Dissertations / Theses on the topic 'Dissertations, UMMS; Homeodomain Proteins; DNA-Binding Proteins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Dissertations, UMMS; Homeodomain Proteins; DNA-Binding Proteins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Chu, Stephanie W. "Expanding the Known DNA-binding Specificity of Homeodomains for Utility in Customizable Sequence-specific Nucleases: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/684.

Full text
Abstract:
Homeodomains (HDs) are a large family of DNA-binding domains contained in transcription factors that are most notable for regulating body development and patterning in metazoans. HDs consist of three alpha helices preceded by an N- terminal arm, where the third helix (the recognition helix) and the N-terminal arm are responsible for defining DNA-binding specificity. Here we attempted to engineer the HDs by fully randomizing positions in the recognition helix to specify each of the 64 possible 3’ triplet sites (i.e. TAANNN). We recovered HD variants that preferentially recognize or are compatible with 44 of the possible sites, a dramatic increase from the previously observed range of specificities. Many of these HD variants contain combinations of novel specificity determinants that are uncommon or absent in extant HDs, where these determinants can be grafted into alternate HD backbones with an accompanying alteration in their specificity. The identified determinates expand our understanding of HD recognition, allowing for the creation of more explicit recognition models for this family. Additionally, we demonstrate that HDs can recognize a broader range of DNA sequences than anticipated, thus raising questions about the fitness barrier that restricts the evolution HD-DNA recognition in nature. Finally, these new HD variants have utility as DNA-binding domains to direct targeting of customizable sequence-specific nuclease as demonstrated by site-specific lesions created in zebrafish. Thus HDs can guide sequence-specific enzymatic function precisely and predictably within a complex genome when used in engineered artificial enzymes.
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Stephanie W. "Expanding the Known DNA-binding Specificity of Homeodomains for Utility in Customizable Sequence-specific Nucleases: A Dissertation." eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/684.

Full text
Abstract:
Homeodomains (HDs) are a large family of DNA-binding domains contained in transcription factors that are most notable for regulating body development and patterning in metazoans. HDs consist of three alpha helices preceded by an N- terminal arm, where the third helix (the recognition helix) and the N-terminal arm are responsible for defining DNA-binding specificity. Here we attempted to engineer the HDs by fully randomizing positions in the recognition helix to specify each of the 64 possible 3’ triplet sites (i.e. TAANNN). We recovered HD variants that preferentially recognize or are compatible with 44 of the possible sites, a dramatic increase from the previously observed range of specificities. Many of these HD variants contain combinations of novel specificity determinants that are uncommon or absent in extant HDs, where these determinants can be grafted into alternate HD backbones with an accompanying alteration in their specificity. The identified determinates expand our understanding of HD recognition, allowing for the creation of more explicit recognition models for this family. Additionally, we demonstrate that HDs can recognize a broader range of DNA sequences than anticipated, thus raising questions about the fitness barrier that restricts the evolution HD-DNA recognition in nature. Finally, these new HD variants have utility as DNA-binding domains to direct targeting of customizable sequence-specific nuclease as demonstrated by site-specific lesions created in zebrafish. Thus HDs can guide sequence-specific enzymatic function precisely and predictably within a complex genome when used in engineered artificial enzymes.
APA, Harvard, Vancouver, ISO, and other styles
3

Duffy, Caroline M. "Structural Mechanisms of the Sliding Clamp and Sliding Clamp Loader: Insights into Disease and Function: A Dissertation." eScholarship@UMMS, 2007. http://escholarship.umassmed.edu/gsbs_diss/844.

Full text
Abstract:
Chromosomal replication is an essential process in all life. This dissertation highlights regulatory roles for two critical protein complexes at the heart of the replication fork: 1) the sliding clamp, the major polymerase processivity factor, and 2) the sliding clamp loader, a spiral-shaped AAA+ ATPase, which loads the clamp onto DNA. The clamp is a promiscuous binding protein that interacts with at least 100 binding partners to orchestrate many processes on DNA, but spatiotemporal regulation of these binding interactions is unknown. Remarkably, a recent disease-causing mutant of the sliding clamp showed specific defects in DNA repair pathways. We aimed to use this mutant as a tool to understand the binding specificity of clamp interactions, and investigate the disease further. We solved three structures of the mutant, and biochemically showed perturbation of partnerbinding for some, but not all, ligands. Using a fission yeast model, we showed that mutant cells are sensitive to select DNA damaging agents. These data revealed significant flexibility within the binding site, which likely regulates partner binding. Before the clamp can act on DNA, the sliding clamp loader places the clamp onto DNA at primer/template (p/t) junctions. The clamp loader reaction couples p/t binding and subsequent ATP hydrolysis to clamp closure. Here we show that composition (RNA vs. DNA) of the primer strand affects clamp loader binding, and that the order of ATP hydrolysis around the spiral is likely sequential. These studies highlight additional details into the clamp loader mechanism, which further elucidate general mechanisms of AAA+ machinery.
APA, Harvard, Vancouver, ISO, and other styles
4

Duffy, Caroline M. "Structural Mechanisms of the Sliding Clamp and Sliding Clamp Loader: Insights into Disease and Function: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/844.

