To see the other types of publications on this topic, follow the link: Disordered magnetic systems.

Journal articles on the topic 'Disordered magnetic systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Disordered magnetic systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ryzhenko, B. V., and S. V. Pridvizhkin. "Mössbauer spectroscopy of disordered magnetic systems." Hyperfine Interactions 72, no. 4 (May 1992): 313–42. http://dx.doi.org/10.1007/bf02397686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ziegler, K. "Disordered magnetic systems in two dimensions." Journal of Magnetism and Magnetic Materials 96, no. 1-3 (June 1991): 77–81. http://dx.doi.org/10.1016/0304-8853(91)90612-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Belitz, D., and T. R. Kirkpatrick. "Magnetic anomalies in disordered electronic systems." Physica A: Statistical Mechanics and its Applications 167, no. 1 (August 1990): 259–78. http://dx.doi.org/10.1016/0378-4371(90)90057-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lisowski, M., and E. Zipper. "Orbital magnetic ordering in disordered mesoscopic systems." Journal of Magnetism and Magnetic Materials 189, no. 2 (November 1998): 225–33. http://dx.doi.org/10.1016/s0304-8853(98)00223-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saito, Masako, and Hidetoshi Fukuyama. "Magnetic Excitations in Disordered Spin-Peierls Systems." Journal of the Physical Society of Japan 66, no. 10 (October 15, 1997): 3259–71. http://dx.doi.org/10.1143/jpsj.66.3259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sachdev, Subir. "Magnetic properties of strongly disordered electronic systems." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 356, no. 1735 (January 15, 1998): 173–95. http://dx.doi.org/10.1098/rsta.1998.0156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McCann, Edward, and Klaus Richter. "Magnetic susceptibility of disordered nondiffusive mesoscopic systems." Physical Review B 59, no. 20 (May 15, 1999): 13026–35. http://dx.doi.org/10.1103/physrevb.59.13026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomsen, M., M. F. Thorpe, T. C. Choy, D. Sherrington, and H. J. Sommers. "Local magnetic field distributions. III. Disordered systems." Physical Review B 33, no. 3 (February 1, 1986): 1931–47. http://dx.doi.org/10.1103/physrevb.33.1931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klopper, A. V., and R. L. Stamps. "Site-disordered glassy systems." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 1310–11. http://dx.doi.org/10.1016/j.jmmm.2003.12.536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moroni, E. G., and T. Jarlborg. "Magnetic instabilities in ordered and disordered Invar systems." Journal of Magnetism and Magnetic Materials 104-107 (February 1992): 711–12. http://dx.doi.org/10.1016/0304-8853(92)90997-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

RYZHENKO, B. V., and S. V. PRIDVIZHKIN. "ChemInform Abstract: Moessbauer Spectroscopy of Disordered Magnetic Systems." ChemInform 23, no. 41 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199241293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dormann, J. L., and M. Noguès. "Disordered magnetic phases and magnetic transitions in non anisotropic frustrated systems." Phase Transitions 33, no. 1-4 (April 1991): 159–75. http://dx.doi.org/10.1080/01411599108207727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

MAGALHAES, S. G., F. ZIMMER, and B. COQBLIN. "THE SPIN GLASS-KONDO COMPETITION IN DISORDERED CERIUM SYSTEMS." International Journal of Modern Physics: Conference Series 11 (January 2012): 38–48. http://dx.doi.org/10.1142/s2010194512006149.

Full text
Abstract:
We discuss the competition between the Kondo effect, the spin glass state and a magnetic order observed in disordered Cerium systems. We present firstly the experimental situation of disordered alloys such as CeNi1-xCux and then the different theoretical approaches based on the Kondo lattice model, with different descriptions of the intersite exchange interaction for the spin glass. After the gaussian approach of the Sherrington-Kirkpatrick model, we discuss the Mattis and the van Hemmen models. Then, we present simple cluster calculations in order to describe the percolative evolution of the clusters from the cluster spin glass to the inhomogeneous ferromagnetic order recently observed in CeNi1-xCux disordered alloys and finally we discuss the effect of random and transverse magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
14

Bershadskii, A. "Multifractal Specific Heat of Disordered Mesoscopic Systems." Modern Physics Letters B 12, no. 01 (January 10, 1998): 11–15. http://dx.doi.org/10.1142/s0217984998000032.

