Academic literature on the topic 'Dislocation structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dislocation structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Dislocation structure"
Kivambe, Maulid, Gaute Stokkan, Torunn Ervik, Sergio Castellanos, Jasmin Hofstetter, and Tonio Buonassisi. "The Impact of Dislocation Structure on Impurity Decoration of Dislocation Clusters in Multicrystalline Silicon." Solid State Phenomena 205-206 (October 2013): 71–76. http://dx.doi.org/10.4028/www.scientific.net/ssp.205-206.71.
Full textGan, J., J. S. Vetrano, and M. A. Khaleel. "Microstructure Characterization of Dislocation Wall Structure in Aluminum Using Transmission Electron Microscopy." Journal of Engineering Materials and Technology 124, no. 3 (June 10, 2002): 297–301. http://dx.doi.org/10.1115/1.1479178.
Full textLee, Jae Won, and Marek Skowronski. "Structure of “Star” Defect in 4H-SiC Substrates and Epilayers." Materials Science Forum 527-529 (October 2006): 403–6. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.403.
Full textKaneko, Yoshihisa, M. Ishikawa, and Satoshi Hashimoto. "ECCI Observation of Dislocation Structure Formed around an Intergranular Fatigue Crack in Copper." Advanced Materials Research 26-28 (October 2007): 1317–20. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.1317.
Full textAkashi, Naoya, Akinori Seki, Hiroaki Saito, Fumiaki Kawai, and Shinichi Shikata. "Influence of Dislocations to the Diamond SBD Reverse Characteristics." Materials Science Forum 924 (June 2018): 212–16. http://dx.doi.org/10.4028/www.scientific.net/msf.924.212.
Full textSarafanov, G. F. "INSTABILITY IN A DISLOCATION ENSEMBLE AT PLASTIC DEFORMATION IN METALS." Problems of strenght and plasticity 83, no. 2 (2021): 198–206. http://dx.doi.org/10.32326/1814-9146-2021-83-2-198-206.
Full textBarry, J. C., and H. Alexander. "Direct structure images of 30° partial dislocation cores in silicon." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 242–43. http://dx.doi.org/10.1017/s0424820100126111.
Full textLi, Mian, Bo Long Li, Tong Bo Wang, and Zuo Ren Nie. "The Effect of Initial Microstructure on the Dynamic Mechanical Behavior of Titanium Plate at Different Strain Rates." Applied Mechanics and Materials 477-478 (December 2013): 1298–302. http://dx.doi.org/10.4028/www.scientific.net/amm.477-478.1298.
Full textHirth, John P. "Fine-scale structural defects in dislocation cores." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 446–47. http://dx.doi.org/10.1017/s0424820100175363.
Full textYang, Mino, Chong-Don Kim, Hee-Goo Kim, and Cheol-Woong Yang. "Spatial Distribution of Dislocations in Relation to a Substructure in High-Quality GaN Film." Microscopy and Microanalysis 19, S5 (August 2013): 127–30. http://dx.doi.org/10.1017/s1431927613012488.
Full textDissertations / Theses on the topic "Dislocation structure"
Farber, Boris Yarovlevick. "Dislocation velocities and dislocation structure in cubic zirconia and sapphire (alpha-aluminum oxide) single crystals." Case Western Reserve University School of Graduate Studies / OhioLINK, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=case1061555653.
Full textRhode, Sneha. "Atomic structure of dislocation cores in III nitride films." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709030.
Full textSagalowicz, Laurent. "Dislocation/grain boundary interactions in the diamond cubic structure /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487780865408123.
Full textLiang, Yuan, and 梁源. "Dislocation in cantonese: sentence form, information structure, and discourse function." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B31244476.
Full textJusto, Filho João F. "Atomistics of dislocation mobility in silicon : core structure and mechanisms." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/46072.
Full textKvam, Eric Peter. "TEM study of dislocation structure in grain boundaries in metals." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15325.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Vita.
Bibliography: leaves 150-154.
by Eric Peter Kvam.
Ph.D.
Lüthi, Bérengère. "Modélisation ab initio des interactions dislocation-soluté dans les métaux de transition cubiques centrés." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1166/document.
Full textIn order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals, in particular Fe, in presence of interstitial solute atoms. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=½<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction was evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy. A different behavior was observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency was linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy
Merriman, Colin Clarke. "Orientation dependence of dislocation structure evolution of aluminum alloys in 2-D and 3-D." Online access for everyone, 2007. http://www.dissertations.wsu.edu/Thesis/Summer2007/C_Merriman_072507.pdf.
