Dissertations / Theses on the topic 'Diskretisierung'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Diskretisierung.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Matthes, Ulrich. "Kontrolle semilinearer elliptischer Randwertprobleme mit variationeller Diskretisierung." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-32879.
Full textAppolinaire, Nzali. "Zur Lösung optimaler Steuerungsprobleme Diskretisierung, Konvergenz, Anwendung /." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=965443779.
Full textOeltz, Daniel. "Ein Raum-Zeit-Dünngitterverfahren zur Diskretisierung parabolischer Differentialgleichungen." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980709636.
Full textKölke, Andreas. "Modellierung und Diskretisierung bewegter Diskontinuitäten in randgekoppelten Mehrfeldsystemen." Braunschweig Inst. für Statik, 2005. http://deposit.d-nb.de/cgi-bin/dokserv?idn=97525569X.
Full textZeiser, Andreas [Verfasser]. "Direkte Diskretisierung der Schrödingergleichung auf dünnen Gittern / Andreas Zeiser." München : Verlag Dr. Hut, 2011. http://d-nb.info/1018981799/34.
Full textVogelgesang, Jens. "Diffusionsmodelle zur geomorphologischen Generalisierung und ihre Finite-Elemente- Diskretisierung." Bonn : Mathematisches Institut der Universität, 2007. http://catalog.hathitrust.org/api/volumes/oclc/173260542.html.
Full textOrgis, Thomas. "Unstetige Galerkin-Diskretisierung niedriger Ordnung in einem atmosphärischen Multiskalenmodell." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7068/.
Full textThe dynamics of the Earth’s atmosphere encompass a range from microphysical turbulence over convective processes and cloud formation up to planetary wave patterns. For weather forecasting and the investigation of climate over decades and centuries, these are subject to modelling with numerical methods. With progressing development of computer technology, re-development of the dynamical cores of climate models is in order to properly handle processes covered by the increasing resolution. The dynamical core of a model consists of the adaptation(discretization)of the basic equations for the dynamics of mass, energy and momentum for solving them numerically employing computers. The presented work investigates the applicability of a low-order Discontinuous Galerkin (DG) method for atmospheric applications. With equations that include external forces like gravitation and the Coriolis force, that is not given by theory. Necessary changes for stabilizing the method without resorting to slope limiters are presented. For the unmodified method, the basic inability to properly keep atmospheric balances is demonstrated. The developed stabilized model reproduces a set of standard test cases in a wide range of spatial and temporal scales. The solution of the termal wind equation along its characteristics curves, those being identical to the isobars, produces balanced atmospheric states with tunable (barotropic and baroclinic) instability via a prescribed zonal wind field. The constructed instability directly relates to the generation of cyclones. In contrast to earlier works, these balanced states are directly given in the z system (height in meters), without need for elaborate conversion from pressure coordinates. With these constructed states, both as reference state, the deviations from which being considered numerically, and as especially as initial condition subject to a small perturbation, several studies of barotropic and baroclinic instability are conducted via simulations. Particularily, the construction of steady states with configurable zonal flows of certain baroclinity facilitates a simulation-based study of baroclinic instability of differing wavelengths, depending on static stability and vertical wind gradient, in correspondence with stability maps from theoretical considerations in the literature.
Kalender, Carolyn. "Numerische Behandlung stationärer Hamilton-Jacobi-Gleichungen : Diskretisierung und Algorithmen." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/635114/635114.pdf.
Full textNkamnang, Alain Roger. "Diskretisierung von mehrgliedrigen Abelschen Integralgleichungen und gewöhnlichen Differentialgleichungen gebrochener Ordnung." [S.l. : s.n.], 1998. http://www.diss.fu-berlin.de/1999/23/index.html.
Full textHeidenreich, Sebastian. "Simulation von Fluid-Struktur-Wechselwirkungsproblemen mit symmetrieerhaltender Diskretisierung in zwei Raumdimensionen." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB12103683.
