Contents
Academic literature on the topic 'Distance de Wasserstein'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distance de Wasserstein.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distance de Wasserstein"
Vayer, Titouan, Laetitia Chapel, Remi Flamary, Romain Tavenard, and Nicolas Courty. "Fused Gromov-Wasserstein Distance for Structured Objects." Algorithms 13, no. 9 (2020): 212. http://dx.doi.org/10.3390/a13090212.
Full textÇelik, Türkü Özlüm, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. "Wasserstein distance to independence models." Journal of Symbolic Computation 104 (May 2021): 855–73. http://dx.doi.org/10.1016/j.jsc.2020.10.005.
Full textGangbo, Wilfrid, and Robert J. McCann. "Shape recognition via Wasserstein distance." Quarterly of Applied Mathematics 58, no. 4 (2000): 705–37. http://dx.doi.org/10.1090/qam/1788425.
Full textDecreusefond, L. "Wasserstein Distance on Configuration Space." Potential Analysis 28, no. 3 (2008): 283–300. http://dx.doi.org/10.1007/s11118-008-9077-5.
Full textMathey-Prevot, Maxime, and Alain Valette. "Wasserstein distance and metric trees." L’Enseignement Mathématique 69, no. 3 (2023): 315–33. http://dx.doi.org/10.4171/lem/1052.
Full textHarmati, István Á., Lucian Coroianu, and Robert Fullér. "Wasserstein distance for OWA operators." Fuzzy Sets and Systems 484 (May 2024): 108931. http://dx.doi.org/10.1016/j.fss.2024.108931.
Full textPeyre, Rémi. "Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance". ESAIM: Control, Optimisation and Calculus of Variations 24, № 4 (2018): 1489–501. http://dx.doi.org/10.1051/cocv/2017050.
Full textXu, Minkai. "Towards Generalized Implementation of Wasserstein Distance in GANs." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10514–22. http://dx.doi.org/10.1609/aaai.v35i12.17258.
Full textDou, Jason Xiaotian, Lei Luo, and Raymond Mingrui Yang. "An Optimal Transport Approach to Deep Metric Learning (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12935–36. http://dx.doi.org/10.1609/aaai.v36i11.21604.
Full textTong, Qijun, and Kei Kobayashi. "Entropy-Regularized Optimal Transport on Multivariate Normal and q-normal Distributions." Entropy 23, no. 3 (2021): 302. http://dx.doi.org/10.3390/e23030302.
Full text