Academic literature on the topic 'Distance de Bhattacharyya'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distance de Bhattacharyya.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distance de Bhattacharyya"
Mohammadi, Arash, and Konstantinos N. Plataniotis. "Improper Complex-Valued Bhattacharyya Distance." IEEE Transactions on Neural Networks and Learning Systems 27, no. 5 (May 2016): 1049–64. http://dx.doi.org/10.1109/tnnls.2015.2436064.
Full textYoon, Jiho, and Chulhee Lee. "Edge Detection Using the Bhattacharyya Distance with Adjustable Block Space." Electronic Imaging 2020, no. 10 (January 26, 2020): 133–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.10.ipas-133.
Full textChoi, Euisun, and Chulhee Lee. "Feature extraction based on the Bhattacharyya distance." Pattern Recognition 36, no. 8 (August 2003): 1703–9. http://dx.doi.org/10.1016/s0031-3203(03)00035-9.
Full textMahgoob Nafi, Shahad, and Sawsen Abdulhadi Mahmood. "Moving Objects Detection Based on Bhattacharyya Distance Measurement." Journal of Engineering and Applied Sciences 14, no. 12 (December 10, 2019): 4043–51. http://dx.doi.org/10.36478/jeasci.2019.4043.4051.
Full textIbrahim, Assit prof Abdul-Wahab Sami, and Rasha Jamal Hindi. "Identification system by Tongue based on Bhattacharyya distance." Journal of Physics: Conference Series 1530 (May 2020): 012093. http://dx.doi.org/10.1088/1742-6596/1530/1/012093.
Full textMehdi, Agouzal, Merzouqi Maria, and Moha Arouch. "Reduction of Hyperspectral image based on OSP and a Filter based on Bhattacharyya Distance." International Journal of Emerging Technology and Advanced Engineering 12, no. 4 (April 2, 2022): 86–93. http://dx.doi.org/10.46338/ijetae0422_12.
Full textYu, Yuanlong, Jason Gu, and Junzheng Wang. "Bhattacharyya distance‐based irregular pyramid method for image segmentation." IET Computer Vision 8, no. 6 (December 2014): 510–22. http://dx.doi.org/10.1049/iet-cvi.2013.0149.
Full textLu, Jingyi, Jikang Yue, Lijuan Zhu, and Gongfa Li. "Variational mode decomposition denoising combined with improved Bhattacharyya distance." Measurement 151 (February 2020): 107283. http://dx.doi.org/10.1016/j.measurement.2019.107283.
Full textChaudhuri, G., J. D. Borwankar, and P. R. K. Rao. "Bhattacharyya distance based linear discriminant function for stationary time series." Communications in Statistics - Theory and Methods 20, no. 7 (January 1991): 2195–205. http://dx.doi.org/10.1080/03610929108830627.
Full textBi, Sifeng, Matteo Broggi, and Michael Beer. "The role of the Bhattacharyya distance in stochastic model updating." Mechanical Systems and Signal Processing 117 (February 2019): 437–52. http://dx.doi.org/10.1016/j.ymssp.2018.08.017.
Full textDissertations / Theses on the topic "Distance de Bhattacharyya"
Janse, Sarah A. "INFERENCE USING BHATTACHARYYA DISTANCE TO MODEL INTERACTION EFFECTS WHEN THE NUMBER OF PREDICTORS FAR EXCEEDS THE SAMPLE SIZE." UKnowledge, 2017. https://uknowledge.uky.edu/statistics_etds/30.
Full textIyer, Balaji S. "Design of a Classifier for Bearing Health Prognostics using Time Series Data." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1543922781446885.
Full textDihl, Leandro Lorenzett. "Rastreamento de objetos usando descritores estatísticos." Universidade do Vale do Rio do Sinos, 2009. http://www.repositorio.jesuita.org.br/handle/UNISINOS/2273.
