Journal articles on the topic 'Dislocation in metals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dislocation in metals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sarafanov, G. F. "INSTABILITY IN A DISLOCATION ENSEMBLE AT PLASTIC DEFORMATION IN METALS." Problems of strenght and plasticity 83, no. 2 (2021): 198–206. http://dx.doi.org/10.32326/1814-9146-2021-83-2-198-206.
Full textPande, Chandra S., and Ramasis Goswami. "Dislocation Emission and Crack Dislocation Interactions." Metals 10, no. 4 (2020): 473. http://dx.doi.org/10.3390/met10040473.
Full textNakagawa, Koutarou, Momoki Hayashi, Kozue Takano-Satoh, et al. "Characterization of Dislocation Rearrangement in FCC Metals during Work Hardening Using X-ray Diffraction Line-Profile Analysis." Quantum Beam Science 4, no. 4 (2020): 36. http://dx.doi.org/10.3390/qubs4040036.
Full textSato, Eiichi, and Tetsuya Matsunaga. "Grain Boundary Sliding Below Ambient Temperature in H.C.P. Metals." Key Engineering Materials 433 (March 2010): 299–303. http://dx.doi.org/10.4028/www.scientific.net/kem.433.299.
Full textTamura, Manabu. "Relation between Sub-grain Size and Dislocation Density During Steady-State Dislocation Creep of Polycrystalline Cubic Metals." Journal of Materials Science Research 7, no. 4 (2018): 26. http://dx.doi.org/10.5539/jmsr.v7n4p26.
Full textPortal, Lotan, Iryna Polishchuk, Maria Koifman Khristosov, Alexander Katsman, and Boaz Pokroy. "Self-catalytic growth of one-dimensional materials within dislocations in gold." Proceedings of the National Academy of Sciences 118, no. 39 (2021): e2107930118. http://dx.doi.org/10.1073/pnas.2107930118.
Full textMoriarty, John A., Wei Xu, Per So¨derlind, James Belak, Lin H. Yang, and Jing Zhu. "Atomistic Simulations for Multiscale Modeling in bcc Metals." Journal of Engineering Materials and Technology 121, no. 2 (1999): 120–25. http://dx.doi.org/10.1115/1.2812355.
Full textMuiruri, Amos, Maina Maringa, and Willie du Preez. "Evaluation of Dislocation Densities in Various Microstructures of Additively Manufactured Ti6Al4V (Eli) by the Method of X-ray Diffraction." Materials 13, no. 23 (2020): 5355. http://dx.doi.org/10.3390/ma13235355.
Full textBertoni, Mariana I., Clémence Colin, and Tonio Buonassisi. "Dislocation Engineering in Multicrystalline Silicon." Solid State Phenomena 156-158 (October 2009): 11–18. http://dx.doi.org/10.4028/www.scientific.net/ssp.156-158.11.
Full textFilatov, A., A. Pogorelov, D. Kropachev, and O. Dmitrichenko. "Dislocation Mass-Transfer and Electrical Phenomena in Metals under Pulsed Laser Influence." Defect and Diffusion Forum 363 (May 2015): 173–77. http://dx.doi.org/10.4028/www.scientific.net/ddf.363.173.
Full textStarenchenko, Vladimir A., Dmitry N. Cherepanov, Olga V. Selivanikova, and Elena A. Barbakova. "Formation of Shear Zone's Defect Structure in F.C.C. Metals." Advanced Materials Research 1084 (January 2015): 26–29. http://dx.doi.org/10.4028/www.scientific.net/amr.1084.26.
Full textSergeev, N. N., S. N. Kutepov, А. Е. Gvozdev, and E. V. Ageev. "DISLOCATION INDUCED MECHANISMS OF HYDROGENE EMBRITTLEMENT OF METALS AND ALLOYES." Proceedings of the Southwest State University 21, no. 2 (2017): 32–47. http://dx.doi.org/10.21869/2223-1560-2017-21-2-32-47.
Full textLi, Juan, G. M. Pharr, and C. Kirchlechner. "Quantitative insights into the dislocation source behavior of twin boundaries suggest a new dislocation source mechanism." Journal of Materials Research 36, no. 10 (2021): 2037–46. http://dx.doi.org/10.1557/s43578-021-00253-y.
Full textPoirier, J. P., and G. D. Price. "Dislocation melting of metals." Physics of the Earth and Planetary Interiors 69, no. 3-4 (1992): 153–62. http://dx.doi.org/10.1016/0031-9201(92)90131-e.
Full textZhang, Meng Qi, and Shan Wu Yang. "Analysis and Calculation of the Strain Field Disturbance Caused by Dislocation Migration." Applied Mechanics and Materials 481 (December 2013): 212–16. http://dx.doi.org/10.4028/www.scientific.net/amm.481.212.