Full text
Abstract:
It is shown that multifractal data on critical behavior of wavefunctions at the Anderson metal–insulator transition obtained in numerical simulations are in good agreement with constant specific-heat multifractal approximation for three and two dimensional cases (in the last case in high magnetic field). A relation of this approximation to the parabolic multifractal approximation is also briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
15

Saito, Masako. "Effects of Magnetic Fields in Disordered Spin-Peierls Systems." Journal of the Physical Society of Japan 67, no. 7 (July 15, 1998): 2477–83. http://dx.doi.org/10.1143/jpsj.67.2477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Matsunaka, Daisuke, Hideaki Kasai, Wilson Agerico Diño, and Hiroshi Nakanishi. "Dynamical Cluster Approximation in Disordered Systems with Magnetic Impurities." Journal of the Physical Society of Japan 73, no. 12 (December 15, 2004): 3448–52. http://dx.doi.org/10.1143/jpsj.73.3448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Adnani, N., and J. M. Titman. "Nuclear magnetic dipolar relaxation in disordered metal-hydrogen systems." Journal of the Less Common Metals 172-174 (August 1991): 579–84. http://dx.doi.org/10.1016/0022-5088(91)90178-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Gasparian, Vladimir, David Badalian, and Esther Jódar. "One-dimensional disordered magnetic Ising systems: A new approach." physica status solidi (b) 246, no. 9 (September 2009): 2159–66. http://dx.doi.org/10.1002/pssb.200945013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

BRIET, PHILIPPE, and BAPTISTE SAVOIE. "A RIGOROUS APPROACH TO THE MAGNETIC RESPONSE IN DISORDERED SYSTEMS." Reviews in Mathematical Physics 24, no. 08 (September 2012): 1250022. http://dx.doi.org/10.1142/s0129055x12500225.

Full text
Abstract:
This paper is a part of an ongoing study on the diamagnetic behavior of a 3-dimensional quantum gas of non-interacting charged particles subjected to an external uniform magnetic field together with a random electric potential. We prove the existence of an almost-sure non-random thermodynamic limit for the grand-canonical pressure, magnetization and zero-field orbital magnetic susceptibility. We also give an explicit formulation of these thermodynamic limits. Our results cover a wide class of physically relevant random potentials which model not only crystalline disordered solids, but also amorphous solids.
APA, Harvard, Vancouver, ISO, and other styles
20

JEZIERSKI, A. "MAGNETIC PROPERTIES OF THE DISORDERED Fe-Rh ALLOYS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 961–64. http://dx.doi.org/10.1142/s0217979293002080.

Full text
Abstract:
The electronic and magnetic properties of the disordered Fe1−cRhc alloys are studied by the TB LMTO-CPA method. The paramagnetic density of states is computed for the fcc and bcc Fe-Rh systems. The dependence of the magnetic moment on the concentration was estimated using the Stoner model.
APA, Harvard, Vancouver, ISO, and other styles
21

Mertsching, J. "Exciton Lineshapes in Weakly Disordered Systems." physica status solidi (b) 198, no. 2 (December 1, 1996): 905–12. http://dx.doi.org/10.1002/pssb.2221980235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mao, Zhongquan, and Xi Chen. "Magnetic relaxation in disordered exchange interacting systems with random anisotropy." Solid State Communications 150, no. 45-46 (December 2010): 2227–30. http://dx.doi.org/10.1016/j.ssc.2010.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Avishai, Y., and R. M. Redheffer. "Two-dimensional disordered electronic systems in a strong magnetic field." Physical Review B 47, no. 4 (January 15, 1993): 2089–100. http://dx.doi.org/10.1103/physrevb.47.2089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bhatt, R. N., M. A. Paalanen, and S. Sachdev. "MAGNETIC PROPERTIES OF DISORDERED SYSTEMS NEAR A METAL-INSULATOR TRANSITION." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–1179—C8–1184. http://dx.doi.org/10.1051/jphyscol:19888540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Thomas, P. A., and M. Rosso. "Pair approximation to describe magnetic properties of disordered spin systems." Physical Review B 34, no. 11 (December 1, 1986): 7936–40. http://dx.doi.org/10.1103/physrevb.34.7936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

COWLEY, R. A. "ChemInform Abstract: Excitations and Phase Transitions of Disordered Magnetic Systems." ChemInform 22, no. 15 (August 23, 2010): no. http://dx.doi.org/10.1002/chin.199115301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Skal, Asya S. "Conductivity in a magnetic field and elasticity of disordered systems." Solid State Communications 96, no. 6 (November 1995): 411–15. http://dx.doi.org/10.1016/0038-1098(95)00359-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kree, R. "Dynamics of disordered interacting quantum systems." Zeitschrift f�r Physik B Condensed Matter 65, no. 4 (December 1987): 505–13. http://dx.doi.org/10.1007/bf01303773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kleemann, Wolfgang. "Disordered Multiferroics." Solid State Phenomena 189 (June 2012): 41–56. http://dx.doi.org/10.4028/www.scientific.net/ssp.189.41.

Full text
Abstract:
Disordered multiferroic materials (type-III multiferroics) escape the conventional schematics oftype-Iandtype-IImultiferroics, where two types of ferroic long-range order are expected to coexist under different interdependences and promise to attain a maximized bilinear (αorEH)magnetoelectriceffect under special symmetry conditions. Nevertheless sizable higher orderMEresponse occurs also in disordered systems such as in the simultaneousdipolarandspin glasses(multiglass) Sr0.98Mn0.02TiO3and K0.94Mn0.03TaO3, thequantum paraelectric antiferromagnetEuTiO3, thespin glassandrelaxor ferroelectricPbFe0.5Nb0.5O3, and theantiferroelectric antiferromagnetic dipole glassCuCr1-xInxP2S6. They have in common to show large quadratic magneto-capacitance effects, ΔεH2, which are related to dominating third-orderE2H2terms in their free energies and do not require special symmetry conditions. The polarization controlled exchange coupling can achieve giant fluctuation-enhanced values in the vicinity of critical magnetic fields as observed,e.g., in EuTiO3. Exceptionally, even the first-orderEH-typemagnetoelectriceffect is observed whenever metastable homogeneous order parameters are induced by field cooling as in EuTiO3, or in the spin glass phase of the relaxor multiferroic Pb (Fe0.5Nb0.5)O3atT < Tg= 10.6 K.
APA, Harvard, Vancouver, ISO, and other styles
30

Saito, Masako, and Hidetoshi Fukuyama. "Magnetism in disordered spin-Peierls systems." Physica B: Condensed Matter 246-247 (May 1998): 27–31. http://dx.doi.org/10.1016/s0921-4526(98)00020-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bose, Subir K., Sean M. Kirkpatrick, and W. M. Dennis. "Anharmonic phonon decay in disordered systems." Physica B: Condensed Matter 271, no. 1-4 (November 1999): 198–204. http://dx.doi.org/10.1016/s0921-4526(99)00224-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Castellani, Claudio, and Carlo Di Castro. "Metal-insulator transition in disordered systems." Journal of Non-Crystalline Solids 77-78 (December 1985): 25–28. http://dx.doi.org/10.1016/0022-3093(85)90602-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Takashige, Masaaki, and Terutaro Nakamura. "Low-temperature dielectric constants of disordered systems." Ferroelectrics 137, no. 1 (December 1992): 139–43. http://dx.doi.org/10.1080/00150199208015946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stephanovich, V. A. "Free energy functions of disordered dipole systems." Ferroelectrics 192, no. 1 (February 1997): 29–44. http://dx.doi.org/10.1080/00150199708216168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kleinert, P. "Magnetoconductivity of Disordered Two-Dimensional Electron Systems." physica status solidi (b) 168, no. 1 (November 1, 1991): 267–78. http://dx.doi.org/10.1002/pssb.2221680125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Saito, M., and H. Fukuyama. "A theoretical study of magnetic excitations in disordered spin-Peierls systems." Journal of Physics and Chemistry of Solids 60, no. 8-9 (September 1999): 1113–15. http://dx.doi.org/10.1016/s0022-3697(99)00063-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Meyer, C., and F. Hartmann-Boutron. "Mössbauer Spectroscopy in disordered magnetic systems: Clustering effects inAuFe reentrant ferromagnet." Hyperfine Interactions 59, no. 1-4 (August 1990): 219–35. http://dx.doi.org/10.1007/bf02401224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Maass, P., and F. Scheffler. "Lévy field distributions and anomalous spin relaxation in disordered magnetic systems." Physica A: Statistical Mechanics and its Applications 314, no. 1-4 (November 2002): 200–207. http://dx.doi.org/10.1016/s0378-4371(02)01189-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fernandes, J. C., R. B. Guimarães, M. A. Continentino, H. A. Borges, J. V. Valarelli, and Alex Lacerda. "Titanium-III warwickites: A family of one-dimensional disordered magnetic systems." Physical Review B 50, no. 22 (December 1, 1994): 16754–57. http://dx.doi.org/10.1103/physrevb.50.16754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Beal-Monod, M. T. "Inelastic scattering time in three-dimensional nearly magnetic disordered fermion systems." Physical Review B 35, no. 9 (March 15, 1987): 4537–40. http://dx.doi.org/10.1103/physrevb.35.4537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ohashi, Takuma, and Sei-ichiro Suga. "Susceptibility of a Magnetic Impurity in Two-Dimensional Disordered Electron Systems." Journal of the Physical Society of Japan 71, no. 5 (May 15, 2002): 1246–49. http://dx.doi.org/10.1143/jpsj.71.1246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kemali, M., J. M. Titman, and R. L. Havill. "Computer Simulation of Nuclear Magnetic Relaxation in Disordered Metal — Hydrogen Systems*." Zeitschrift für Physikalische Chemie 183, Part_1_2 (January 1994): 23–28. http://dx.doi.org/10.1524/zpch.1994.183.part_1_2.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Viehweger, O., and K. B. Efetov. "The Hall coefficient of disordered electronic systems in high magnetic fields." Journal of Physics: Condensed Matter 2, no. 33 (August 20, 1990): 7049–54. http://dx.doi.org/10.1088/0953-8984/2/33/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Avishai, Y., and R. M. Redheffer. "Erratum: Two-dimensional disordered electronic systems in a strong magnetic field." Physical Review B 49, no. 3 (January 15, 1994): 2285. http://dx.doi.org/10.1103/physrevb.49.2285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Labarta, A., J. Marro, and J. Tejada. "Model studies of the thermal and magnetic properties in disordered systems." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 54–56. http://dx.doi.org/10.1016/0304-8853(86)90482-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hayn, R., and W. John. "Effective equations for disordered one-dimensional systems." Zeitschrift f�r Physik B Condensed Matter 67, no. 2 (June 1987): 169–77. http://dx.doi.org/10.1007/bf01303977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pook, Werner, and Martin Jan�en. "Multifractality and scaling in disordered mesoscopic systems." Zeitschrift f�r Physik B Condensed Matter 82, no. 2 (June 1991): 295–98. http://dx.doi.org/10.1007/bf01324339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Miháliková, Ivana, Martin Friák, Nikola Koutná, David Holec, and Mojmír Šob. "An Ab Initio Study of Vacancies in Disordered Magnetic Systems: A Case Study of Fe-Rich Fe-Al Phases." Materials 12, no. 9 (May 2, 2019): 1430. http://dx.doi.org/10.3390/ma12091430.

Full text
Abstract:
We have performed quantum-mechanical calculations to examine the impact of disorder on thermodynamic, structural and electronic (magnetic) properties of Fe-Al systems with vacancies. A series of supercells was used and their properties were computed employing density-functional theory (DFT) as implemented in the VASP package. Our case study is primarily aimed at a disordered solid solution Fe 81.25 Al 18.75 but we have compared our results also with those obtained for the ordered Fe 3 Al intermetallic compound for which experimental data exist in literature. Both phases are found in Fe-Al-based superalloys. The Fe-18.75at.%Al solid solution was simulated using special quasirandom structures (SQS) in three different disordered states with a different distribution of Al atoms. In particular, we have considered a general disordered case (an A2-like variant), the case without the first nearest neighbor Al-Al pairs (a B2-like distribution of atoms) and also the case without both the first and second nearest neighbor Al-Al pairs (the D0 3 -like variant, in fact, an Fe-rich Fe 3 Al phase). The vacancy formation energies as well as the volumes of (fully relaxed) supercells with vacancies showed a large scatter for the disordered systems. The vacancy formation energies decrease with increasing concentration of Al atoms in the first coordination shell around the vacancy (an anti-correlation) for all disordered cases studied. The computed volumes of vacancies were found significantly lower (by 25–60%) when compared with the equilibrium volume of the missing atoms in their elemental states. Lastly, we have analyzed interactions between the vacancies and the Fe atoms and evaluated vacancy-induced changes in local magnetic moments of Fe atoms.
APA, Harvard, Vancouver, ISO, and other styles
49

OHASHI, T. "Kondo effect in low-dimensional disordered systems." Physica B: Condensed Matter 329-333 (May 2003): 1275–76. http://dx.doi.org/10.1016/s0921-4526(02)02229-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Heidrich-Meisner, Fabian. "Thermal transport properties of disordered spin- systems." Physica B: Condensed Matter 378-380 (May 2006): 299–300. http://dx.doi.org/10.1016/j.physb.2006.01.548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography