Academic literature on the topic 'Dispersion capillaire'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dispersion capillaire.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dispersion capillaire"

1

Jellali, Salah, and Olivier Razakarisoa. "Transport avec échange gazeux du trichloroéthylène vers une nappe aquifère." Revue des sciences de l'eau 19, no. 1 (March 20, 2006): 33–45. http://dx.doi.org/10.7202/012595ar.

Full text
Abstract:
Résumé Deux expériences ont été réalisées sur un site expérimental contrôlé de dimensions décamétriques reconstituant un aquifère alluvial. L’originalité de ce travail est basée sur le fait que cette plate-forme expérimentale permet de rendre compte du rôle de la frange capillaire dans les phénomènes de transfert, ce qui est difficilement accessible sur des systèmes réduits de laboratoire ou dans les investigations sur site réel. L’objectif principal est l’évaluation quantitative des mécanismes de transfert de Composés Organiques Volatils (COV) depuis la zone non saturée vers la nappe dans le cas d’une source de pollution localisée en zone non saturée. Le cas du transport du trichloroéthylène (TCE) a été abordé où une analyse comparative du transfert du TCE depuis la zone non saturée vers la nappe via la frange capillaire est présentée en étudiant les deux mécanismes : dispersion et dissolution. Dans la première expérience, la dispersion passive de la pollution par les vapeurs depuis la zone non saturée vers la nappe via la frange capillaire est étudiée. Dans la seconde expérience, l’impact sur la pollution de la nappe du lessivage des vapeurs par une pluie contrôlée est quantifié. Les résultats montrent que la dispersion passive des vapeurs peut causer une pollution significative de l’eau de la nappe, et ce, malgré la lenteur du processus de diffusion dans la partie inférieure de la frange capillaire suffisamment saturée en eau. Le lessivage des vapeurs par la pluie provoque une pollution de nappe plus importante et plus étendue. La quantification des flux de pollution partant de la zone non saturée vers la nappe a été réalisée dans la première expérience en se servant de la méthode de JOHNSON et PANKOW (1992), et du code de calcul (Hydrus) dans la seconde expérience. Les résultats expérimentaux et analytiques mettent en évidence, d’une part, le rôle d’écran joué par la frange capillaire contre le transfert de la pollution vers la nappe, et d’autre part, l’augmentation significative du degré et de l’étendue de la pollution de la nappe en cas de lessivage des vapeurs par les eaux de pluie.
APA, Harvard, Vancouver, ISO, and other styles
2

Ayappa, I., L. V. Brown, P. M. Wang, and S. J. Lai-Fook. "Arterial, capillary, and venous transit times and dispersion measured in isolated rabbit lungs." Journal of Applied Physiology 79, no. 1 (July 1, 1995): 261–69. http://dx.doi.org/10.1152/jappl.1995.79.1.261.

Full text
Abstract:
Transit time and relative dispersion of the arterial, capillary, and venous segments of the pulmonary circulation were measured in isolated perfused rabbit lungs. Fluorescence videomicroscopy was used to record the passage of dye through the main pulmonary artery, subpleural microcirculation, and venous outflow. Dye dilution curves were obtained at the main pulmonary artery, subpleural arterioles and venules, and pulmonary vein. Measurements were made at 5-cmH2O airway pressure, at blood flows of approximately 80, 50, and 25 ml.min-1.kg-1, and at left atrial pressures of approximately 0 cmH2O (zone 2) and approximately 12 cmH2O (zone 3). The dye dilution curves were modeled as lagged normal density curves that were used to calculate transit time and relative dispersion between the pulmonary artery and arteriole (artery), arteriole and venule (capillary), venule and pulmonary vein (vein), and pulmonary artery and pulmonary vein (whole lung). In open-chest anesthetized dogs, the passage of dye was recorded from the subpleural arterioles and venules between the seventh and eighth ribs in the left lateral position. At comparable blood flows, capillary transit time was larger in the dog than in the rabbit lung [3.4 +/- 2.4 (SD) vs. 0.87 +/- 0.47 s]. In the rabbit lung, relative dispersion was greater in pulmonary capillaries (average values 0.83–1.6) and veins (0.91–1.6) than in arteries (0.39–0.50), which was similar to the whole lung dispersion (0.47–0.52). A similarly high dispersion (0.93) was measured in the dog's pulmonary capillaries. Thus high dispersion in pulmonary capillaries and veins cannot be detected by whole lung dispersion measurements.
APA, Harvard, Vancouver, ISO, and other styles
3

Homer, L. D., and P. K. Weathersby. "How well mixed is inert gas in tissues?" Journal of Applied Physiology 60, no. 6 (June 1, 1986): 2079–88. http://dx.doi.org/10.1152/jappl.1986.60.6.2079.

Full text
Abstract:
The washout of inert gas from tissues typically follows multiexponential curves rather than monoexponential curves as would be expected from homogeneous, well-mixed compartment. This implies that the ratio for the square root of the variance of the distribution of transit times to the mean (relative dispersion) must be greater than 1. Among the possible explanations offered for multiexponential curves are heterogeneous capillary flow, uneven capillary spacing, and countercurrent exchange in small veins and arteries. By means of computer simulations of the random walk of gas molecules across capillary beds with parameters of skeletal muscle, we find that heterogeneity involving adjacent capillaries does not suffice to give a relative dispersion greater than one. Neither heterogeneous flow, nor variations in spacing, nor countercurrent exchange between capillaries can account for the multiexponential character of experimental tissue washout curves or the large relative dispersions that have been measured. Simple diffusion calculations are used to show that many gas molecules can wander up to several millimeters away from their entry point during an average transit through a tissue bed. Analytical calculations indicate that an inert gas molecule in an arterial vessel will usually make its first vascular exit from a vessel larger than 20 micron and will wander in and out of tissue and microvessels many times before finally returning to the central circulation. The final exit from tissue will nearly always be into a vessel larger than 20 micron. We propose the hypothesis that the multiexponential character of skeletal muscle tissue inert gas washout curves must be almost entirely due to heterogeneity between tissue regions separated by 3 mm or more, or to countercurrent exchanges in vessels larger than 20 micron diam.
APA, Harvard, Vancouver, ISO, and other styles
4

Damon, D. H., and B. R. Duling. "Evidence that capillary perfusion heterogeneity is not controlled in striated muscle." American Journal of Physiology-Heart and Circulatory Physiology 249, no. 2 (August 1, 1985): H386—H392. http://dx.doi.org/10.1152/ajpheart.1985.249.2.h386.