Full textNenhuma
O baixo custo dos sistemas de aquisição de imagens e o aumento no poder computacional das máquinas disponíveis têm causado uma demanda crescente pela análise automatizada de vídeo, em diversas aplicações, como segurança, interfaces homem-computador, análise de desempenho esportivo, etc. O rastreamento de objetos através de câmeras de vídeo é parte desta análise, e tem-se mostrado um problema desafiador na área de visão computacional. Este trabalho apresenta uma nova abordagem para o rastreamento de objetos baseada em fragmentos. Inicialmente, a região selecionada para o rastreamento é dividida em sub-regiões retangulares (fragmentos), e cada fragmento é rastreado independentemente. Além disso, o histórico de movimentação do objeto é utilizado para estimar sua posição no quadro seguinte. O deslocamento global do objeto é então obtido combinando os deslocamentos de cada fragmento e o deslocamento previsto, de modo a priorizar fragmentos com deslocamento coerente. Um esquema de atualização é aplicado no modelo
The low cost of image acquisition systems and increase the computational power of available machines have caused a growing demand for automated video analysis in several applications, such as surveillance, human-computer interfaces, analysis of sports performance, etc. Object tracking through the video sequence is part of this analysis, and it has been a challenging problem in the computer vision area. This work presents a new approach for object tracking based on fragments. Initially, the region selected for tracking is divided into rectangular subregions (patches, or fragments), and each patch is tracked independently. Moreover, the motion history of the object is used to estimate its position in the subsequent frames. The overall displacement of the object is then obtained combining the displacements of each patch and the predicted displacement vector in order to priorize fragments presenting consistent displacement. An update scheme is also applied to the model, to deal with illumination and appearance c
Junior, Jarbas Joaci de Mesquita Sá. "Identificação de espécies vegetais por meio de análise de imagens microscópicas de folhas." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12052008-142428/.
Full textCurrently, taxonomy demands a great effort from the botanists, ranging from the process of acquisition of the sample to the comparison with the species already classified in the herbarium. For this reason, the TreeVis is a project created to identify vegetal species using leaf attributes. This work is a part of the TreeVis project and aims at identifying vegetal species by analysing cross-sections of leaves amplified by a microscope. Signatures were extract from cuticle, adaxial epiderm, palisade parenchyma and sponge parenchyma. Each signature was analysed by a neural network with the leave-one-out method to verify its ability to identify species. Once the most important feature vectors were selected, two different approachs were adopted. The first was a simple concatenation of the selected feature vectors. The second, and more elaborated approach, consisted of reducing the dimensionality (three attributes only) of some component signatures before the feature vector concatenation. The final vectors obtained by these two approaches were tested by a neural network with leave-one-out to measure the correctness rate reached by the synergism of the signatures of different leaf regions. The experiments resulted in the identification of eight different species and the identification of the Gochnatia polymorpha species in Cerradão and Gallery Forest environments, Wet and Dry seasons, and under Sun and Shadow constraints
Maitre, Julien. "Détection et analyse des signaux faibles. Développement d’un framework d’investigation numérique pour un service caché Lanceurs d’alerte." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS020.
Full textThis manuscript provides the basis for a complete chain of document analysis for a whistleblower service, such as GlobalLeaks. We propose a chain of semi-automated analysis of text document and search using websearch queries to in fine present dashboards describing weak signals. We identify and solve methodological and technological barriers inherent to : 1) automated analysis of text document with minimum a priori information,2) enrichment of information using web search 3) data visualization dashboard and 3D interactive environment. These static and dynamic approaches are used in the context of data journalism for processing heterogeneous types of information within documents. This thesis also proposed a feasibility study and prototyping by the implementation of a processing chain in the form of a software. This construction requires a weak signal definition. Our goal is to provide configurable and generic tool. Our solution is based on two approaches : static and dynamic. In the static approach, we propose a solution requiring less intervention from the domain expert. In this context, we propose a new approach of multi-leveltopic modeling. This joint approach combines topic modeling, word embedding and an algorithm. The use of a expert helps to assess the relevance of the results and to identify topics with weak signals. In the dynamic approach, we integrate a solution for monitoring weak signals and we follow up to study their evolution. Wetherefore propose and agent mining solution which combines data mining and multi-agent system where agents representing documents and words are animated by attraction/repulsion forces. The results are presented in a data visualization dashboard and a 3D interactive environment in Unity. First, the static approach is evaluated in a proof-of-concept with synthetic and real text corpus. Second, the complete chain of document analysis (static and dynamic) is implemented in a software and are applied to data from document databases
Cepeda, Fuentealba Sebastián. "Segmentación de vasos sanguíneos de retina usando selección de características mediantes distancia de bhattacharyya y algoritmos genéticos, para un clasificador por maximización de la entropía." Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/138129.
Full textIngeniero Civil Eléctrico
La segmentación de vasos sanguíneos en imágenes digitales permite tener un método no invasivo de diagnosticar enfermedades como diabetes, hipertensión y algunas enfermedades cardiovasculares. Puede servir en la implementación de programas para la detección temprana de varias enfermedades de la retina y también para la identificación biométrica basada en la forma de los vasos sanguíneos. La segmentación manual de vasos sanguíneos de retina es una tarea que consume mucho tiempo y requiere entrenamiento y habilidad. Los vasos sanguíneos en la retina están compuestos de arterias y venas que se presentan como líneas oscuras en un fondo relativamente uniforme. La dificultad de su segmentación se debe a su forma, tamaño y luminosidad altamente variables, ruido en la imagen, además de su cruce y bifurcación. En los métodos para la segmentación automática de vasos previamente publicados en revistas internacionales están aquellos que obtienen un vector de características por pixel utilizando el canal verde de la imagen y la respuesta a un filtro gaussiano en 5 escalas que ocupa k-vecinos más cercanos (KNN) como clasificador. Otro método crea un vector de 27 características y usa k-vecinos más cercanos como clasificador. Otro método extrae un vector de 5 características, incluyendo el canal verde y la respuesta a filtros Gabor en 4 escalas y usa un clasificador bayesiano. En esta tesis se propone un método de segmentación automática de vasos sanguíneos de cuatro etapas. Primero, se extrae el canal verde de la imagen, ya que es donde más destacan los vasos sanguíneos. A continuación se efectúa una ecualización de histograma adaptiva para mejorar el contraste entre los pixeles del fondo y de los vasos sanguíneos. Luego se aplica un banco de filtros correspondientes a una suma de filtros Gabor, obteniendo como resultado el máximo de las respuestas al banco de filtros. Finalmente, se segmenta la respuesta al banco de filtros usando un umbral calculado con la maximización de la entropía de la matriz de co-ocurrencia. Para la optimización de los parámetros y evaluación de resultados se utilizó la base de datos DRIVE ya que es una base de datos marcada y disponible internacionalmente, que permite comparar los resultados obtenidos con otros publicados previamente. La optimización de los parámetros de la ecualización de histograma adaptiva y la elección del canal verde se realizó maximizando la distancia de Bhattacharyya entre las clases de vasos sanguíneos y fondo de las imágenes. Los parámetros de los filtros fueron optimizados mediante algoritmos genéticos, maximizando el accuracy de la segmentación. De las 40 imágenes de la base de datos DRIVE se eligieron 10 para el conjunto de entrenamiento y 10 para el de validación. El conjunto de prueba usa las 20 imágenes estándares. Los resultados muestran que la precisión obtenida para el conjunto de prueba fue de 0,9462, lo que es similar a los resultados obtenidos por las mejores publicaciones en la misma base de datos y a la obtenida por el segundo experto humano (0,9473). Al comparar con uno de los métodos con mejores resultados (precisión de 0,9466), el tiempo de segmentación disminuyó de 120[s] en el trabajo previo, a 5[s] en el método propuesto. En comparación con los resultados de una implementación de redes neuronales convolucionales, ésta tardó más (170[s]) y su precisión fue menor que con el método propuesto. Por lo tanto el método propuesto muestra una precisión cercana a la máxima previamente publicada pero con un tiempo de procesamiento mucho menor. A futuro el método podría paralelizarse para mejorar aún más su tiempo de cómputo.
Essid, Slim. "Classification automatique des signaux audio-fréquences : reconnaissance des instruments de musique." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2005. http://pastel.archives-ouvertes.fr/pastel-00002738.
Full text"Particle Image Segmentation Based on Bhattacharyya Distance." Master's thesis, 2015. http://hdl.handle.net/2286/R.I.34888.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2015
Book chapters on the topic "Distance de Bhattacharyya"
Sharif, Md Haidar, Sahin Uyaver, and Chabane Djeraba. "Crowd Behavior Surveillance Using Bhattacharyya Distance Metric." In Computational Modeling of Objects Represented in Images, 311–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12712-0_28.
Full textBi, Sifeng, and Michael Beer. "Overview of Stochastic Model Updating in Aerospace Application Under Uncertainty Treatment." In Uncertainty in Engineering, 115–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83640-5_8.
Full textLiang, Shuang, Ning Liu, Guanxiang Wang, and Wei Guo. "Camera Sabotage Detection Based on LOG Histogram and Bhattacharyya Distance." In Lecture Notes in Electrical Engineering, 197–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27323-0_25.
Full textLiu, Qingshan, and Dimitris N. Metaxas. "Unifying Subspace and Distance Metric Learning with Bhattacharyya Coefficient for Image Classification." In Emerging Trends in Visual Computing, 254–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00826-9_11.
Full textLahlimi, Mohammed, Mounir Ait Kerroum, and Youssef Fakhri. "Band Selection with Bhattacharyya Distance Based on the Gaussian Mixture Model for Hyperspectral Image Classification." In Recent Advances in Electrical and Information Technologies for Sustainable Development, 87–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05276-8_10.
Full textEl merabet, Youssef, Yassine Ruichek, Saman Ghaffarian, Zineb Samir, Tarik Boujiha, Raja Touahni, and Rochdi Messoussi. "Horizon Line Detection from Fisheye Images Using Color Local Image Region Descriptors and Bhattacharyya Coefficient-Based Distance." In Advanced Concepts for Intelligent Vision Systems, 58–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48680-2_6.
Full textMigdał, Wiesław, Jacek Wodecki, Maciej Wuczyński, Paweł Stefaniak, Agnieszka Wyłomańska, and Radosław Zimroz. "Long Term Temperature Data Analysis for Damage Detection in Electric Motor Bearings with Density Modeling and Bhattacharyya Distance." In Applied Condition Monitoring, 151–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11220-2_16.
Full textAbci, Boussad, Joudy Nader, Maan El Badaoui El Najjar, and Vincent Cocquempot. "Fault-Tolerant Multi-sensor Fusion and Thresholding Based on the Bhattacharyya Distance with Application to a Multi-robot System." In Lecture Notes in Control and Information Sciences - Proceedings, 347–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85318-1_21.
Full textGupta, Surendra, Urjita Thakar, and Sanjiv Tokekar. "Canonical Correlation Analysis with Bhattacharya Similarity Distance for Multiview Data Representation." In Advances in Intelligent Systems and Computing, 505–16. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2712-5_41.
Full text"Other Distances for Face Recognition." In Similarity Measures for Face Recognition, edited by Enrico Vezzetti and Federica Marcolin, 57–67. BENTHAM SCIENCE PUBLISHERS, 2015. http://dx.doi.org/10.2174/9781681080444115010008.
Full textConference papers on the topic "Distance de Bhattacharyya"
Xuan Guorong, Chai Peiqi, and Wu Minhui. "Bhattacharyya distance feature selection." In Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996. http://dx.doi.org/10.1109/icpr.1996.546751.
Full textKe, Ke, Tao Zhao, and Ou Li. "Bhattacharyya Distance for Blind Image Steganalysis." In 2010 International Conference on Multimedia Information Networking and Security. IEEE, 2010. http://dx.doi.org/10.1109/mines.2010.143.
Full textMak, Brian, and Etienne Barnard. "Phone clustering using the bhattacharyya distance." In 4th International Conference on Spoken Language Processing (ICSLP 1996). ISCA: ISCA, 1996. http://dx.doi.org/10.21437/icslp.1996-508.
Full textBasener, William, and Marty Flynn. "Microscene evaluation using the Bhattacharyya distance." In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII, edited by Allen M. Larar, Makoto Suzuki, and Jianyu Wang. SPIE, 2018. http://dx.doi.org/10.1117/12.2327004.
Full textCheon, Yongsung, and Chulhee Lee. "Color Edge Detection based on Bhattacharyya Distance." In 14th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006433903680371.
Full textShen, Bichuan, and C. H. Chen. "Bhattacharyya distance based video scene change detection." In Sixth International Symposium on Multispectral Image Processing and Pattern Recognition, edited by Mingyue Ding, Bir Bhanu, Friedrich M. Wahl, and Jonathan Roberts. SPIE, 2009. http://dx.doi.org/10.1117/12.837501.
Full textGuorong Xuan, Xiuming Zhu, Peiqi Chai, Zhenping Zhang, Yun Q. Shi, and Dongdong Fu. "Feature Selection based on the Bhattacharyya Distance." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.557.
Full textGuorong Xuan, Xiuming Zhu, Peiqi Chai, Zhenping Zhang, Yun Q. Shi, and Dongdong Fu. "Feature Selection based on the Bhattacharyya Distance." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.558.
Full textHan, J., and C. Lee. "Color Lane Line Detection Using the Bhattacharyya Distance." In 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA). IEEE, 2020. http://dx.doi.org/10.1109/iisa50023.2020.9284147.
Full textBaskoro, Jatmiko Budi, Ari Wibisono, and Wisnu Jatmiko. "Bhattacharyya distance-based tracking: A vehicle counting application." In 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS). IEEE, 2017. http://dx.doi.org/10.1109/icacsis.2017.8355071.
Full text