Full text
Abstract:
Chromosomal replication is an essential process in all life. This dissertation highlights regulatory roles for two critical protein complexes at the heart of the replication fork: 1) the sliding clamp, the major polymerase processivity factor, and 2) the sliding clamp loader, a spiral-shaped AAA+ ATPase, which loads the clamp onto DNA. The clamp is a promiscuous binding protein that interacts with at least 100 binding partners to orchestrate many processes on DNA, but spatiotemporal regulation of these binding interactions is unknown. Remarkably, a recent disease-causing mutant of the sliding clamp showed specific defects in DNA repair pathways. We aimed to use this mutant as a tool to understand the binding specificity of clamp interactions, and investigate the disease further. We solved three structures of the mutant, and biochemically showed perturbation of partnerbinding for some, but not all, ligands. Using a fission yeast model, we showed that mutant cells are sensitive to select DNA damaging agents. These data revealed significant flexibility within the binding site, which likely regulates partner binding. Before the clamp can act on DNA, the sliding clamp loader places the clamp onto DNA at primer/template (p/t) junctions. The clamp loader reaction couples p/t binding and subsequent ATP hydrolysis to clamp closure. Here we show that composition (RNA vs. DNA) of the primer strand affects clamp loader binding, and that the order of ATP hydrolysis around the spiral is likely sequential. These studies highlight additional details into the clamp loader mechanism, which further elucidate general mechanisms of AAA+ machinery.
APA, Harvard, Vancouver, ISO, and other styles
5

Casey, Diane M. "DC3, a Calcium-Binding Protein Important for Assembly of the Chlamydomonas Outer Dynein Arm: a Dissertation." eScholarship@UMMS, 2005. http://escholarship.umassmed.edu/gsbs_diss/156.

Full text
Abstract:
The outer dynein arm-docking complex (ODA-DC) specifies the outer dynein arm-binding site on the flagellar axoneme. The ODA-DC of Chlamydomonas contains equimolar amounts of three proteins termed DC1, DC2, and DC3 (Takada et al., 2002). DC1 and DC2 are predicted to be coiled-coil proteins, and are encoded by ODA3 and ODA1, respectively (Koutoulis et al., 1997; Takada et al., 2002). Prior to this work, nothing was known about DC3. To fully understand the function(s) of the ODA-DC, a detailed analysis of each of its component parts is necessary. To that end, this dissertation describes the characterization of the smallest subunit, DC3. In Chapter II, I report the isolation and sequencing of genomic and full-length cDNA clones encoding DC3. The sequence predicts a 21,341 D protein with four EF hands that is a member of the CTER (Calmodulin, Troponin C, Essential and Regulatory myosin light chains) group and is most closely related to a predicted protein from Plasmodium. The DC3 gene, termed ODA14, is intronless. Chlamydomonas mutants that lack DC3 exhibit slow, jerky swimming due to loss of some but not all, outer dynein arms. Some outer doublet microtubules without arms had a "partial" docking complex, indicating that DC1 and DC2 can assemble in the absence of DC3. In contrast, DC3 cannot assemble in the absence of DC1 or DC2. Transformation of a DC3-deletion strain with the wild-type DC3 gene rescued both the motility phenotype and the structural defect, whereas a mutated DC3 gene was incompetent to rescue. The results indicate that DC3 is important for both outer arm and ODA-DC assembly. As mentioned above, DC3 has four EF-hands: two fit the consensus pattern for calcium binding and one contains two cysteine residues within its binding loop. To determine if the consensus EF-hands are functional, I purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of DTT and Mg2+. As reported in Chapter III, the protein bound one calcium ion with an affinity (Kd) of ~1 x 10-5 M. Calcium binding was observed only in the presence of DTT and thus is redox sensitive. DC3 also bound Mg2+ at physiological concentrations, but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium-binding activity of the bacterially expressed protein. To investigate the role of the EF hands in vivo, I transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the E to Q mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains obscure. In Chapter IV, I report the initial characterization of a DC3 insertional mutant having a phenotype intermediate between that of the DC3-deletion strain and wild type. Furthermore, I suggest future experiments that may help elucidate the specific role of DC3 in outer arm assembly and ODA-DC function. Lastly, I speculate that the ODA-DC may play a role in flagellar regeneration.
APA, Harvard, Vancouver, ISO, and other styles
6

Casey, Diane M. "DC3, a Calcium-Binding Protein Important for Assembly of the Chlamydomonas Outer Dynein Arm: a Dissertation." eScholarship@UMMS, 2003. https://escholarship.umassmed.edu/gsbs_diss/156.