Full textBuck, Alexander. "Effiziente Randbehandlung unregelmäßiger Geometrien bei Simulation von Strömungen mit symmetrieerhaltender Diskretisierung." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11759369.
Full textBurger, Alexandra [Verfasser]. "Zum Erhalt der Steuerbarkeit und Beobachtbarkeit bei Diskretisierung dynamischer Systeme / Alexandra Burger." Kassel : Kassel University Press, 2008. http://d-nb.info/1006934502/34.
Full textLehmkuhl, Nicole. "Der Frobenius-Perron-Operator und seine Diskretisierung für Diffeomorphismen auf der Kreislinie." [S.l. : s.n.], 2001. http://www.sub.uni-hamburg.de/disse/535/Disse.pdf.
Full textMatzen, Martina Elisa [Verfasser], and Manfred [Akademischer Betreuer] Bischoff. "Isogeometrische Modellierung und Diskretisierung von Kontaktproblemen / Martina Elisa Matzen. Betreuer: Manfred Bischoff." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1080522824/34.
Full textGaudlitz, Daniel. "Numerische Untersuchung des Aufstiegsverhaltens von Gasblasen in Flüssigkeiten." kostenfrei, 2008. http://mediatum2.ub.tum.de/node?id=648890.
Full textJin, Xuezhou [Verfasser]. "Rechenverfahren zur Diskretisierung von Strömungen in komplexer Geometrie mittels körperangepaßter Gitter / Xuezhou Jin." Karlsruhe : FZKA, 2001. http://d-nb.info/1005263337/34.
Full textFloch, Oliver [Verfasser], and Romanus [Akademischer Betreuer] Dyczij-Edlinger. "Gebietszerlegungsverfahren zur Diskretisierung der vektoriellen Helmholtz-Gleichung / Oliver Floch ; Betreuer: Romanus Dyczij-Edlinger." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2018. http://d-nb.info/1156901030/34.
Full textSüss, Philipp. "A primal dual barrier algorithm for the IMRT planning problem an application of optimization driven adaptive discretization." Berlin mbv, 2008. http://d-nb.info/992999510/04.
Full textOrgis, Thomas [Verfasser], and Klaus [Akademischer Betreuer] Dethloff. "Unstetige Galerkin-Diskretisierung niedriger Ordnung in einem atmosphärischen Multiskalenmodell / Thomas Orgis. Betreuer: Klaus Dethloff." Potsdam : Universitätsbibliothek der Universität Potsdam, 2014. http://d-nb.info/1052346006/34.
Full textBecker, Christian. "Finite-Elemente-Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse." Aachen Shaker, 2007. http://d-nb.info/993079660/04.
Full textKlingsch, Wolfram [Verfasser]. "Traglastberechnung instationär thermisch belasteter schlanker Stahlbetondruckglieder mittels zwei- und dreidimensionaler Diskretisierung / Friedrich Walter Wolfram Klingsch." Braunschweig : Institut für Baustoffkunde und Stahlbetonbau (IBMB), 2014. http://d-nb.info/1231993510/34.
Full textBecker, Christian [Verfasser]. "Finite Elemente Methoden zur räumlichen Diskretisierung von Mehrfeldproblemen der Strukturmechanik unter Berücksichtigung diskreter Risse / Christian Becker." Aachen : Shaker, 2009. http://d-nb.info/1161309268/34.
Full textKölke, Andreas [Verfasser]. "Modellierung und Diskretisierung bewegter Diskontinuitäten in randgekoppelten Mehrfeldsystemen / Institut für Statik, Technische Universität Braunschweig. Andreas Kölke." Braunschweig : Inst. für Statik, 2005. http://d-nb.info/97525569X/34.
Full textRaasch, Thorsten. "Adaptive wavelet and frame schemes for elliptic and parabolic equations." Berlin Logos-Verl, 2007. http://archiv.ub.uni-marburg.de/diss/z2007/0343.
Full textGrosch, Robert. "Integrated design and control of continuous suspension crystallization /." Düsseldorf : VDI-Verl, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017010185&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textSokolichin, Alexander. "Mathematische Modellbildung und numerische Simulation von Gas-Flüssigkeits-Blasenströmungen." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10990074.
Full textNeidnicht, Martin [Verfasser]. "Numerisches Abbildungsvermögen als Maßgabe zuverlässiger Finite Elemente-Netzgenerierung : Ein neuer Ansatz qualitätsgetriebener Diskretisierung für Anwendungen im Konstruktions- und Auslegungsprozess / Martin Neidnicht." Aachen : Shaker, 2013. http://d-nb.info/1051573122/34.
Full textBruns, Torsten [Verfasser], Ansgar [Akademischer Betreuer] Trächtler, and auf der Heide Friedhelm [Akademischer Betreuer] Meyer. "Trajektorienplanung mittels Diskretisierung und kombinatorischer Optimierung : am Beispiel des autonomen Kreuzungsmanagements für Kraftfahrzeuge / Torsten Bruns. Betreuer: Ansgar Trächtler ; Friedhelm Meyer auf der Heide." Paderborn : Universitätsbibliothek, 2011. http://d-nb.info/1033766062/34.
Full textGroß, Michael. "Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. Energie-Impuls-konsistente Diskretisierung höherer Genauigkeitsordnung dynamischer finiter Thermo-Viskoelastizität." Siegen OAI Universitätsbibliothek Siegen, 2009. http://d-nb.info/999229915/34.
Full textGroß, Michael [Verfasser]. "Higher-order accurate and energy-momentum consistent discretisation of dynamic finite deformation thermo-viscoelasticity. Energie-Impuls-konsistente Diskretisierung höherer Genauigkeitsordnung dynamischer finiter Thermo-Viskoelastizität / Michael Groß." Siegen : Universitätsbibliothek Siegen, 2009. http://d-nb.info/999229915/34.
Full textMautner, Karin. "Numerical treatment of the Black-Scholes variational inequality in computational finance." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2007. http://dx.doi.org/10.18452/15595.
Full textAmong the central concerns in mathematical finance is the evaluation of American options. An American option gives the holder the right but not the obligation to buy or sell a certain financial asset within a certain time-frame, for a certain strike price. The valuation of American options is formulated as an optimal stopping problem. If the stock price is modelled by a geometric Brownian motion, the value of an American option is given by a deterministic parabolic free boundary value problem (FBVP) or equivalently a non-symmetric variational inequality (VI) on weighted Sobolev spaces on R. To apply standard numerical methods, the unbounded domain R is truncated to a bounded one. Applying the Fourier transform to the FBVP yields an integral representation of the solution including the free boundary explicitely. This integral representation allows to prove explicit truncation errors. Since the VI is formulated within the framework of weighted Sobolev spaces, we establish a weighted Poincare inequality with explicit determined constants. The truncation error estimate and the weighted Poncare inequality enable a reliable a posteriori error estimate between the exact solution of the VI and the semi-discrete solution of the penalised problem on R. A sufficient regular solution provides the convergence of the solution of the penalised problem to the solution of the VI. An a priori error estimate for the error between the exact solution of the VI and the semi-discrete solution of the penalised problem concludes the numerical analysis. The established a posteriori error estimates motivates an algorithm for adaptive mesh refinement. Numerical experiments show the improved convergence of the adaptive algorithm compared to uniform mesh refinement. The reliable a posteriori error estimate including explicit truncation errors allows to determine a truncation point such that the total error (discretisation and truncation error) is below a given error tolerance.
Bauer, David. "Towards Discretization by Piecewise Pseudoholomorphic Curves." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132065.
Full textFladrich, Uwe. "Nodale Spektralelemente und unstrukturierte Gitter - Methodische Aspekte und effiziente Algorithmen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-97119.