Full text
Abstract:
We tested the hypothesis that the heterogeneity of capillary blood flow distribution in striated muscle is inversely proportional to tissue blood flow by examining the patterns of red blood cell flow in the capillaries of hamster tibialis anterior muscles. Capillary red blood cell velocities and capillary red blood cell fluxes were measured as indexes of blood flow and red blood cell distribution in vasoconstricted and vasodilated vascular beds of resting and working striated muscle. Standard statistical parameters describing dispersion of data (standard deviation and coefficient of variation) in addition to measured and normalized histograms were compared across treatments. With vasodilation the standard deviations of both variables increased linearly with the means, and measured distributions became broader. The coefficients of variation and normalized distributions of both variables did not differ across treatments. These observations do not support the idea that the heterogeneity of capillary perfusion is controlled. Rather they suggest that fractional flow dispersion among capillaries is constant and independent of muscle blood flow and/or O2 demand.
APA, Harvard, Vancouver, ISO, and other styles
5

McClatchey, P. Mason, Ian M. Williams, Zhengang Xu, Nicholas A. Mignemi, Curtis C. Hughey, Owen P. McGuinness, Joshua A. Beckman, and David H. Wasserman. "Perfusion controls muscle glucose uptake by altering the rate of glucose dispersion in vivo." American Journal of Physiology-Endocrinology and Metabolism 317, no. 6 (December 1, 2019): E1022—E1036. http://dx.doi.org/10.1152/ajpendo.00260.2019.

Full text
Abstract:
These studies test, using intravital microscopy (IVM), the hypotheses that perfusion effects on insulin-stimulated muscle glucose uptake (MGU) are 1) capillary recruitment independent and 2) mediated through the dispersion of glucose rather than insulin. For experiment 1, capillary perfusion was visualized before and after intravenous insulin. No capillary recruitment was observed. For experiment 2, mice were treated with vasoactive compounds (sodium nitroprusside, hyaluronidase, and lipopolysaccharide), and dispersion of fluorophores approximating insulin size (10-kDa dextran) and glucose (2-NBDG) was measured using IVM. Subsequently, insulin and 2[14C]deoxyglucose were injected and muscle phospho-2[14C]deoxyglucose (2[C14]DG) accumulation was used as an index of MGU. Flow velocity and 2-NBDG dispersion, but not perfused surface area or 10-kDa dextran dispersion, predicted phospho-2[14C]DG accumulation. For experiment 3, microspheres of the same size and number as are used for contrast-enhanced ultrasound (CEU) studies of capillary recruitment were visualized using IVM. Due to their low concentration, microspheres were present in only a small fraction of blood-perfused capillaries. Microsphere-perfused blood volume correlated to flow velocity. These findings suggest that 1) flow velocity rather than capillary recruitment controls microvascular contributions to MGU, 2) glucose dispersion is more predictive of MGU than dispersion of insulin-sized molecules, and 3) CEU measures regional flow velocity rather than capillary recruitment.
APA, Harvard, Vancouver, ISO, and other styles
6

Clements, David R., Antonio DiTommaso, Stephen J. Darbyshire, Paul B. Cavers, and Alison D. Sartonov. "The biology of Canadian weeds. 127. Panicum capillare L." Canadian Journal of Plant Science 84, no. 1 (January 1, 2004): 327–41. http://dx.doi.org/10.4141/p02-147.

Full text
Abstract:
Panicum capillare L., witch grass, is an annual grass native to North America that infests field crops, small grains, grasslands, and a variety of other habitats. High seed production, a persistent seed bank, a tumble-weed seed-dispersing mechanism, and the ability to tolerate some herbicides contribute to the success of P. capillare in these habitats. Despite the widespread presence of P. capillare in crops, its actual impact on crop yield is not well documented. It is an additional host for several insect pests (e.g., cereal aphids) and diseases attacking crop species. Key words: Panicum capillare, witch grass, panic capillaire, weed biology, native weed species
APA, Harvard, Vancouver, ISO, and other styles
7

Presson, R. G., C. C. Hanger, P. S. Godbey, J. A. Graham, T. C. Lloyd, and W. W. Wagner. "Effect of increasing flow on distribution of pulmonary capillary transit times." Journal of Applied Physiology 76, no. 4 (April 1, 1994): 1701–11. http://dx.doi.org/10.1152/jappl.1994.76.4.1701.

Full text
Abstract:
The complex morphology of the pulmonary capillary network causes capillary transit times to be dispersed about a mean. It is known that flow-induced decreases in mean capillary transit time are partially offset by capillary recruitment and distension, but the effect of these factors on the rest of the distribution of transit times is unknown. We have studied the relationship between blood flow, capillary recruitment, and the distribution of transit times in isolated canine lungs with videomicroscopy. Doubling baseline lobar blood flow recruited capillaries. All transit times in the distribution decreased, as did relative dispersion. Doubling flow again caused a further decrease in transit times, but neither capillary recruitment nor relative dispersion changed significantly. We conclude that capillary transit times become more homogeneous as lobar flow increases from low to intermediate levels. Further increases in flow across a fully recruited network are associated with decreases in transit times but not with more homogeneous capillary perfusion.
APA, Harvard, Vancouver, ISO, and other styles
8

Weiss, Michael, Tom C. Krejcie, and Michael J. Avram. "Transit time dispersion in pulmonary and systemic circulation: effects of cardiac output and solute diffusivity." American Journal of Physiology-Heart and Circulatory Physiology 291, no. 2 (August 2006): H861—H870. http://dx.doi.org/10.1152/ajpheart.01052.2005.

Full text
Abstract:
We present an in vivo method for analyzing the distribution kinetics of physiological markers into their respective distribution volumes utilizing information provided by the relative dispersion of transit times. Arterial concentration-time curves of markers of the vascular space [indocyanine green (ICG)], extracellular fluid (inulin), and total body water (antipyrine) measured in awake dogs under control conditions and during phenylephrine or isoproterenol infusion were analyzed by a recirculatory model to estimate the relative dispersions of transit times across the systemic and pulmonary circulation. The transit time dispersion in the systemic circulation was used to calculate the whole body distribution clearance, and an interpretation is given in terms of a lumped organ model of blood-tissue exchange. As predicted by theory, this relative dispersion increased linearly with cardiac output, with a slope that was inversely related to solute diffusivity. The relative dispersion of the flow-limited indicator antipyrine exceeded that of ICG (as a measure of intravascular mixing) only slightly and was consistent with a diffusional equilibration time in the extravascular space of ∼10 min, except during phenylephrine infusion, which led to an anomalously high relative dispersion. A change in cardiac output did not alter the heterogeneity of capillary transit times of ICG. The results support the view that the relative dispersions of transit times in the systemic and pulmonary circulation estimated from solute disposition data in vivo are useful measures of whole body distribution kinetics of indicators and endogenous substances. This is the first model that explains the effect of flow and capillary permeability on whole body distribution of solutes without assuming well-mixed compartments.
APA, Harvard, Vancouver, ISO, and other styles
9

Capen, R. L., W. L. Hanson, L. P. Latham, C. A. Dawson, and W. W. Wagner. "Distribution of pulmonary capillary transit times in recruited networks." Journal of Applied Physiology 69, no. 2 (August 1, 1990): 473–78. http://dx.doi.org/10.1152/jappl.1990.69.2.473.

Full text
Abstract:
When pulmonary blood flow is elevated, hypoxemia can occur in the fastest-moving erythrocytes if their transit times through the capillaries fall below the minimum time for complete oxygenation. This desaturation is more likely to occur if the distribution of capillary transit times about the mean is large. Increasing cardiac output is known to decrease mean pulmonary capillary transit time, but the effect on the distribution of transit times has not been reported. We measured the mean and variance of transit times in single pulmonary capillary networks in the dependent lung of anesthetized dogs by in vivo videofluorescence microscopy of a fluorescein dye bolus passing from an arteriole to a venule. When cardiac output increased from 2.9 to 9.9 l/min, mean capillary transit time decreased from 2.0 to 0.8 s. Because transit time variance decreased proportionately (relative dispersion remained constant), increasing cardiac output did not alter the heterogeneity of local capillary transit times in the lower lung where the capillary bed was nearly fully recruited.
APA, Harvard, Vancouver, ISO, and other styles
10

Son, Han Am, and Taewoong Ahn. "Effect of Capillary Number on the Residual Saturation of Colloidal Dispersions Stabilized by a Zwitterionic Surfactant." Applied Sciences 11, no. 2 (January 7, 2021): 524. http://dx.doi.org/10.3390/app11020524.

Full text
Abstract:
We investigated oil recovery from porous rock using nanoscale colloidal dispersions, formed by adsorption of an anionic polymer [poly-(4styrenesulfonic acid-co-maleic acid); PSS-co-MA] and a zwitterionic surfactant [N-tetradecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate, TPS] onto silica nanoparticles. In an emulsion, colloidal dispersion enhanced the stability of the oil-water interface in the absence of particle aggregation; the hydrophobic alkyl chains of TPS shifted into the oil drop, not only physiochemically, stabilizing the oil-water interface, but also promoting repulsive particle-to-particle interaction. Core flooding experiments on residual oil saturation as a function of capillary number, at various injection rates and oil viscosities, showed that the residual oil level was reduced by almost half when the zwitterionic surfactant was present in the colloidal dispersion. Consequently, the result revealed that this colloidal dispersion at the interface provides a mechanically robust layer at the oil-water interface without particle aggregation. Thus, the dispersion readily entered the pore throat and adhered to the oil-water interface, lowering the interfacial tension and improving oil recovery.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Dispersion capillaire"

1

Jamaleddine, Nadia Panfilov Mikhail. "Dispersion capillaire - gravitaire d'un polluant en milieu poreux hétérogène et non saturé." Vandoeuvre-les-Nancy : INPL, 2006. http://www.scd.inpl-nancy.fr/theses/2006_JAMALEDDINE_N.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jamaleddine, Nadia. "Dispersion capillaire - gravitaire d'un polluant en milieu poreux hétérogène et non saturé." Vandoeuvre-les-Nancy, INPL, 2006. http://docnum.univ-lorraine.fr/public/INPL/2006_JAMALEDDINE_N.pdf.

Full text
Abstract:
L'étude du phénomène de dispersion hydrodynamique dans les aquifères est très souvent rendue complexe par la présence d'hétérogénéités, ce problème bien connu des géophysiciens intervient dans de nombreux domaines, tels que la récupération du pétrole, le stockage de déchets, la propagation de polluants ou l'hydrogéologie. L'objectif de cette thèse est d'étudier ce phénomène sous les effets des forces capillaires et gravitaires, ainsi qu'identifier explicitement le tenseur de dispersion à l'aide d'une technique de changement d'échelle par l'homogénéisation. Les effets de forces capillaires et gravitaires sont pris en compte. Les simulations numériques permettent de valider la théorie
The study of the hydrodynamic phenomenon of dispersion in the aquifers is very often made complex by the presence of the heterogeneities. This well-known problem of the geophysicists intervenes in many fields such as the recovery of oil, the storages of waste, the propagation of pollutants or hydrogeology. The objective of this thesis is to study this phenomenon and to identify the tensor of dispersion explicitly using a technique of homogenisation. The gravity effects and capillary pressure are taken in consideration. Numerical simulations validate the results
APA, Harvard, Vancouver, ISO, and other styles
3

Skachkov, Sergey. "Modèle macroscopique de la dispersion diphasique en milieux poreux et fracturés." Thesis, Vandoeuvre-les-Nancy, INPL, 2006. http://www.theses.fr/2006INPL064N/document.

Full text
Abstract:
L’objectif est de construire le modèle homogénéisé d’un écoulement diphasique en milieu poreux et fracturé, en mettant en évidence le phénomène de mélange dynamique (mixing) entre les phases, provoqué par l’hétérogénéité du milieu. L’attention est concentrée sur l’influence de la capillarité. L’homogénéisation à double échelle a été appliquée. Le mixing se manifeste sous forme de la dispersion hydrodynamique et de l’advection renormalisée. Le tenseur de dispersion, déterminé à travers le problème cellulaire, est une fonction non linéaire de la saturation, vitesse d’écoulement, rapport de viscosité et du nombre capillaire. Pour les milieux fracturés, une méthode streamline configurations a été avancée pour le cas diphasique. Elle permet d’obtenir la dispersion et la perméabilité effective sous forme analytique pour des réseaux de fracture périodiques, ou semi-analytique pour des réseaux aléatoires. La simulation d’un déplacement diphasique à la base du nouveau modèle a été réalisée
The objective of the thesis is to develop the homogenized model of a two-phase flow through a porous and fractured medium by highlighting the dynamic mixing between the phases, caused by the medium heterogeneity. Attention is focused on the influence of the capillarity. The two-scale homogenization is applied. The mixing is manifested in form of the hydrodynamic dispersion and renormalized advection. The dispersion tensor, determined by the cell problem, is a nonlinear function of saturation, flow velocity, viscosity ratio and capillary number. For a fractured medium the method of streamline configurations was advanced for a two- phase case. This method enables to obtain the dispersion tensor and the effective permeability in analytical form for periodic fractured networks or in semi-analytical form for random networks. The simulation of two- phase displacement based on the new model is performed
APA, Harvard, Vancouver, ISO, and other styles
4

Morelon, Isabelle. "Dispersion d'une solution micellaire de tensio-actif au cours de sa migration en milieu poreux." Rueil-Malmaison : Paris : Institut français du pétrole ; diffusion Technip, 1986. http://catalogue.bnf.fr/ark:/12148/cb34874099m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hoshino, Taiki. "Dispersion relation of capillary waves on ionic liquids." 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Herbelin, Armando L. "Dispersion and gradients in flow injection /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/11548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Losserand, Sylvain. "Dispersion et temps de transit de globules rouges dans les capillaires et réseaux microcirculatoires." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY002.

Full text
Abstract:
Le sang est une suspension dense en globules rouges (GR, environ 50% du volume) qui sont des cellules très déformables, leur principal fonction est le transport de l'oxygène des poumons vers les organes. Cet échange gazeux dans les organes fait intervenir un réseau ramifié de capillaires sanguins où de nombreux phénomènes couplés créent un écoulement complexe (organisation des globules rouges dans l'écoulement, rhéologie, séparation de l'écoulement aux intersections). Un paramètre essentiel de la microcirculation est le temps de transit des GRs dans un organe, ce temps de transit est une limitation à la diffusion et à la disponibilité en oxygène et peut conduire à une désaturation non-optimal avant de quitter le réseau microcirculatoire pour rejoindre le système veineux. Suivant les propriétés mécaniques des GRs qui peuvent être modifiés par des pathologies et leur concentration, leur temps de transit peut varier dans de larges proportions, et peut ainsi être très dispersé autour de la valeur moyenne pour le même échantillon : certains GRs sont plus rapides que d'autres. Les mécanismes en jeu font intervenir la rhéologie du sang (la viscosité apparente varie en fonction du confinement des capillaires, de la rigidité des globules rouges) et la migration hydrodynamique des globules rouges due à l'interaction entre les GRs et les parois du vaisseaux. Ce phénomène de dispersion peut être qualitativement relié au phénomène connu de la dispersion de Taylor d'une solution dans un canal et est aussi connu dans le cas des suspensions colloïdales.Des simulations numériques dans l'équipe d'accueil ont montré que la dispersion moyenne de la vitesse de transit des GRs dans un réseau microcirculatoire était très sensible aux propriétés mécaniques des GRs et à leur dispersion transversale dans le réseau. Cette thèse propose ainsi d'explorer plusieurs aspects de la dispersion des globules rouges dans différentes situations modèles. Le premier chapitre sera dédié à l'étude de la migration transversale des globules rouges des parois vers le centre du canal en milieu très dilué, en effet ce phénomène joue un rôle très important dans la mise en place d'une couche de déplétion au niveau des parois. Le second chapitre sera dédié à l'étude de la dynamique de structuration observé dans les écoulements, l'idée est de mesure l'évolution du profil de concentration des globules rouges le long d'un canal rectiligne après une intersection en T. Le dernier chapitre s'intéressera à l'évolution d'un bolus de globules rouges dans un canal pseudo-2D rectiligne, ça dynamique permettre d’observer l'influence des propriétés mécaniques des globules rouges et de la concentration sur la dispersion des temps de transit
Blood is a dense suspension of red blood cells (RBCs, about 50% in volume) which are highly deformable cells whose function is oxygen transport from lungs to organs. This gas exchange function in organs involves flow in a dense and ramified capillary network where several coupled phenomena lead to a complex traffic flow (organisation of RBCs in flow, rheology, separation at bifurcations). An essential parameter of microcirculation is the transit time of RBCs in an organ, that can be a limitation to diffusion and disponibility of oxygen and lead to non-optimal desaturation before leaving the microvascular network to reach the veinous system. Depending on mechanical properties of RBCs that can be modified by pathologies, and their en concentration, their transit time can vary in large proportions, and also be quite dispersed around the mean value for the same sample : some RBCs are faster than others. The mechanisms involved are the rheology of blood (the apparent viscosity varies with confinement in capillaries and RBC rigidity), and the hydrodynamic migration dispersion of RBCs due to interactions between cells and with vessel walls. This phenomenon can be qualitatively related to the well known phenomenon of Taylor dispersion of a solute in a channel and is also known for colloidal suspensions.Numerical simulations in the host team have revealed that the dispersion of average transit velocities of RBCs in a microcirculatory network was very sensitive to the mechanical properties of cells, as well as their transverse spatial dispersion in the network. This thesis proposes to explore several aspects of RBC dispersion in different model situations. The first chapter will be dedicated to the study of the transverse migration of RBCs from the walls towards the center of the canal in a very diluted medium, in fact this phenomenon plays a very important role in the establishment of a depletion layer at the walls. The second chapter will be dedicated to the study of structuration dynamics observed in flows, the idea is to measure the evolution of the concentration profile of RBCs along a rectilinear canal after a T intersection. chapter will focus on the evolution of a bolus of RBCs in a rectilinear pseudo-2D channel, it dynamic to observe the influence of the mechanical properties of red blood cells and concentration on the dispersion of transit time
APA, Harvard, Vancouver, ISO, and other styles
8

Hamdan, Emad Aerospace Civil &amp Mechanical Engineering Australian Defence Force Academy UNSW. "Extended macroscopic dispersion model with applications to confined packed beds and capillary column inverse gas chromatography." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Aerospace, Civil and Mechanical Engineering, 2008. http://handle.unsw.edu.au/1959.4/38732.

Full text
Abstract:
Until present, many researchers relied on the conventional plug flow dispersion models to analyse the concentration profiles obtained from the tracer injection experiments to evaluate the dispersion coefficients in packed beds. The Fickian concept in the limit of long time duration is assumed to be applicable and it implies that the mean-square displacement of the tracer profile is constant with time and the concentration profile is Gaussian. There were very few studies on identifying the conditions under which this assumption is valid and delineate the range of applicability of the existing plug flow dispersion models. If the time scales of a tracer injection experiment are not sufficient for a tracer to traverse the bed radius and sample the velocity variations, this could give rise to persisting non-Fickian transients where the mean-square displacement of the tracer profile is not constant with time and the concentration profile deviates from the normal Gaussian distribution. These transients cannot be predicted by the conventional plug dispersion models. An extended axial non-Fickian macroscopic dispersion model is derived to describe the transient development of a solute tracer when injected into a fluid flowing through a cylindrical packed bed or empty tube and some non-Fickian effects in the dispersion process. The flow profile in beds packed with uniform particles exhibits radial non-uniformity due to the oscillatory variation in porosity because of the wall confinement (wall effect). Compared with the axial plug flow dispersion model, the extended model contains time-dependent coefficients such as the transient axial dispersion coefficient and higher order derivatives (higher than second order) of the cross-sectionally averaged concentration. Including them provides some insight on non-Fickian transport in the dispersion process. The model provides time criteria on the basis that the effelongitudinal dispersion coefficient in the packed bed reaches its asymptotic value and the non-Fickian transients will die out. Some experimental conditions in the literature were checked by these criteria and found to be either marginally satisfied, or not satisfied at all, which indicates that the Fickian concept is not valid. The model results for tracer dispersion in cylindrical packed beds show that the longitudinal dispersion coefficient converges to its asymptotic value on a time scale proportional to R2/(DT) where R is the column radius and (DT) is the area averaged lateral dispersion coefficient. The extended model encouraged study of the consequences of the additional dispersion terms in other applications such as the pulse spread in the field of capillary column inverse gas chromatography (CCIGC). CCIGC is used to evaluate the solute-polymer diffusion coefficient Dp and the partition coefficient K at infinite dilute conditions. The tube geometry in CCIGC is more complex than the conventional Taylor dispersion problem due to the polymer coating on the inside of the capillary wall. The extended CCIGC model presented in this study has advantages over the previous models by including the effects of Taylor dispersion and higher order derivatives of the pulse area-averaged concentration. Taylor dispersion effect causes more pulse spread in the longitudinal direction and by not including it in the CCIGC regression models may cause a significant error in the measured Dp values. The extended CCIGC model provides for the first time criteria on capillary dimensions for the transient coefficients (multiplying the second and higher order derivatives) to become constant and for the non-Fickian effects associated with the higher order derivatives to be neglected. Model results show that Taylor dispersion effect has a significant effect on the elution profiles at high values of Dp and/or low values of gas diffusion coefficients Dg and it can be used to increase the sensitivity range of the previous CCIGC models at extremely low and high Dp values.
APA, Harvard, Vancouver, ISO, and other styles
9

Mauret, Evelyne. "Mesures des pertes de pression et de la dispersion axiale dans les matelas fibreux : application au lavage des pâtes écrues en lits fixes épais." Grenoble INPG, 1995. http://www.theses.fr/1995INPG0089.

Full text
Abstract:
Le but de ce travail est de préciser les principaux paramètres conditionnant l'efficacité du lavage des pâtes écrues par déplacement. Une étude bibliographique a permis de montrer que l'efficacité du lavage d'un matelas fibreux dépendait essentiellement de sa consistance, de son épaisseur et de son état de structuration. L'état de structuration, lié à la floculation des fibres, ayant été peu étudié, nous nous sommes intéressés plus particulièrement à son influence. Des mesures de pertes de charge ont été effectuées pour évaluer la dégradation d'énergie subie par un fluide traversant un lit de fibres de viscose ou de pâte kraft écrue de résineux. La modélisation de ces pertes de pression à partir du modèle capillaire de Comiti et Renaud a montré les limites d'application de l'approche géométrique pour des matelas fibreux de porosités supérieures à 0,7. Un modèle particulaire fondé sur la notion d'écoulement autour d'objets immergés a donc été développé. Ce modèle représente précisément les pertes de pression dans les matelas fibreux pour des porosités supérieures à 0,84, quelle que soit la nature de l'écoulement: régime laminaire linéaire et non linéaire. En régime laminaire linéaire, il est applicable aux porosités supérieures à 0,69. Pour évaluer l'efficacité du lavage, des mesures de dispersion axiale d'un traceur ont été effectuées. Les résultats obtenus pour des lits de fibres de viscose ont souligné la spécificité du matelas fibreux. Ce sont des milieux très dispersifs pour lesquels la dispersion axiale se produit à une échelle très supérieure à celle de la particule. Les mesures effectuées sur des lits de pâte kraft écrue ainsi qu'une synthèse bibliographique ont permis de mieux cerner l'effet de l'état de structuration. A FAIBLE CONSISTANCE, LA PRESENCE DE FLOCS ENTRAINE UNE DIMINUTION DE L'EFFICACITE. A FORTE CONSISTANCE, LE PHENOMENE INVERSE EST CONSTATE. POUR LA PATE DEFLOCULEE, LA PERTE DE CHARGE SUBIE PAR LE FLUIDE EST TELLE QU'IL Y A CREATION DE PASSAGES PREFERENTIELS. LA PRESENCE DE FLOCS, ENTRAINANT UNE AUGMENTATION DE LA PERMEABILITE, REDUIT CES PASSAGES PREFERENTIELS ET LE PHENOMENE DE DISPERSION. LA LIMITE ENTRE CES DEUX ZONES CORRESPOND A UNE CONSISTANCE VOISINE DE 10%. CES DIFFERENCES CONFIRMENT, A POSTERIORI, LES DIFFERENCES OBSERVEES DANS LA CONDUITE DES LAVEURS INDUSTRIELS. CETTE IDENTIFICATION DES PHENOMENES MIS EN JEU DOIT PERMETTRE DE FIXER ULTERIEUREMENT LES CONDITIONS OPTIMALES POUR CHAQUE TYPE DE LAVEUR ET DE PATE TRAITEE
APA, Harvard, Vancouver, ISO, and other styles
10

Moreira, Bruna Juliana. "Avaliação da microextração líquido-líquido dispersiva para análise de oxibutinina e de N-desetiloxibutinina em urina por eletroforese capilar." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/60/60137/tde-11012013-110148/.

Full text
Abstract:
A microextração líquido-líquido dispersiva (DLLME) é uma técnica de preparo de amostra baseada no equilíbrio de distribuição do analito entre a fase doadora (amostra) e a fase aceptora (solvente orgânico) em um sistema ternário de solventes. Foi desenvolvida em 2006 por Rezaee e colaboradores para a determinação de hidrocarbonetos policíclicos aromáticos em amostras de água e por ser uma técnica muito recente,ainda é pouca explorada para o preparo de amostras biológicas. Portanto, o objetivo deste trabalho foi avaliar a DLLME como técnica para a extração da oxibutinina (OXY), fármaco usado para o tratamento da incontinência urinária, e da N-desetiloxibutinina (DEO), seu principal metabólito ativo, em amostras de urina. A análise da OXY e DEO foi realizada por eletroforese capilar (CE), utilizando um capilar de sílica fundida de 50 ?m de diâmetro interno, com comprimento efetivo de 36,5 cm, trietilamina 50 mmol/L, pH 3 como solução de eletrólito, tensão de30 kV, temperatura de 30°C e detecção em 204 nm. Nestas condições o tempo de migração da DEO foi de 7,12 min e da OXY foi de 7,42 min, com resolução de 3,1. O procedimento utilizado para preparo da amostra foi baseado na DLLME, utilizando 5 mL de urina,na qual foi adicionado 2,5% de NaCle cujo pH foi ajustado para 11. O solvente para a extração consistiu de uma mistura de 140 ?L de tetracloreto de carbono (solvente extrator) e 260 ?L de acetonitrila (solvente dispersor), que permaneceram em contato com a amostra pordois minutos. A avaliação das características de desempenho analítico apresentou faixa linear de 90-300 ng/mL para a OXY e 187,5-750ng/mL para a DEO. A recuperação absoluta foi de 71,4 e 60,9% e o limite de quantificação foi de 90 e 187,5 ng/mL para a OXY e DEO, respectivamente. Os estudos de precisão e exatidão apresentaram coeficientes de variação e erros relativos inferiores a 15% e as amostras foram estáveis nos estudos de estabilidade. Portanto, foi possível desenvolver um método rápido, fácil e confiável para analisar e quantificar a OXY e a DEO em amostras de urina por CE, usando a DLLME como técnica de preparo de amostra.
The dispersive liquid-liquid microextraction (DLLME) is a sample preparation technique based on the equilibrium distribution between an extraction solvent and a sample solution in a ternary solvent system. It was developed by Rezaee and co-workers in 2006 for the determination of polycyclic aromatic hydrocarbons in water samples. Until now, for being a very recent technique it was little explored for the analysis of drugs in biological fluids. Therefore, the aim of this work was to evaluate the DLLME as an extraction technique for oxybutynin (OXY), a drug used to treat urinary incontinence, and N-desethyloxybutynin (DEO), its main active metabolite in urine samples. The OXY and DEO\'s analysis was performed by capillary electrophoresis (CE) using a 50 ?m ID fused-silica capillary with an effective length of 36.5 cm with a photodiode array detector set at 204 nm. It made use of triethylamine 50 mmol/L pH 3 as background electrolyte, voltage of +30 kV and temperature of 30°C. Under these conditions the migration time were 7.12 minutes for DEO and 7.42 minutes for OXY, with a resolution of 3.1. The sample preparation procedure was based on DLLME and used 5 mL of urine samples whichionic strength was increased by the addition of 2.5% NaCland pH were adjusted to 11. The extraction mixture consisted of 140 ?L of carbon tetrachloride (extraction solvent) and 260 ?L of acetonitrile (disperser solvent), which remained in contact with the sample for two minutes. The analytical performance\'s evaluation presented linear range of 90-300 ng/mL for OXY and 187.5-750ng/mL for DEO. The absolute recovery were 71.4 and 60.9% and the limit of quantification were 90.0 and 187.5 ng/mL for OXY and DEO, respectively. The accuracy and precision studies showed coefficients of variation and errors below 15% and the samples were stable at stability studies. Therefore, it was possible to develop a fast, reliable and easy method to analyze and quantify OXY and DEO in urine samples by CE, using DLLME as a sample preparation technique.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Dispersion capillaire"

1

Ekwere J. Peters PhD PE. Advanced Petrophysics : Volume 2: Dispersion, Interfacial Phenomena/Wettability, Capillarity/Capillary Pressure, Relative Permeability. Live Oak Book Company, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Knutson, John H. Design of capillary wick pore-water samplers and their effects on solute travel time and dispersion. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Dispersion capillaire"

1

Texter, John. "Capillary Hydrodynamic Fractionation of Organic Nanopigment Dispersions." In ACS Symposium Series, 151–73. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0881.ch010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pinho, D., A. Pereira, R. Lima, T. Ishikawa, Y. Imai, and T. Yamaguchi. "Red Blood Cell Dispersion in 100 μm Glass Capillaries: The Temperature Effect." In IFMBE Proceedings, 1067–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14515-5_271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Novosadov, Victor S. "Phenomenology Modelling and Mechanism of Composition Structure Formation in Capillary Clearance during Dispersion." In MICC 90, 1119–23. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3676-1_216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grossman, Paul D. "Factors Affecting the Performance of Capillary Electrophoresis Separations: Joule Heating, Electroosmosis, and Zone Dispersion." In Capillary Electrophoresis, 3–43. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-12-304250-7.50006-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Taylor Dispersion in Sample Preconcentration Methods." In Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 1107–42. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Taylor Dispersion in Sample Preconcentration Methods." In Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, 1107–42. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953-46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khurana, Tarun, Rajiv Bharadwaj, David Huber, and Juan Santiago. "Taylor Dispersion in Sample Preconcentration Methods." In Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, Third Edition, 1085–120. CRC Press, 2007. http://dx.doi.org/10.1201/9780849333293.ch38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khurana, Tarun, Rajiv Bharadwaj, David Huber, and Juan Santiago. "Taylor Dispersion in Sample Preconcentration Methods." In Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, Third Edition, 1085–120. CRC Press, 2007. http://dx.doi.org/10.1201/9781420004953.ch38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kawakami, K., Y. Nishihara, and K. Hirano. "Applications of capillary electrophoresis for analysis of liposome dispersions." In Hydrocolloids, 305–10. Elsevier, 2000. http://dx.doi.org/10.1016/b978-044450178-3/50099-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dispersion capillaire"

1

Shim, Jaesool, Prashanta Dutta, and Cornelius F. Ivory. "Focusing of Proteins in a Horseshoe Microchannel." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67445.

Full text
Abstract:
Ampholyte based isoelectric focusing (IEF) simulation was conducted to study dispersion of proteins in a horseshoe microchannel. Four model proteins (pls = 6.49, 7.1, 7.93 and 8.6) are focused in a 1 cm long horseshoe channel under an electric field of 300 V/cm. The pH gradient is formed in the presence of 25 biprotic carrier ampholytes (ΔpK = 3.0) within a pH range of 6 to 9. The proteins are focused at 380 sec in a nominal electric field of 300 V/cm. Our numerical results show that the band dispersions of a protein are large during the marching stage, but the dispersions are significantly reduced when the double peaks start to merge. This rearrangement of spreading band is very unique compared to linear electrokinetic phenomena (capillary electrophoresis, zone electrophoresis or electroosmosis) and is independent of channel position and channel shape. Hence, one can perform IEF in complex geometries without incorporating hyperturns.
APA, Harvard, Vancouver, ISO, and other styles
2

Gelhausen, Marius G., Safa Kutup Kurt, and Norbert Kockmann. "Mixing and Heat Transfer in Helical Capillary Flow Reactors With Alternating Bends." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21779.

Full text
Abstract:
Capillary flow is often occurring in natural and technical systems. Due to small diameter channels, laminar flow is established, while heat transfer is high from large specific surface area. For chemical reactions, good mixing and a narrow residence time distribution are important for high selectivity and yield. To improve mixing and residence time distribution, several measures of bend flow, helical arrangements and curved capillaries are proposed in literature. This contribution describes the flow, residence time distribution, and its influence on chemical reactions in short helical, alternating reactor capillaries (SHARC). The influence of the number of bends between alternating coils on the residence time distribution is described for different capillary and coil diameter, coil length and flow rate in laminar regime. The residence time distribution is a good measure for axial mixing and dispersion, while the heat transfer is mainly affected by the flow rate. The SHARC device was built from polymer capillaries of fluorinated ethylene propylene (FEP, inner diameter of 0.38 and 0.75 mm) with high mechanical flexibility for bending and good chemical resistance. Despite of low heat conductivity of the wall material, volumetric heat transfer coefficients of more than 5 MW/m3K were measured in a water bath. A highly exothermic reaction with adiabatic temperature increase of more than 100 K could be operated without detecting reaction runaway.
APA, Harvard, Vancouver, ISO, and other styles
3

DelRio, Frank W., Maarten P. de Boer, Leslie M. Phinney, Chris J. Bourdon, and Martin L. Dunn. "Van der Waals and Capillary Adhesion of Microelectromechanical Systems." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15169.