Full textDouin, Joël. "Structure fine des dislocations et plasticité dans Ni(3)Ai." Poitiers, 1987. http://www.theses.fr/1987POIT2313.
Full textWestbury, Joshua Ryan. "Towards a discourse-pragmatic description of left-dislocation in biblical Hebrew." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5258.
Full textENGLISH ABSTRACT: This is an exploratory investigation into the discourse-pragmatic function(s) of the so-called Left-Dislocation construction in Biblical Hebrew. This inquiry is a part of a larger investigation into the nature and function of word order variation in Biblical Hebrew. In light of past research on Biblical Hebrew word-order variation, specifically concerning Left-Dislocation constructions, it is concluded that a re-analysis of Left-Dislocation constructions in Biblical Hebrew is called for. Advancements within the fields of cognitive-functional linguistics and discourse-pragmatics (information-structure) have afforded numerous avenues towards a more comprehensive cognitive-oriented frame of reference for ascertaining the functions of Biblical Hebrew word order variation. The discourse-pragmatic and cognitive-functional notion of information-structure serves as the basis for the theoretical framework employed in the present investigation. Information-structure is principally concerned with the question as to why grammars of natural language offer speakers a variety of morphosyntactic and prosodic options for expressing the same propositional content. Since the Left-Dislocation construction is a universal syntactic phenomenon, typological information regarding the form and function of Left-Dislocation constructions across languages served as a critical source of insight into the prototypical formal features and functional domains of the construction within Biblical Hebrew. The insights garnered from cross-linguistic data informed the parameters employed in the construction and construal of a random data-set of one hundred cases of Left-Dislocation drawn from the narrative portions of the Hebrew Bible stretching from Genesis to 2 Chronicles. The investigation of our data-set, within the confines of a discourse-pragmatic framework, reveals that Left-Dislocation constructions in Biblical Hebrew are principally employed to facilitate the topic-promotion of identifiable but inactive discourse-referents. These referents could be the primary or secondary topics of the sentences in which they are used.
AFRIKAANSE OPSOMMING: Hierdie studie is 'n verkennende ondersoek na die diskoerspragmatiese funksie(s) van sogenaamde linksverskuiwing ('Left-Dislocation') konstruksies in Bybelse Hebreeus. Hierdie vraagstelling vorm deel van 'n meer omvattende ondersoek na die aard en funksie van woordorde-variasies in Bybelse Hebreeus. Na aanleiding van 'n uitvoerige literatuurstudie oor die funksie(s) van woordorde-variasies in Bybelse Hebreeus, veral met betrekking tot linksverskuiwingskonstruksies, is tot die gevolgtrekking gekom dat 'n heranalise van linksverskuiwingskonstruksies in Bybelse Hebreeus nodig is. Vooruitgang op die gebiede van kognitiewe-funksionele taalkunde, en tekspragmatiek (informasiestruktuur) het dit moontlik gemaak om 'n meer omvattende kognitief-georiënteerde verwysingsraamwerk vir die bepaling van die funksie(s) van Bybels-Hebreeuse woordorde-variasies te formuleer. Die diskoerspragmatiese en kognitiewe-funksionele opvatting van informasiestruktuur dien as die basis vir die teoretiese raamwerk wat in die huidige ondersoek gebruik is. Informasiestruktuur is hoofsaaklik gemoeid met die vraag waarom die grammatika van natuurlike taal aan sprekers 'n verskeidenheid van morfosintaktiese en prosodiese opsies bied vir die uitdrukking van dieselfde proposisionele inhoud. Aangesien die linksverskuiwingskonstruksie 'n universele sintaktiese verskynsel is, is taaltipologiese inligting oor die vorm en funksie van die linksverskuiwingskonstruksie gebruik om insig te kry in die prototipiese formele eienskappe en funksies van die konstruksie in Bybelse Hebreeus. Aan die hand van bg. taaltipologiese insigte is parameters geformuleer aan die hand waarvan 'n ewekansige monster voorbeelde van linksverskuiwing uit verhalende tekste uit Genesis tot 2 Kronieke ondersoek is. Daar is bevind dat linksverskuiwing in Bybelse Hebreeus hoofsaaklik aangewend word om identifiseerbare, maar onaktiewe diskoersreferente te promoveer as topieks. Hierdie referente mag primêre of sekondêre topieks wees.