Full text
Abstract:
The outer dynein arm-docking complex (ODA-DC) specifies the outer dynein arm-binding site on the flagellar axoneme. The ODA-DC of Chlamydomonas contains equimolar amounts of three proteins termed DC1, DC2, and DC3 (Takada et al., 2002). DC1 and DC2 are predicted to be coiled-coil proteins, and are encoded by ODA3 and ODA1, respectively (Koutoulis et al., 1997; Takada et al., 2002). Prior to this work, nothing was known about DC3. To fully understand the function(s) of the ODA-DC, a detailed analysis of each of its component parts is necessary. To that end, this dissertation describes the characterization of the smallest subunit, DC3. In Chapter II, I report the isolation and sequencing of genomic and full-length cDNA clones encoding DC3. The sequence predicts a 21,341 D protein with four EF hands that is a member of the CTER (Calmodulin, Troponin C, Essential and Regulatory myosin light chains) group and is most closely related to a predicted protein from Plasmodium. The DC3 gene, termed ODA14, is intronless. Chlamydomonas mutants that lack DC3 exhibit slow, jerky swimming due to loss of some but not all, outer dynein arms. Some outer doublet microtubules without arms had a "partial" docking complex, indicating that DC1 and DC2 can assemble in the absence of DC3. In contrast, DC3 cannot assemble in the absence of DC1 or DC2. Transformation of a DC3-deletion strain with the wild-type DC3 gene rescued both the motility phenotype and the structural defect, whereas a mutated DC3 gene was incompetent to rescue. The results indicate that DC3 is important for both outer arm and ODA-DC assembly. As mentioned above, DC3 has four EF-hands: two fit the consensus pattern for calcium binding and one contains two cysteine residues within its binding loop. To determine if the consensus EF-hands are functional, I purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of DTT and Mg2+. As reported in Chapter III, the protein bound one calcium ion with an affinity (Kd) of ~1 x 10-5 M. Calcium binding was observed only in the presence of DTT and thus is redox sensitive. DC3 also bound Mg2+ at physiological concentrations, but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium-binding activity of the bacterially expressed protein. To investigate the role of the EF hands in vivo, I transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the E to Q mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains obscure. In Chapter IV, I report the initial characterization of a DC3 insertional mutant having a phenotype intermediate between that of the DC3-deletion strain and wild type. Furthermore, I suggest future experiments that may help elucidate the specific role of DC3 in outer arm assembly and ODA-DC function. Lastly, I speculate that the ODA-DC may play a role in flagellar regeneration.
APA, Harvard, Vancouver, ISO, and other styles
7

Doughty, Tyler W. "Levels of YCG1 Limit Condensin Function during the Cell Cycle: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/861.

Full text
Abstract:
For nearly five decades, the simple eukaryote Saccharomyces cerevisiae has been used as a model for understanding the eukaryotic cell cycle. One vein of this research has focused on understanding how chromosome structure is regulated in relation to the cell cycle. This work characterizes a new mechanism that modulates the chromatin organizing condensin complex, in hopes of furthering the understanding of chromosome structure regulation in eukaryotes. During mitosis, chromosomes are condensed to facilitate their segregation through a process mediated by the condensin complex. Upon interphase onset, condensation is reversed, allowing for efficient transcription and replication of chromosomes. This work demonstrates that Ycg1, the Cap-G subunit of budding yeast condensin, is cell-cycle regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. The cyclical expression of Ycg1 is unique amongst condensin subunits, and is established by a combination of cell cycle-regulated transcription and constitutive proteasomal degradation. Interestingly, when cyclical expression of Ycg1 is disrupted, condensin formation and chromosome association increases, and cells exhibit a delay in cell-cycle entry. These results demonstrate that Ycg1 levels limit condensin function, and suggest that regulating the expression of an individual condensin subunit helps to coordinate chromosome conformation with the cell cycle. These data, along with recent corroborating results in Drosophila melanogaster suggest that condensin regulation through limiting the expression of a single condensin subunit may be broadly conserved amongst eukaryotes.
APA, Harvard, Vancouver, ISO, and other styles
8

Doughty, Tyler W. "Levels of YCG1 Limit Condensin Function during the Cell Cycle: A Dissertation." eScholarship@UMMS, 2008. http://escholarship.umassmed.edu/gsbs_diss/861.

Full text
Abstract:
For nearly five decades, the simple eukaryote Saccharomyces cerevisiae has been used as a model for understanding the eukaryotic cell cycle. One vein of this research has focused on understanding how chromosome structure is regulated in relation to the cell cycle. This work characterizes a new mechanism that modulates the chromatin organizing condensin complex, in hopes of furthering the understanding of chromosome structure regulation in eukaryotes. During mitosis, chromosomes are condensed to facilitate their segregation through a process mediated by the condensin complex. Upon interphase onset, condensation is reversed, allowing for efficient transcription and replication of chromosomes. This work demonstrates that Ycg1, the Cap-G subunit of budding yeast condensin, is cell-cycle regulated with levels peaking in mitosis and decreasing as cells enter G1 phase. The cyclical expression of Ycg1 is unique amongst condensin subunits, and is established by a combination of cell cycle-regulated transcription and constitutive proteasomal degradation. Interestingly, when cyclical expression of Ycg1 is disrupted, condensin formation and chromosome association increases, and cells exhibit a delay in cell-cycle entry. These results demonstrate that Ycg1 levels limit condensin function, and suggest that regulating the expression of an individual condensin subunit helps to coordinate chromosome conformation with the cell cycle. These data, along with recent corroborating results in Drosophila melanogaster suggest that condensin regulation through limiting the expression of a single condensin subunit may be broadly conserved amongst eukaryotes.
APA, Harvard, Vancouver, ISO, and other styles
9

Hilbert, Brendan J. "Structure-based Targeting of Transcriptional Regulatory Complexes Implicated in Human Disease: A Dissertation." eScholarship@UMMS, 2007. http://escholarship.umassmed.edu/gsbs_diss/681.