Full text
Abstract:
Interfacial adhesion is an important factor in determining the performance and reliability of microelectromechanical systems (MEMS). Van der Waals dispersion forces are the dominant adhesion mechanism in the low relative humidity (RH) regime. At small roughness values, adhesion is mainly due to van der Waals dispersion forces acting across extensive non-contacting areas and is related to 1/Dave2, where Dave is the average surface separation. These contributions must be considered due to the close proximity of the surfaces, which is a result of the planar deposition technology. At large roughness values, van der Waals forces at contacting asperities become the dominating contributor to the adhesion. Capillary condensation of water has a significant effect on rough surface adhesion in the moderate to high RH regime. Above a threshold RH, which is a function of the surface roughness, the adhesion jumps due to meniscus formation at the interface and increases rapidly towards the upper limit of Γ=2 γcos θ=144 mJ/m2, where γ is the liquid surface energy and θ is the contact angle.
APA, Harvard, Vancouver, ISO, and other styles
4

Tatar, F., Lujun Zhang, J. Bastemeijer, P. Turmezei, J. Mollinger, and A. Bossche. "Technique for Plug Dispersion Compensation In Moving Field Capillary Electrophoresis Application." In 2006 5th IEEE Conference on Sensors. IEEE, 2006. http://dx.doi.org/10.1109/icsens.2007.355730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yhang, Yu-Chen, Qing Zhu, and Yuan Liu. "Simulating water dispersion in chinese absorbent paper with capillary tubes model." In SA'15: SIGGRAPH Asia 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2820926.2820947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gurupatham, Sathishkumar, Bhavin Dalal, Sai Nudurupati, Ian S. Fischer, Pushpendra Singh, and Daniel D. Joseph. "Modeling of Particles Dispersion on Liquid Surfaces." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30555.

Full text
Abstract:
When small particles (e.g., flour, pollen, etc.) come in contact with a liquid surface, they immediately disperse. The dispersion can occur so quickly that it appears explosive, especially for small particles on the surface of mobile liquids like water. This explosive-like dispersion is the consequence of capillary forces pulling particles into the interface causing them to accelerate to a relatively large velocity. The maximum velocity increases with decreasing particle size; for nanometer-sized particles (e.g., viruses and proteins), the velocity on an air-water interface can be as large as 47 m/s. We also show that particles oscillate at a relatively-high frequency about their floating equilibrium before coming to stop under viscous drag. The observed dispersion is a result of strong repulsive hydrodynamic forces that arise because of these oscillations.
APA, Harvard, Vancouver, ISO, and other styles
7

Pillapakkam, Shriram B., and Pushpendra Singh. "Dispersion of Particles on Liquid Surfaces." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64514.

Full text
Abstract:
In a recent study we have shown that when small particles, e.g., flour, pollen, glass, etc., contact an air-liquid interface, they disperse rapidly as if they were in an explosion. The rapid dispersion is due to the fact that the capillary force pulls particles into the interface causing them to accelerate to a large velocity. The vertical motion of a particle during its adsorption causes a radially-outward lateral (secondary) flow on the interface that causes nearby particles to move away. We present direct numerical simulation results for the adsorption of particles and show that the inertia of a particle plays an important role in its motion in the direction normal to a fluid-liquid interface. Although the importance of inertia diminishes with decreasing particle size, on an air-water interface the inertia continues to be important even when the size is as small as a few nanometers.
APA, Harvard, Vancouver, ISO, and other styles
8

Ajose, D., and K. K. Mohanty. "Compositional Upscaling in Heterogeneous Reservoirs: Effect of Gravity, Capillary Pressure, and Dispersion." In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/84363-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shameli, Seyed Mostafa, Caglar Elbuken, Carolyn L. Ren, and Janusz Pawliszyn. "Integration of a PDMS/SU-8/Quartz Microfluidic Chip With a Novel Macroporous Poly Dimethylsiloxane (PDMS) Membrane for Isoelectric Focusing of Proteins Using Whole-Channel Imaging Detection." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30805.

Full text
Abstract:
Capillary isoelectric focusing (CIEF) is a high-resolution capillary electrophoresis (CE) technique for separating zwitterionic biomolecules, such as proteins and peptides. In this method, by generating a stable pH gradient along the length of the capillary and under the influence of a constant electric field, samples can be separated according to their different isoelectric points (pI). For identifying the focused zones in CIEF, the whole column imaging detection (WCID) is more reliable than any other single point detection methods since it avoids the need of focused peak mobilization, presenting several advantages such as lower detection time, minimized peak dispersion and consequently higher resolution. Capillary-based IEF-WCID has been invented by Convergent Bioscience Inc. (iCE280 analyzer) for separation of proteins and biomarkers [1–2]. In the iCE280 analyzer, hollow fibers are glued to the capillary to separate electrolytes from the samples and a metal slit with a 65 μm opening is glued to the top of the capillary to improve detection sensitivity by blocking stray light. However, this method has several limitations because of the use of capillary such as low throughput, difficulty to be integrated with other separation modes and low detection sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, L., A. Bossche, and R. Lindken. "Plug dispersion compensation for moving field capillary electrophoresis by low voltage electroosmotic pump." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography