might do about it)." Hydrology and Earth System Sciences Discussions 8, no. 3 (May 30, 2011): 5355–86. http://dx.doi.org/10.5194/hessd-8-5355-2011.
Full textAlmeida, S., N. Le Vine, N. McIntyre, T. Wagener, and W. Buytaert. "Accounting for dependencies in regionalized signatures for predictions in ungauged catchments." Hydrology and Earth System Sciences Discussions 12, no. 6 (June 10, 2015): 5389–426. http://dx.doi.org/10.5194/hessd-12-5389-2015.
Full textAhmad, Norita, Nash Milic, and Mohammed Ibahrine. "Data and Disinformation." Computer 54, no. 7 (July 2021): 105–10. http://dx.doi.org/10.1109/mc.2021.3074261.
Full textBader, Max. "Disinformation in Elections." Security and Human Rights 29, no. 1-4 (December 12, 2018): 24–35. http://dx.doi.org/10.1163/18750230-02901006.
Full textColborne, Adrienne, and Michael Smit. "Characterizing Disinformation Risk to Open Data in the Post-Truth Era." Journal of Data and Information Quality 12, no. 3 (July 29, 2020): 1–13. http://dx.doi.org/10.1145/3328747.
Full textBerliner, David C. "Educational Reform in an Era of Disinformation." education policy analysis archives 1 (February 2, 1993): 2. http://dx.doi.org/10.14507/epaa.v1n2.1993.
Full textChung, Chung Joo, Minjeong Kim, and Han Woo Park. "Big Data Analysis and Modeling of Disinformation Consumption and Diffusion on YouTube." Discourse and Policy in Social Science 12, no. 2 (October 31, 2019): 105–38. http://dx.doi.org/10.22417/dpss.2019.10.12.2.105.
Full textDissertations / Theses on the topic "Disinformative data"
Kauffeldt, Anna. "Disinformative and Uncertain Data in Global Hydrology : Challenges for Modelling and Regionalisation." Doctoral thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-236864.
Full textVatten är en förutsättning för människors och ekosystems hälsa, men befolkningsökning och förändringar av klimat och markanvändning förväntas öka trycket på vattenresurserna i många regioner i världen. För att kunna säkerställa en god tillgång till vatten krävs kunskap om hur dessa resurser varierar i tid och rum. Tillförlitligheten hos skattningar av globala vattenresurser begränsas dock både av begränsad tillgänglighet av och kvalitet hos observerade data. Denna avhandling utforskar kvaliteten av såväl observations- som modellbaserade data, ger en överblick över modeller som används för storskalig hydrologisk modellering och utforskar möjligheterna att förutsäga varaktighetskurvor som ett sätt att hantera bristen på data i många områden. Utvärderingen av observationsbaserade datas kvalitet baserades på hydrografiska data och driv- och utvärderingsdata för storskaliga hydrologiska modeller. Resultaten visade att en uppsättning data över hydrografin baserad på GIS-polygoner representerade avrinningsområdesareorna bättre än alla de som byggde på rutor. En metod baserad på långtidsvattenbalansen identifierade att kombinationen av drivdata (nederbörd och potentiell avdunstning) och utvärderingsdata (vattenföring) var fysiskt orimlig för så många som 8–43 % av de analyserade avrinningsområdena beroende på hur olika datauppsättningar kombinerades. Sådana data kan vara desinformativa för slutsatser som dras av resultat från hydrologiska modeller och analyser. Kvaliteten hos hydrologiskt viktiga variabler från en numerisk väderprognosmodell utvärderades dels genom jämförelser med observationsdata och dels genom analys av landytans vattenbudget för ett flertal olika modellvarianter. Resultaten visade obalanser mellan långtidsvärden av nederbörd och avdunstning i global skala och mellan långtidsvärden av nederbörd, avdunstning och avrinning i både modellrute- och avrinningsområdesskala. Dessa obalanser skulle till stor del kunna förklaras av den data assimilering som görs, i vilken markvattenlagret används som en justeringsfaktor för att förbättra väderprognoserna. Regionalisering, som innebär en överföring av information från områden med god tillgång på mätdata till områden med otillräcklig tillgång, är i många fall nödvändig för hydrologisk analys på grund av att mätdata saknas i många områden. I denna avhandling utforskades möjligheten att förutsäga varaktighetskurvor för avrinningsområden utan vattenföringsdata genom flera metoder inklusive maskininlärning. Resultaten var blandade med en del kurvor som förutsas väl, och andra kurvor som visade stora systematiska avvikelser. Flera metoder resulterade i orealistiska kurvor (ickemonotona eller med negativa värden).
Beridzishvili, Jumber. "When the state cannot deal with online content : Reviewing user-driven solutions that counter political disinformation on Facebook." Thesis, Malmö universitet, Malmö högskola, Institutionen för globala politiska studier (GPS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-18502.
Full textIcard, Benjamin. "Lying, deception and strategic omission : definition and evaluation." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE001/document.
Full textThis thesis aims at improving the definition and evaluation of deceptive strategies that can manipulate information. Using conceptual, formal and experimental resources, I analyze three deceptive strategies, some of which are standard cases of deception, in particular lies, and others non-standard cases of deception, in particular misleading inferences and strategic omissions. Firstly, I consider definitional aspects. I deal with the definition of lying, and present new empirical data supporting the traditional account of the notion (called the ‘subjective definition’), contradicting recent claims in favour of a falsity clause (leading to an ‘objective definition’). Next, I analyze non-standard cases of deception through the categories of misleading defaults and omissions of information. I use qualitative belief revision to examine a puzzle due to R. Smullyan about the possibility of triggering a default inference to deceive an addressee by omission. Secondly, I consider evaluative aspects. I take the perspective of military intelligence data processing to offer a typology of informational messages based on the descriptive dimensions of truth (for message contents) and honesty (for message sources). I also propose a numerical procedure to evaluate these messages based on the evaluative dimensions of credibility (for truth) and reliability (for honesty). Quantitative plausibility models are used to capture degrees of prior credibility of messages, and dynamic rules are defined to update these degrees depending on the reliability of the source
"Understanding Disinformation: Learning with Weak Social Supervision." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.62707.
Full textDissertation/Thesis
Doctoral Dissertation Computer Science 2020
Higgins, Stefan. "Imagining information: the uses of storytelling." Thesis, 2020. http://hdl.handle.net/1828/12555.
Full textGraduate
2021-06-20
Books on the topic "Disinformative data"
Rogers, Richard, and Sabine Niederer, eds. The Politics of Social Media Manipulation. NL Amsterdam: Amsterdam University Press, 2020. http://dx.doi.org/10.5117/9789463724838.
Full textNeagu, Marin. Istoria literaturii române în date. Târgoviște [Romania]: Editura Bibliotheca, 2001.
Find full textViral data in SOA: An enterprise pandemic. Upper Saddle River, NJ: IBM Press/Pearson, 2010.
Find full textWassermann, Selma. Teaching in the Age of Disinformation: Don't Confuse Me with the Data, My Mind Is Made Up! Rowman & Littlefield Publishers, Incorporated, 2018.
Find full textWoolley, Samuel C., and Philip N. Howard. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190931407.003.0001.
Full textWoolley, Samuel C., and Philip N. Howard, eds. Computational Propaganda. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190931407.001.0001.
Full textBenkler, Yochai, Robert Faris, and Hal Roberts. Can the Internet Survive Democracy? Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190923624.003.0012.
Full textGraham, Mark, and William H. Dutton, eds. Society and the Internet. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198843498.001.0001.
Full textTaking Stock of Regional Democratic Trends in Asia and the Pacific Before and During the COVID-19 Pandemic. International Institute for Democracy and Electoral Assistance, 2020. http://dx.doi.org/10.31752/idea.2020.70.