Full textLu, Yan, Yu-Heng Zhang, En Ma, and Wei-Zhong Han. "Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals." Proceedings of the National Academy of Sciences 118, no. 37 (2021): e2110596118. http://dx.doi.org/10.1073/pnas.2110596118.
Full textCabibbo, Marcello, and Eleonora Santecchia. "Early Stages of Plastic Deformation in Low and High SFE Pure Metals." Metals 10, no. 6 (2020): 751. http://dx.doi.org/10.3390/met10060751.
Full textSato, A. "Dislocation structures and dislocation sources in deformed metals." Radiation Effects and Defects in Solids 148, no. 1-4 (1999): 345–60. http://dx.doi.org/10.1080/10420159908229100.
Full textRauch, Edgar F., and G. Shigesato. "The Dislocation Patterns in Deformed Metals: Dislocation Densities, Distributions and Related Misorientations." Materials Science Forum 550 (July 2007): 193–98. http://dx.doi.org/10.4028/www.scientific.net/msf.550.193.
Full textPang, Wei Wei, Guang Cai Zhang, Ai Guo Xu, and Ping Zhang. "Dynamic Fracture of Ductile Metals at High Strain Rate." Advanced Materials Research 790 (September 2013): 65–68. http://dx.doi.org/10.4028/www.scientific.net/amr.790.65.
Full textMorrison, S. Roy. "1/f Noise from levels in a linear or planar array: Dislocations in metals." Canadian Journal of Physics 71, no. 3-4 (1993): 147–51. http://dx.doi.org/10.1139/p93-022.
Full textZhang, Hong Wang, X. Huang, Niels Hansen, Reinhard Pippan, and Michael Zehetbauer. "Strengthening of Nickel Deformed by High Pressure Torsion." Materials Science Forum 584-586 (June 2008): 417–21. http://dx.doi.org/10.4028/www.scientific.net/msf.584-586.417.
Full textKang, Keonwook, Vasily V. Bulatov, and Wei Cai. "Singular orientations and faceted motion of dislocations in body-centered cubic crystals." Proceedings of the National Academy of Sciences 109, no. 38 (2012): 15174–78. http://dx.doi.org/10.1073/pnas.1206079109.
Full textTakaki, Setsuo, Y. Fujimura, Koichi Nakashima, and Toshihiro Tsuchiyama. "Effect of Dislocation Distribution on the Yielding of Highly Dislocated Iron." Materials Science Forum 539-543 (March 2007): 228–33. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.228.
Full textWang, Zhang-Jie, Qing-Jie Li, Yi-Nan Cui, et al. "Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals." Proceedings of the National Academy of Sciences 112, no. 44 (2015): 13502–7. http://dx.doi.org/10.1073/pnas.1518200112.
Full textArechabaleta, Zaloa, Peter van Liempt, and Jilt Sietsma. "Unravelling dislocation networks in metals." Materials Science and Engineering: A 710 (January 2018): 329–33. http://dx.doi.org/10.1016/j.msea.2017.10.099.
Full textKratochvil, J. "Dislocation pattern formation in metals." Revue de Physique Appliquée 23, no. 4 (1988): 419–29. http://dx.doi.org/10.1051/rphysap:01988002304041900.
Full textBurbery, Nathaniel, Raj Das, W. George Ferguson, Giacomo Po, and Nasr Ghoniem. "Atomistic Activation Energy Criteria for Multi-Scale Modeling of Dislocation Nucleation in FCC Metals." International Journal of Computational Methods 13, no. 04 (2016): 1641006. http://dx.doi.org/10.1142/s0219876216410061.
Full textKameda, Toshihiro, and Bao Rong Zhang. "Molecular Dynamics Based Observations of Grain Boundaries and Lattice Defects Functions in Fine Grained Metal." Materials Science Forum 654-656 (June 2010): 1582–85. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.1582.
Full textYokobori, A. Toshimitsu. "Holistic Approach on the Research of Yielding, Creep and Fatigue Crack Growth Rate of Metals Based on Simplified Model of Dislocation Group Dynamics." Metals 10, no. 8 (2020): 1048. http://dx.doi.org/10.3390/met10081048.
Full textGan, J., J. S. Vetrano, and M. A. Khaleel. "Microstructure Characterization of Dislocation Wall Structure in Aluminum Using Transmission Electron Microscopy." Journal of Engineering Materials and Technology 124, no. 3 (2002): 297–301. http://dx.doi.org/10.1115/1.1479178.
Full textNikonov, Anton Y., Andrey I. Dmitriev, Dmitry V. Lychagin, Lilia L. Lychagina, Artem A. Bibko, and Olga S. Novitskaya. "Numerical Study and Experimental Validation of Deformation of <111> FCC CuAl Single Crystal Obtained by Additive Manufacturing." Metals 11, no. 4 (2021): 582. http://dx.doi.org/10.3390/met11040582.
Full textSheinerman, A. G., and S. V. Bobylev. "A Model of Enhanced Strain Rate Sensitivity in Nanocrystalline and Ultrafine-Grained Metals." REVIEWS ON ADVANCED MATERIALS SCIENCE 57, no. 1 (2018): 1–10. http://dx.doi.org/10.1515/rams-2018-0042.
Full textFerreira, Paulo. "Are Dislocations Possible in Nanoparticles?" Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C226. http://dx.doi.org/10.1107/s2053273314097733.
Full textHansen, Niels. "Metal Working and Dislocation Structures." Key Engineering Materials 353-358 (September 2007): 9–16. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.9.
Full textWirth, B. D., V. V. Bulatov, and T. Diaz de la Rubia. "Dislocation-Stacking Fault Tetrahedron Interactions in Cu." Journal of Engineering Materials and Technology 124, no. 3 (2002): 329–34. http://dx.doi.org/10.1115/1.1479692.
Full textRong, Z., V. Mohles, D. J. Bacon *, and Yu N. Osetsky. "Dislocation dynamics modelling of dislocation–loop interactions in irradiated metals." Philosophical Magazine 85, no. 2-3 (2005): 171–88. http://dx.doi.org/10.1080/14786430412331315644.
Full textPetelina, Yulia, Svetlana Kolupaeva, Anna Kayuda, Anna Shmidt, Olesya Vorobyeva, and Aleksander Petelin. "The Impact of the Dislocation Density, Lattice and Impurity Friction on the Dynamics of Expansion of a Dislocation Loop in FCC Metals." Key Engineering Materials 712 (September 2016): 390–93. http://dx.doi.org/10.4028/www.scientific.net/kem.712.390.
Full textПетухов, Б. В. "Механизм обусловленного динамической примесной подсистемой аномального поведения пластического течения материалов с высоким кристаллическим рельефом". Физика твердого тела 63, № 12 (2021): 2126. http://dx.doi.org/10.21883/ftt.2021.12.51674.157.
Full textChampion, Yannick, and Sophie Nowak. "Activation Volume in Fine Grained Metals from Stress Relaxation and Nano-Indentation." Materials Science Forum 584-586 (June 2008): 399–404. http://dx.doi.org/10.4028/www.scientific.net/msf.584-586.399.
Full textShimokawa, Tomotsugu, Masaki Tanaka та Kenji Higashida. "Effect of Grain Boundaries on Fracture Toughness in Ultrafine-Grained Metals by Atomic-Scale Computational Experiments". Materials Science Forum 706-709 (січень 2012): 1841–46. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.1841.
Full textBertin, Nicolas, Ryan B. Sills, and Wei Cai. "Frontiers in the Simulation of Dislocations." Annual Review of Materials Research 50, no. 1 (2020): 437–64. http://dx.doi.org/10.1146/annurev-matsci-091819-015500.
Full textArgani, Luca, Davide Bigoni, and Gennady Mishuris. "Dislocations and inclusions in prestressed metals." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, no. 2154 (2013): 20120752. http://dx.doi.org/10.1098/rspa.2012.0752.
Full textKramer, I. R., C. R. Feng, and B. Wu. "Dislocation-depth distribution in fatigued metals." Materials Science and Engineering 80, no. 1 (1986): 37–48. http://dx.doi.org/10.1016/0025-5416(86)90300-9.
Full textWolfer, W. G., and B. B. Glasgow. "Dislocation evolution in metals during irradiation." Acta Metallurgica 33, no. 11 (1985): 1997–2004. http://dx.doi.org/10.1016/0001-6160(85)90122-1.
Full textKaschner, George C., and Jeffrey C. Gibeling. "A Study of Fatigue (Cyclic Deformation) Behavior in FCC Metals Using Strain Rate Change Tests." Key Engineering Materials 378-379 (March 2008): 371–84. http://dx.doi.org/10.4028/www.scientific.net/kem.378-379.371.
Full textUnga´r, T., G. Riba´rik, J. Gubicza, and P. Hana´k. "Dislocation Structure and Crystallite Size Distribution in Plastically Deformed Metals Determined by Diffraction Peak Profile Analysis." Journal of Engineering Materials and Technology 124, no. 1 (2001): 2–6. http://dx.doi.org/10.1115/1.1418364.
Full textClark, W. A. T. "Quantitative measurements of stresses at grain boundaries in polycrystalline metals." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 620–21. http://dx.doi.org/10.1017/s0424820100105163.
Full textVAN MEURS, P., A. MUNTEAN, and M. A. PELETIER. "Upscaling of dislocation walls in finite domains." European Journal of Applied Mathematics 25, no. 6 (2014): 749–81. http://dx.doi.org/10.1017/s0956792514000254.
Full textTakahashi, A., and K. Kurata. "Dislocation dynamics based modelling of dislocation-precipitate interactions in bcc metals." IOP Conference Series: Materials Science and Engineering 10 (June 1, 2010): 012081. http://dx.doi.org/10.1088/1757-899x/10/1/012081.
Full text