Full textNzali, Appolinaire. "Zur Lösung optimaler Steuerungsprobleme." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14768.
Full textThe focal point of this work is the investigation of a class of discretization methods for nonlinear optimal control problems governed by ordinary differential equations with control restrictions, as well as the implementation of some numerical experiments. The theoretical investigations are based on a coupledparameterization-discretization pattern, a piecewise linear parameterization representation of the control, and the application of a Runge Kutta method for the integration of the differential state equation. The rate of convergence of the solution is obtained with the help of regularity conditions and the second order optimality conditions. Furthermore, we also present in this paper a possibility of the numerical computation of the gradients via numerical differentiation. Finally some numerical results are given and their relationship to the theoretical convergence results are discussed.
Rodríguez, Santiesteban Antonio Ramón. "Asymptotische Stabilität von Index-2-Algebro-Differentialgleichungen und ihren Diskretisierungen." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963660101.
Full textSantiesteban, Antonio Ramon Rodriguez. "Asymptotische Stabilität von Index-2-Algebro-Differentialgleichungen und ihren Diskretisierungen." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2001. http://dx.doi.org/10.18452/14680.
Full textThe purpose of the present PhD work is the asymptotic stability investigation of numerical methods for index 2 differential algebraic equations. Initial value problems are considered for quasi linear differential algebraic equations (DAEs) that cover the most important applications. First some stability concepts and related results are presented, which represent the basis for further investigations. This background concerns both, the continuous and the discreet case. Especially contractivity concepts are introduced and the relationship between the asymptotic stability of the DAE and the numerical method applied to it is established. The new contractivity concepts extend or generalize the already known concepts. The most important result in this context is a theorem that establishes general conditions under which the application of an algebraic stable IRK(DAE) method to a DAE is contractive. Well-known assertions for ordinary and differential algebraic equations can be considered as special cases of this general result. Later on the stability of numerical discretizations applied to index-2 DAEs is investigated. This is made possible by the introduction of new decopling and index reduction techniques. The analysis makes new insights in the asymptotic of numerical methods for DAEs possible. The obtained results state sufficient conditions in order that a BDF or an IRK(DAE) method applying to DAEs shows the same asymptotic stability properties as for ODEs. These results are illustrated by some numerical examples. Moreover, it can be realized that one of the found conditions is sufficient in order to show contractivity of the application of an algebraic stable IRK(DAE) method, supposed the DAE is contractive. This assertion is possible based on the general theorem mentioned in the paragraph above. Further some consequences of the mentioned results for electric network models are shown. According to both, the above mentioned analysis and the specialized literature of this field, the application of numerical methods to some special DAEs shows asymptotic stability problems. A few approaches are known to manage such difficult equations. Two exponents of these techniques are considered and their chances of success for index-2 DAEs are evaluated with the application to a critical example. A generalization of the Gear-Gupta-Leimkuhler (GGL) approach is proposed for full implicit linear DAEs. This generalization is investigated in detail in the rest of the paper, concerning both the analytical and the numerical asymptotic stability of the GGL equation and the numerical methods applied to it correspondingly. The result is, that, if some conditions are fulfilled, IRK(DAE) and BDF methods for the GGL equation will produce stable solutions. This result is illustrated by a numerical example. The application of the methods directly to the considered DAE produces unstable solutions. However, the integration of the corresponding GGL formulation is stable. The obtained result opens new possibility for the numerical treatment of instabilities by differential algebraic equations.
Maurer, Daniel [Verfasser], and C. [Akademischer Betreuer] Wieners. "Ein hochskalierbarer paralleler direkter Löser für Finite Elemente Diskretisierungen / Daniel Maurer. Betreuer: C. Wieners." Karlsruhe : KIT-Bibliothek, 2013. http://d-nb.info/1036206882/34.
Full textHuck, Christoph. "Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networks." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19596.
Full textThis thesis addresses several aspects regarding modelling, analysis and numerical simulation of gas networks. Hereby, our focus lies on (partial) differential-algebraic equations, thus systems of partial and ordinary differential equations which are coupled by algebraic equations. These coupled systems allow an easy approach towards the modelling of dynamic structures on networks. Therefore, they are well suited for gas networks, which have gained a rise of attention in society, politics and science due to the focus towards renewable energies. We give an introduction towards gas network modelling that includes the most common elements that also appear in real gas networks and present two PDAE systems: One for pipe networks and one that includes additional elements like resistors and compressors. Furthermore, we investigate the impact of perturbations onto the pipe network PDAE, where we explicitly allow perturbations to affect the system in the differential as well as in the algebraic components. We conclude that the solution of the PDAE possesses stability properties. In addition, this thesis introduces a new spatial discretisation that is adapted to the net- work topology. This topology-adapted semi-discretisation results in a DAE which possesses the same perturbation behaviour as the space continuous PDAE. Furthermore, we present a topology based decoupling procedure that allows to reformulate the DAE as an ordinary differential equation (ODE), which represents the inherent dynamics of the DAE system. This ODE, together with a decoupled set of algebraic equations, can be derived from the topology and element information directly. We conclude by demonstrating the established results for several benchmark networks. This includes a comparison of numerical solutions for the decoupled ODE and the DAE system. In addition we present the advantages of the topology-adapted spatial discretisation over existing well established methods.
Rückert, Nadja. "Studies on two specific inverse problems from imaging and finance." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-91587.
Full textBeckstein, Pascal. "Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.
Full textBräutigam, Nils [Verfasser]. "Diskretisierung elliptischer Steuerungsprobleme / eingereicht von Nils Bräutigam." 2006. http://d-nb.info/982750625/34.
Full textMatthes, Ulrich. "Kontrolle semilinearer elliptischer Randwertprobleme mit variationeller Diskretisierung." Doctoral thesis, 2009. https://tud.qucosa.de/id/qucosa%3A25276.
Full textHolderbaum, Michael. "Diskretisierung und Approximation von Bildern und morphologischen Bildoperatoren." Phd thesis, 2007. http://tuprints.ulb.tu-darmstadt.de/798/1/diss.pdf.
Full textMatthes, Ulrich [Verfasser]. "Kontrolle semilinearer elliptischer Randwertprobleme mit variationeller Diskretisierung / von Ulrich Matthes." 2009. http://d-nb.info/1009587862/34.
Full textAppolinaire, Nzali [Verfasser]. "Zur Lösung optimaler Steuerungsprobleme : Diskretisierung, Konvergenz, Anwendung / von Nzali Appolinaire." 2001. http://d-nb.info/965443779/34.
Full textKalender, Carolyn [Verfasser]. "Numerische Behandlung stationärer Hamilton-Jacobi-Gleichungen : Diskretisierung und Algorithmen / Carolyn Kalender." 2008. http://d-nb.info/989971066/34.
Full textHolderbaum, Michael [Verfasser]. "Diskretisierung und Approximation von Bildern und morphologischen Bildoperatoren / von Michael Holderbaum." 2007. http://d-nb.info/983638012/34.
Full textHeld, Joachim. "Ein Gebietszerlegungsverfahren für parabolische Probleme im Zusammenhang mit Finite-Volumen-Diskretisierung." Doctoral thesis, 2006. http://hdl.handle.net/11858/00-1735-0000-0006-B39E-E.
Full textOeltz, Daniel [Verfasser]. "Ein Raum-Zeit-Dünngitterverfahren zur Diskretisierung parabolischer Differentialgleichungen / vorgelegt von Daniel Oeltz." 2006. http://d-nb.info/980709636/34.
Full textZeiser, Andreas [Verfasser]. "Direkte Diskretisierung der Schrödingergleichung auf dünnen Gittern / vorgelegt von Andreas Martin Zeiser." 2010. http://d-nb.info/1010294857/34.
Full text