Full textBook chapters on the topic "Disinformative data"
Mintal, Jozef Michal, Michal Kalman, and Karol Fabián. "Hide and Seek in Slovakia: Utilizing Tracking Code Data to Uncover Untrustworthy Website Networks." In Disinformation in Open Online Media, 101–11. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87031-7_7.
Full textLuber, Mattias, Christoph Weisser, Benjamin Säfken, Alexander Silbersdorff, Thomas Kneib, and Krisztina Kis-Katos. "Identifying Topical Shifts in Twitter Streams: An Integration of Non-negative Matrix Factorisation, Sentiment Analysis and Structural Break Models for Large Scale Data." In Disinformation in Open Online Media, 33–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87031-7_3.
Full textRöchert, Daniel, German Neubaum, and Stefan Stieglitz. "Identifying Political Sentiments on YouTube: A Systematic Comparison Regarding the Accuracy of Recurrent Neural Network and Machine Learning Models." In Disinformation in Open Online Media, 107–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61841-4_8.
Full textNagasako, Tomoko. "A Consideration of the Case Study of Disinformation and Its Legal Problems." In Human-Centric Computing in a Data-Driven Society, 262–76. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62803-1_21.
Full textSpicer, Robert N. "Lies, Damn Lies, Alternative Facts, Fake News, Propaganda, Pinocchios, Pants on Fire, Disinformation, Misinformation, Post-Truth, Data, and Statistics." In Free Speech and False Speech, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69820-5_1.
Full textWestlund, Oscar, and Alfred Hermida. "Data journalism and misinformation." In The Routledge Companion to Media Disinformation and Populism, 142–50. Routledge, 2021. http://dx.doi.org/10.4324/9781003004431-16.
Full textSippitt, Amy. "Full Fact." In Data in Society, 359–64. Policy Press, 2019. http://dx.doi.org/10.1332/policypress/9781447348214.003.0029.
Full textBarela, Steven J., and Jérôme Duberry. "Understanding Disinformation Operations in the Twenty-First Century." In Defending Democracies, 41–72. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197556979.003.0003.
Full textRogers, Richard, and Sabine Niederer. "Conclusions." In The Politics of Social Media Manipulation. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2020. http://dx.doi.org/10.5117/9789463724838_ch08.
Full textVitale, Maria Prosperina, Maria Carmela Catone, Ilaria Primerano, and Giuseppe Giordano. "Unveiling Network Data Patterns in Social Media." In Handbook of Research on Advanced Research Methodologies for a Digital Society, 571–88. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8473-6.ch033.
Full textConference papers on the topic "Disinformative data"
Lemieux, Victoria, and Tyler D. Smith. "Leveraging Archival Theory to Develop A Taxonomy of Online Disinformation." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622391.
Full textIsle, Brian, and Tyler Smith. "Real World Examples Suggest a Path to Automated Mitigation of Disinformation." In 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622153.
Full textLi, Yichuan, Bohan Jiang, Kai Shu, and Huan Liu. "Toward A Multilingual and Multimodal Data Repository for COVID-19 Disinformation." In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378472.
Full textNakov, Preslav, and Giovanni Da San Martino. "Fake News, Disinformation, Propaganda, Media Bias, and Flattening the Curve of the COVID-19 Infodemic." In KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447548.3470790.
Full textDupuis, Marc J., and Andrew Williams. "The Spread of Disinformation on the Web: An Examination of Memes on Social Networking." In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2019. http://dx.doi.org/10.1109/smartworld-uic-atc-scalcom-iop-sci.2019.00256.
Full textTayyar Madabushi, Harish, Elena Kochkina, and Michael Castelle. "Cost-Sensitive BERT for Generalisable Sentence Classification on Imbalanced Data." In Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/d19-5018.
Full textTosyalı, Hikmet. "Political Communication in the Digital Age: Algorithms and Bots." In COMMUNICATION AND TECHNOLOGY CONGRESS. ISTANBUL AYDIN UNIVERSITY, 2021. http://dx.doi.org/10.17932/ctcspc.21/ctc21.004.
Full text