Books on the topic "Dislocation structure"
Yu, Huafeng. Plastic deformation and dislocation structures in Ni [inferior] 3 Al. Birmingham: University of Birmingham, 1991.
Find full textSatdarova, Faina. DIFFRACTION ANALYSIS OF DEFORMED METALS: Theory, Methods, Programs. xxu: Academus Publishing, 2019. http://dx.doi.org/10.31519/monography_1598.
Full textG, Roberts S., Holt D. B, and Wilshaw P. R, eds. Structure and properties of dislocations in semiconductors 1989: Proceedings of the Sixth International Symposium on the Structure and Properties of Dislocations in Semiconductors held at the University of Oxford, 5-8 April 1989. Bristol: Institute of Physics, 1989.
Find full textNye, J. F. Natural focusing and fine structure of light: Caustics and wave dislocations. Bristol: Institute of Physics Pub., 1999.
Find full textN, Bassim M., ed. Low-energy dislocation structures II: 2nd International Conference on Low-Energy Dislocation Structures, University of Virginia, School of Engineering and Applied Science, Charlottesville, Virginia, August 13-17, 1989. London: Elsevier Applied Science, 1989.
Find full textEuropean, Research Conference on Plasticity of Materials Fundamental Aspects of Dislocation Interactions: Low-energy Dislocation Structures (3rd 1992 Ascona Switzerland). Papers presented at a European Research Conference on Plasticity of Materials - Fundamental Aspects of Dislocation Interactions: Low-energy Dislocation Structures 3, August 30-September 4, 1992, Ascona, Switzerland. Lausanne: Elsevier Sequoia, 1993.
Find full textDaw, Murray S. Atomic-scale modeling of the structure and dynamics of dislocations in complex alloys at high temperatures. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Find full textDaw, Murray S. Atomic-scale modeling of the structure and dynamics of dislocations in complex alloys at high temperatures. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Find full textDaw, Murray S. Atomic-scale modeling of the structure and dynamics of dislocations in complex alloys at high temperatures. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Find full textJapan-France Materials Science Seminar (5th 1997 Sapporo-shi, Japan). Meso-structure in materials: Characterization, modelling, influence on properties : Sapporo (Japan), September 7-9, 1997. Edited by Dimitrov Omourtague. Les Ulis, France: Les Editions de physique, 1997.
Find full textBook chapters on the topic "Dislocation structure"
Dollimore, Jonathan. "Structure: From Resolution to Dislocation." In Radical Tragedy, 53–69. London: Macmillan Education UK, 2010. http://dx.doi.org/10.1007/978-1-137-08640-2_3.
Full textBarabash, R. I., G. E. Ice, B. C. Larson, and W. Yang. "Local Dislocation Structure from Laue Diffraction." In Fundamental Materials Research, 49–66. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0613-3_4.
Full textLeSar, Richard, and Jeffrey M. Rickman. "Coarse Graining of Dislocation Structure and Dynamics." In Continuum Scale Simulation of Engineering Materials, 429–44. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603786.ch20.
Full textMartini, K. M., S. Burdick, M. El-Batanouny, and G. Kirczenow. "Molecular Dynamics Investigation of Dislocation-Depinning Transitions in Mismatched Overlayers." In The Structure of Surfaces, 347–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82493-7_56.
Full textvan Putten, Saskia. "Left dislocation and subordination in Avatime (Kwa)." In Information Structure and Reference Tracking in Complex Sentences, 71–98. Amsterdam: John Benjamins Publishing Company, 2014. http://dx.doi.org/10.1075/tsl.105.03van.
Full textSillars, Stuart. "Howards End and the Dislocation of Narrative." In Structure and Dissolution in English Writing, 1910–1920, 31–61. London: Palgrave Macmillan UK, 1999. http://dx.doi.org/10.1007/978-1-349-27664-6_2.
Full textKerr, Betsy. "Left dislocation in French: Information structure vs. (?) interactional linguistics." In Perspectives on Linguistic Structure and Context, 223–40. Amsterdam: John Benjamins Publishing Company, 2014. http://dx.doi.org/10.1075/pbns.244.11ker.
Full textWilhelm, T., Teimuraz Mchedlidze, X. Yu, T. Arguirov, Martin Kittler, and M. Reiche. "Regular Dislocation Networks in Silicon. Part I: Structure." In Solid State Phenomena, 571–78. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-43-4.571.
Full textMayama, Tsuyoshi, Katsuhiko Sasaki, and Yoshihiro Narita. "Quantitative Evaluation of Dislocation Structure Induced by Cyclic Plasticity." In The Mechanical Behavior of Materials X, 49–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.49.
Full textYamada, Tomoyasu, Hisamune Tanaka, Eiichi Sato, and Itaru Jimbo. "Dislocation Structure for Ambient Temperature Creep in Titanium Metal." In Materials Science Forum, 577–80. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.577.
Full textConference papers on the topic "Dislocation structure"
Vlasova, A. M., A. Yu Nikonov, A. K. Zhuravlev, and A. G. Kesarev. "Dislocation structure of the magnesium nanocrystal in uniaxial loading." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016: Proceedings of the International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966523.
Full textLeSar, Richard, M. Koslowski, Robb Thomson, and J. M. Rickman. "Scaling relations for dislocation structure and response." In International conference on Statistical Mechanics of Plasticity and Related Instabilities. Trieste, Italy: Sissa Medialab, 2006. http://dx.doi.org/10.22323/1.023.0054.
Full textBarakhtin, Boris K. "Cluster model of the cellular dislocation structure formation." In International Workshop on New Approaches to High Tech Materials: Nondestructive Testing and Computer Simulations in Materials Scienc, edited by Alexander I. Melker. SPIE, 1998. http://dx.doi.org/10.1117/12.299593.
Full textAlfyorova, E. A., D. V. Lychagin, L. L. Lychagina, and N. A. Tsvetkov. "Transformations of the dislocation structure of nickel single crystals." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2017 (AMHS’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5013684.
Full textKunitsyna, T. S., L. A. Teplyakova, M. A. Poltaranin, and N. A. Koneva. "Spatial organization of plastic deformation in single crystals with different structure of slip dislocation." In ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4932804.
Full textBarton, Nathan R., Ryan A. Austin, Justin L. Brown, and Moono Rhee. "Anelastic effects on reverse loading – Connection to evolving dislocation structure." In SHOCK COMPRESSION OF CONDENSED MATTER - 2019: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP Publishing, 2020. http://dx.doi.org/10.1063/12.0000914.
Full textBudagovskiy, I. A., E. V. Naumova, and A. T. Polosko. "Statistical characteristics of laser beams with the wavefront dislocation structure." In International Conference on Lasers, Applications, and Technologies 2002 Advanced Lasers and Systems, edited by Guenter Huber, Ivan A. Scherbakov, and Vladislav Y. Panchenko. SPIE, 2003. http://dx.doi.org/10.1117/12.517938.
Full textMisra, A., H. Kung, D. Hammon, R. G. Hoagland, and M. Nastasi. "Damage Mechanisms in Nanolayered Metallic Composites." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32395.
Full textKhraishi, Tariq A., Lincan Yan, and Yu-Lin Shen. "Modelling Strengthening Mechanisms in Solids Using Dislocation Dynamics." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43180.
Full textGorban, Ivan S., and Galina N. Mishinova. "Basics of luminescent diagnostics of the dislocation structure of SiC crystals." In International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, edited by Sergey V. Svechnikov and Mikhail Y. Valakh. SPIE, 1998. http://dx.doi.org/10.1117/12.306212.
Full textReports on the topic "Dislocation structure"
Bamford, T. An investigation of the dislocation structure of the Ni/Ag phase boundary. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/7008891.
Full textHemker, Kevin J. Characterization of Dislocation Core Structures in BCC Metals. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada443132.
Full textHemker, Kevin J., and Mingwei Chen. Experimental Determination of Dislocation Core Structures by HRTEM. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada388647.
Full textHunter, Abigail, John S. Carpenter, and Enrique Martinez Saez. Predicting High Temperature Dislocation Physics in HCP Crystal Structures. Office of Scientific and Technical Information (OSTI), May 2016. http://dx.doi.org/10.2172/1253496.
Full textMcGibbon, A. J., and S. J. Pennycook. Direct atomic resolution imaging of dislocation core structures in a 300 kV stem. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/102250.
Full textJesser, William A. International Conference on Low-Energy Dislocation Structures Held in Charlottesville, Virginia on August 13-17, 1989. Fort Belvoir, VA: Defense Technical Information Center, May 1990. http://dx.doi.org/10.21236/ada222887.
Full textPetrenko, Victor F., and Robert W. Whitworth. Structure of Ordinary Ice I sub h. Part 2: Defects in Ice. Volume 2: Dislocations and Plane Defects. Fort Belvoir, VA: Defense Technical Information Center, May 1994. http://dx.doi.org/10.21236/ada282628.
Full text