Full text
Abstract:
Transcriptional regulatory complexes control gene expression patterns and permit cellular responses to stimuli. Deregulation of complex components upsets target gene expression and can lead to disease. This dissertation examines proteins involved in two distinct regulatory complexes: C-terminal binding protein (CtBP) 1 and 2, and Interferon Regulatory Factors (IRF) 3 and 5. Although critical in developmental processes and injury response, CtBP transcriptional repression of cell adhesion proteins, pro-apoptotic factors, and tumor suppressors has been linked to the pathogenesis of multiple forms of cancer. IRFs function in the immune system and have been implicated in autoimmune disorders. Understanding IRF activation is critical to treating pathogens that target IRF function or for future autoimmune disease therapies. We attempted to determine crystal structures that would provide the details of IRF activation, allowing insight into mechanisms of pathogen immune evasion and autoimmune disorders. Although no new structures were solved, we have optimized expression of C-terminal IRF-3 / co-activator complexes, as well as full-length IRF3 and IRF5 constructs. Modifying the constructs coupled with new crystal screening will soon result in structures which detail IRF activation, advancing understanding of the roles of IRF family members in disease. Through structural and biochemical characterization we sought to identify and develop inhibitors of CtBP transcriptional regulatory functions. High concentrations of CtBP substrate, 4-Methylthio 2-oxobutyric acid (MTOB), have been shown in different cancer models to interfere with CtBP transcriptional regulation. We began the process of structure based drug design by solving crystal structures of both CtBP family members bound to MTOB. The resulting models identified critical ligand contacts and unique active site features, which were utilized in inhibitor design. Potential CtBP inhibitors were identified and co-crystallized with CtBP1. One such compound binds to CtBP more than 1000 times more tightly than does MTOB, as a result of our structure-based inclusion of a phenyl ring and a novel pattern of hydrogen bonding. This molecule provides a starting point for the development of compounds that will both bind more tightly and interfere with transcriptional signaling as we progress towards pharmacologically targeting CtBP as a therapy for specific cancers.
APA, Harvard, Vancouver, ISO, and other styles
10

Hilbert, Brendan J. "Structure-based Targeting of Transcriptional Regulatory Complexes Implicated in Human Disease: A Dissertation." eScholarship@UMMS, 2013. https://escholarship.umassmed.edu/gsbs_diss/681.

Full text
Abstract:
Transcriptional regulatory complexes control gene expression patterns and permit cellular responses to stimuli. Deregulation of complex components upsets target gene expression and can lead to disease. This dissertation examines proteins involved in two distinct regulatory complexes: C-terminal binding protein (CtBP) 1 and 2, and Interferon Regulatory Factors (IRF) 3 and 5. Although critical in developmental processes and injury response, CtBP transcriptional repression of cell adhesion proteins, pro-apoptotic factors, and tumor suppressors has been linked to the pathogenesis of multiple forms of cancer. IRFs function in the immune system and have been implicated in autoimmune disorders. Understanding IRF activation is critical to treating pathogens that target IRF function or for future autoimmune disease therapies. We attempted to determine crystal structures that would provide the details of IRF activation, allowing insight into mechanisms of pathogen immune evasion and autoimmune disorders. Although no new structures were solved, we have optimized expression of C-terminal IRF-3 / co-activator complexes, as well as full-length IRF3 and IRF5 constructs. Modifying the constructs coupled with new crystal screening will soon result in structures which detail IRF activation, advancing understanding of the roles of IRF family members in disease. Through structural and biochemical characterization we sought to identify and develop inhibitors of CtBP transcriptional regulatory functions. High concentrations of CtBP substrate, 4-Methylthio 2-oxobutyric acid (MTOB), have been shown in different cancer models to interfere with CtBP transcriptional regulation. We began the process of structure based drug design by solving crystal structures of both CtBP family members bound to MTOB. The resulting models identified critical ligand contacts and unique active site features, which were utilized in inhibitor design. Potential CtBP inhibitors were identified and co-crystallized with CtBP1. One such compound binds to CtBP more than 1000 times more tightly than does MTOB, as a result of our structure-based inclusion of a phenyl ring and a novel pattern of hydrogen bonding. This molecule provides a starting point for the development of compounds that will both bind more tightly and interfere with transcriptional signaling as we progress towards pharmacologically targeting CtBP as a therapy for specific cancers.
APA, Harvard, Vancouver, ISO, and other styles
11

Seth, Alpna. "Functional Analysis of the c-MYC Transactivation Domain: A Dissertation." eScholarship@UMMS, 1992. https://escholarship.umassmed.edu/gsbs_diss/315.

Full text
Abstract:
Many polypeptide growth factors act by binding to cell surface receptors that have intrinsic tyrosine kinase activity. Binding of these growth factors to their cognate receptors results in the initiation of mitogenic signals which then get transduced to the interior of the cell. A critical target for extracellular signals is the nucleus. A plethora of recent evidence indicates that extracellular signals can affect nuclear gene expression by modulating transcription factor activity. In this study, I have determined that the transactivation domain of c-Myc (protein product of the c-myc proto-oncogene) is a direct target of mitogen-activated signaling pathways involving protein kinases. Further, my study demonstrates that transactivation of gene expression by c-Myc is regulated as a function of the cell cycle. c-Myc is a sequence-specific DNA binding protein that forms leucine zipper complexes and can act as a transcription factor. Although, significant progress has been made in understanding the cellular properties of c-Myc, the precise molecular mechanism of c-Myc function in oncogenesis and in normal cell growth is not known. I have focused my attention on the property of c-Myc to function as a sequence-specific transcription factor. In my studies, I have employed a fusion protein strategy, where the transactivation domain of the transcription factor c-Myc is fused to the DNA binding domain and nuclear localization signal of the yeast transcription factor GAL4. This fusion protein was expressed together with a plasmid consisting of specific GAL4 binding sites cloned upstream of a minimal E1b promoter and a reporter gene. The activity of the c-Myc transactivation domain was measured as reporter gene activity in cell extracts. This experimental approach enabled me to directly monitor the activity of the c-Myc transactivation domain. Results listed in Chapter II demonstrate that the transactivation domain of c-Myc at Ser-62 is a target of regulation by mitogen-stimulated signaling pathways. Furthermore, I have determined that a mitogen activated protein kinase, p41mapk, can phosphorylate the c-Myc transactivation domain at Ser-62. Phosphorylation at this site results in a marked increase in transactivation of gene expression. A point mutation at the MAP kinase phosphorylation site (Ser-62) causes a decrease in transactivation. c-Myc expression is altered in many types of cancer cells, strongly implicating c-myc as a critical gene in cell growth control. The molecular mechanisms by which c-Myc regulates cellular proliferation are not understood. For instance, it is not clear where in the cell cycle c-Myc functions and what regulates its activity. In exponentially growing cells, the expression levels of c-Myc remain unchanged as the cells progress through the cell cycle. The function of c-Myc may therefore be regulated by a mechanism involving a post-translational modification, such as phosphorylation. Results described in chapter IV demonstrate that the level of c-Myc mediated transactivation oscillates as cells progress through the cell cycle and was greatly increased during the S to G2/M transition. Furthermore, mutation of the phosphorylation site Ser-62 in the c-Myc transactivation domain diminishes this effect, suggesting a functional role for this phosphorylation site in the cell cycle-specific regulation of c-Myc activity. Taken together, my dissertation study reveals a molecular mechanism for the regulation of nuclear gene expression in response to mitogenic stimuli.
APA, Harvard, Vancouver, ISO, and other styles
12

Elewa, Ahmed M. "POS-1 Regulation of Endo-mesoderm Identity in C. elegans: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/711.

Full text
Abstract:
How do embryos develop with such poise from a single zygote to multiple cells with different identities, and yet survive? At the four-cell stage of the C. elegans embryo, only the blastomere EMS adopts the endo-mesoderm identity. This fate requires SKN-1, the master regulator of endoderm and mesoderm differentiation. However, in the absence of the RNA binding protein POS-1, EMS fails to fulfill its fate despite the presence of SKN-1. pos-1(-) embryos die gutless. Conversely, the RNA binding protein MEX-5 prevents ectoderm blastomeres from adopting the endo-mesoderm identity by repressing SKN-1. mex-5(-) embryos die with excess muscle at the expense of skin and neurons. Through forward and reverse genetics, I found that genes gld-3/Bicaudal C, cytoplasmic adenylase gld-2, cye-1/Cyclin E, glp-1/Notch and the novel gene neg-1 are suppressors that restore gut development despite the absence of pos-1. Both POS-1 and MEX-5 bind the 3’UTR of neg-1 mRNA and its poly(A) tail requires GLD-3/2 for elongation. Moreover, neg-1 requires MEX-5 for its expression in anterior ectoderm blastomeres and is repressed in EMS by POS-1. Most neg-1(-) embryos die with defects in anterior ectoderm development where the mesoderm transcription factor pha-4 becomes ectopically expressed. This lethality is reduced by the concomitant loss of med- 1, a key mesoderm-promoting transcription factor. Thus the endo-mesoderm identity of EMS is determined by the presence of SKN- 1 and the POS-1 repression of neg-1, whose expression is promoted by MEX-5. Together they promote the anterior ectoderm identity by repressing mesoderm differentiation. Such checks and balances ensure the vital plurality of cellular identity without the lethal tyranny of a single fate.
APA, Harvard, Vancouver, ISO, and other styles
13

Elewa, Ahmed M. "POS-1 Regulation of Endo-mesoderm Identity in C. elegans: A Dissertation." eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/711.

Full text
Abstract:
How do embryos develop with such poise from a single zygote to multiple cells with different identities, and yet survive? At the four-cell stage of the C. elegans embryo, only the blastomere EMS adopts the endo-mesoderm identity. This fate requires SKN-1, the master regulator of endoderm and mesoderm differentiation. However, in the absence of the RNA binding protein POS-1, EMS fails to fulfill its fate despite the presence of SKN-1. pos-1(-) embryos die gutless. Conversely, the RNA binding protein MEX-5 prevents ectoderm blastomeres from adopting the endo-mesoderm identity by repressing SKN-1. mex-5(-) embryos die with excess muscle at the expense of skin and neurons. Through forward and reverse genetics, I found that genes gld-3/Bicaudal C, cytoplasmic adenylase gld-2, cye-1/Cyclin E, glp-1/Notch and the novel gene neg-1 are suppressors that restore gut development despite the absence of pos-1. Both POS-1 and MEX-5 bind the 3’UTR of neg-1 mRNA and its poly(A) tail requires GLD-3/2 for elongation. Moreover, neg-1 requires MEX-5 for its expression in anterior ectoderm blastomeres and is repressed in EMS by POS-1. Most neg-1(-) embryos die with defects in anterior ectoderm development where the mesoderm transcription factor pha-4 becomes ectopically expressed. This lethality is reduced by the concomitant loss of med- 1, a key mesoderm-promoting transcription factor. Thus the endo-mesoderm identity of EMS is determined by the presence of SKN- 1 and the POS-1 repression of neg-1, whose expression is promoted by MEX-5. Together they promote the anterior ectoderm identity by repressing mesoderm differentiation. Such checks and balances ensure the vital plurality of cellular identity without the lethal tyranny of a single fate.
APA, Harvard, Vancouver, ISO, and other styles
14

Cheng, Wei. "From Neurodegeneration to Infertility and Back - Exploring Functions of Two Genes: ARMC4 and TARDBP: A Dissertation." eScholarship@UMMS, 2014. http://escholarship.umassmed.edu/gsbs_diss/695.

Full text
Abstract:
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset progressive neurodegenerative disease that causes degeneration in both upper and lower motor neurons. ALS progresses relentlessly after the onset of the disease, with most patients die within 3-5 years of diagnosis, largely due to respiratory failure. Since SOD1 became the first gene whose mutations were associated with ALS in 1993, more than 17 ALS causative genes have been identified. Among them, TAR DNA-binding protein (TARDBP) lies in the central of ALS pathology mechanism study, because TDP43 proteinopathy is observed not only in familial ALS cases carrying TARDBP mutations, but also in most of the sporadic ALS cases, which account for 90% of the whole ALS population. Several TDP43 overexpression mouse models have been successfully generated to study the gain-of-toxicity mechanism of TDP43 in ALS development, while the investigation of loss-of-function mechanism which could also contribute to ALS still awaits a proper mouse model. The major difficulty in generating TARDBP knock out mouse model lies in the fact that TARDBP is a development essential gene and complete depletion of TDP43 function causes embryonic lethality. In chapter I, I reviewed the recent advances in ALS study. Emphasis was given to ALS mouse models, especially TARDBP ALS mouse model. In Chapter II, I made a Tet-responsive construct that contains mCherry, a fluorescent protein, as an indicator for the expression of the artificial miRNA (amiTDP) residing in the 3’UTR of mCherry and targeting TARDBP. The construct was tested in NSC34 cells and TRE-mCherry-amiTDP43 transgenic mouse was generated with this construct. Crossing TRE-mCherry-amiTDP43 mouse with mPrp-tTA mouse, mCherry expression was successfully induced in mouse forebrain and cerebellum, but not in other tissues including spinal cord. By quantitative real-time PCR, amiTDP43 expression was confirmed to be coupled with mCherry expression. Fluorescent immunostaining revealed that mCherry was expressed in neurons, but not in astrocytes or microglia cells, and that in mCherry positive cells, TDP43 was significantly knocked down. Results from Nissl staining and GFAP immunostaining suggested that decrease of TDP43 in forebrain neuron only was not sufficient to cause neurodegeneration and neuron loss. In chapter III, I investigated the function of Armadillo Containing Protein 4 (ARMC4), which was originally considered ALS causative gene. Our study of the function of CG5155, the possible homolog of ARMC4 in Drosophila, indicated that CG5155 is a male fertility gene that is involved in spermatogenesis. Therefore, we have named this gene Gudu. The transcript of Gudu is highly enriched in adult testes. Knockdown of Gudu by a ubiquitous driver leads to defects in the formation of the individualization complex that is required for spermatid maturation, thereby impairing spermatogenesis. Furthermore, testis-specific knockdown of Gudu by crossing the RNAi lines with Bam-Gal4 driver is sufficient to cause the infertility and defective spermatogenesis. Since Gudu is highly homologous to vertebrate ARMC4, also an Armadillo-repeat-containing protein enriched in testes, our results suggest that Gudu and ARMC4 is a subfamily of Armadillo-repeat containing proteins with an evolutionarily conserved function in spermatogenesis.
APA, Harvard, Vancouver, ISO, and other styles
15

Mackness, Brian C. "The Identification and Targeting of Partially-Folded Conformations on the Folding Free-Energy Landscapes of ALS-Linked Proteins for Therapeutic Intervention: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/826.

Full text
Abstract:
The hallmark feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the accumulation of cytoplasmic inclusions of key disease-linked proteins. Two of these proteins, TDP-43 and SOD1, represent a significant proportion of sporadic and familial ALS cases, respectively. The population of potentially aggregation-prone partially-folded states on the folding free-energy landscape may serve as a common mechanism for ALS pathogenesis. A detailed biophysical understanding of the folding and misfolding energy landscapes of TDP-43 and SOD1 can provide critical insights into the design of novel therapeutics to delay onset and progression in ALS. Equilibrium unfolding studies on the RNA recognition motif (RRM) domains of TDP-43 revealed the population of a stable RRM intermediate in RRM2, with residual structure localized to the N-terminal half of the domain. Other RRM domains from FUS/TLS and hnRNP A1 similarly populate RRM intermediates, suggesting a possible connection with disease. Mutations, which enhance the population of the RRM2 intermediate, could serve as tools for deciphering the functional and misfolding roles of this partially-folded state in disease models, leading to the development of new biomarkers to track ALS progression. ALS mutations in SOD1 have been shown to destabilize the stable homodimer to result in increased populations of the monomeric and unfolded forms of SOD1. Mechanistic insights into the misfolding of SOD1 demonstrated that the unfolded state is a key species in the initiation and propagation of aggregation, suggesting that limiting these populations may provide therapeutic benefit to ALS patients. An in vitro time-resolved Förster Resonance Energy Transfer assay to screen small molecules that stabilize the native state of SOD1 has identified several lead compounds, providing a pathway to new therapeutics to treat ALS.
APA, Harvard, Vancouver, ISO, and other styles
16

Mackness, Brian C. "The Identification and Targeting of Partially-Folded Conformations on the Folding Free-Energy Landscapes of ALS-Linked Proteins for Therapeutic Intervention: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/826.

Full text
Abstract:
The hallmark feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the accumulation of cytoplasmic inclusions of key disease-linked proteins. Two of these proteins, TDP-43 and SOD1, represent a significant proportion of sporadic and familial ALS cases, respectively. The population of potentially aggregation-prone partially-folded states on the folding free-energy landscape may serve as a common mechanism for ALS pathogenesis. A detailed biophysical understanding of the folding and misfolding energy landscapes of TDP-43 and SOD1 can provide critical insights into the design of novel therapeutics to delay onset and progression in ALS. Equilibrium unfolding studies on the RNA recognition motif (RRM) domains of TDP-43 revealed the population of a stable RRM intermediate in RRM2, with residual structure localized to the N-terminal half of the domain. Other RRM domains from FUS/TLS and hnRNP A1 similarly populate RRM intermediates, suggesting a possible connection with disease. Mutations, which enhance the population of the RRM2 intermediate, could serve as tools for deciphering the functional and misfolding roles of this partially-folded state in disease models, leading to the development of new biomarkers to track ALS progression. ALS mutations in SOD1 have been shown to destabilize the stable homodimer to result in increased populations of the monomeric and unfolded forms of SOD1. Mechanistic insights into the misfolding of SOD1 demonstrated that the unfolded state is a key species in the initiation and propagation of aggregation, suggesting that limiting these populations may provide therapeutic benefit to ALS patients. An in vitro time-resolved Förster Resonance Energy Transfer assay to screen small molecules that stabilize the native state of SOD1 has identified several lead compounds, providing a pathway to new therapeutics to treat ALS.
APA, Harvard, Vancouver, ISO, and other styles
17

Chao, Lucy F. "A Novel SMC-Like Protein Modulates C. Elegans Condensin Functions: A Dissertation." eScholarship@UMMS, 2003. http://escholarship.umassmed.edu/gsbs_diss/820.

Full text
Abstract:
Chromatin is organized dynamically to accommodate different biological processes. One of the factors required for proper chromatin organization is a group of complexes called condensins. Most eukaryotes have two conserved condensins (I and II) required for chromosome segregation. C. elegans has a third condensin (IDC) that specializes in dosage compensation, a process that down-regulates X gene dosage in XX hermaphrodites to match the dosage in XO males. How the three condensins are regulated is not well understood. Here, I present the discovery and characterization of a novel condensin regulator, SMCL-1. We identified SMCL-1 through purification of a MAP-tagged condensin subunit. Condensins are comprised of SMC ATPases and regulatory CAP proteins; SMCL-1 interacts most abundantly with condensin SMC subunits and resembles the ATPase domain of SMC proteins. Interestingly, the SMCL-1 protein has residues that differ from SMC consensus and potentially render SMCL-1 incapable of hydrolyzing ATP. Worms harboring smcl-1 deletion are viable and show no detectable phenotype. However, deleting smcl-1 in a condensin hypomorph mildly suppresses condensin I and IDC mutant phenotypes, suggesting that SMCL-1 functions as a negative regulator of condensin I and IDC. Consistent with this, overexpression of SMCL-1 leads to condensin loss-of-function phenotypes such as lethality, segregation defects and disruption of IDC localization on the X chromosomes. Homology searches based on the unique ATPase domain of SMCL-1 reveal that SMCL-1-like proteins are present only in organisms also predicted to have condensin IDC. Taken together, we conclude that SMCL-1 is a negative modulator of condensin functions and we propose a role for SMCL-1 in helping organisms adapt to having a third condensin by maintaining the balance among three condensin complexes.
APA, Harvard, Vancouver, ISO, and other styles
18

Chao, Lucy F. "A Novel SMC-Like Protein Modulates C. Elegans Condensin Functions: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/820.

Full text
Abstract:
Chromatin is organized dynamically to accommodate different biological processes. One of the factors required for proper chromatin organization is a group of complexes called condensins. Most eukaryotes have two conserved condensins (I and II) required for chromosome segregation. C. elegans has a third condensin (IDC) that specializes in dosage compensation, a process that down-regulates X gene dosage in XX hermaphrodites to match the dosage in XO males. How the three condensins are regulated is not well understood. Here, I present the discovery and characterization of a novel condensin regulator, SMCL-1. We identified SMCL-1 through purification of a MAP-tagged condensin subunit. Condensins are comprised of SMC ATPases and regulatory CAP proteins; SMCL-1 interacts most abundantly with condensin SMC subunits and resembles the ATPase domain of SMC proteins. Interestingly, the SMCL-1 protein has residues that differ from SMC consensus and potentially render SMCL-1 incapable of hydrolyzing ATP. Worms harboring smcl-1 deletion are viable and show no detectable phenotype. However, deleting smcl-1 in a condensin hypomorph mildly suppresses condensin I and IDC mutant phenotypes, suggesting that SMCL-1 functions as a negative regulator of condensin I and IDC. Consistent with this, overexpression of SMCL-1 leads to condensin loss-of-function phenotypes such as lethality, segregation defects and disruption of IDC localization on the X chromosomes. Homology searches based on the unique ATPase domain of SMCL-1 reveal that SMCL-1-like proteins are present only in organisms also predicted to have condensin IDC. Taken together, we conclude that SMCL-1 is a negative modulator of condensin functions and we propose a role for SMCL-1 in helping organisms adapt to having a third condensin by maintaining the balance among three condensin complexes.
APA, Harvard, Vancouver, ISO, and other styles
19

Sama, Reddy Ranjith Kumar. "FUS/TLS in Stress Response - Implications for Amyotrophic Lateral Sclerosis: A Dissertation." eScholarship@UMMS, 2014. http://escholarship.umassmed.edu/gsbs_diss/704.

Full text
Abstract:
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease is a fatal neurodegenerative disease. ALS is typically adult onset and is characterized by rapidly progressive loss of both upper and lower motor neurons that leads to death usually within 3-5 years. About 90% of all the cases are sporadic with no family history while the remaining 10% are familial cases with mutations in several genes including SOD1, FUS/TLS, TDP43 and C9ORF72. FUS/TLS (Fused in Sarcoma/Translocated in Liposarcoma or FUS) is an RNA/DNA binding protein that is involved in multiple cellular functions including DNA damage repair, transcription, mRNA splicing, RNA transport and stress response. More than 40 mutations have now been identified in FUS that account for about 5% of all the familial cases of ALS. However, the exact mechanism by which FUS causes ALS is unknown. While significant progress has been made in understanding the disease mechanism and identifying therapeutic strategies, several questions still remain largely unknown. The work presented here aims at understanding the normal functions of FUS as well as the pathogenic mechanisms by which it leads to disease. Several studies showed the association of mutant-FUS with structures made up of RNA and proteins, called stress granules that form under various stress conditions. However, little is known about the role of endogenous FUS under stress conditions. I have shown that under hyperosmolar conditions, the predominantly nuclear FUS translocates into the cytoplasm and incorporates into stress granules. The response is specific to hyperosmolar stress because FUS remains nuclear under other stress conditions tested, such as oxidative stress, ER stress and heat shock. The response of FUS is rapid, and cells with reduced FUS levels are susceptible to the hyperosmolar stress, indicating a pro-survival role for FUS. In addition to investigating the functions of endogenous wild-type (WT) FUS, the work presented also focuses on identifying the pathogenic mechanism(s) of FUS variants. Using various biochemical techniques, I have shown that ALS-causing FUS variants are misfolded compared to the WT protein. Furthermore, in a squid axoplasm based vesicle motility assay, the FUS variants inhibit fast axonal transport (FAT) in a p38 MAPK dependent manner, indicating a role for the kinase in mutant-FUS mediated disease pathogenesis. Analysis of human ALS patient samples indicates higher levels of total and phospho p38, supporting the notion that aberrant regulation of p38 MAPK is involved in ALS. The results presented in this dissertation 1) support a novel prosurvival role for FUS under hyperosmolar stress conditions and, 2) demonstrate that protein misfolding and aberrant kinase activation contribute to ALS pathogenesis by FUS variants.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography