Journal articles on the topic 'Distance de Wasserstein'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Distance de Wasserstein.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vayer, Titouan, Laetitia Chapel, Remi Flamary, Romain Tavenard, and Nicolas Courty. "Fused Gromov-Wasserstein Distance for Structured Objects." Algorithms 13, no. 9 (2020): 212. http://dx.doi.org/10.3390/a13090212.
Full textÇelik, Türkü Özlüm, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, and Lorenzo Venturello. "Wasserstein distance to independence models." Journal of Symbolic Computation 104 (May 2021): 855–73. http://dx.doi.org/10.1016/j.jsc.2020.10.005.
Full textGangbo, Wilfrid, and Robert J. McCann. "Shape recognition via Wasserstein distance." Quarterly of Applied Mathematics 58, no. 4 (2000): 705–37. http://dx.doi.org/10.1090/qam/1788425.
Full textDecreusefond, L. "Wasserstein Distance on Configuration Space." Potential Analysis 28, no. 3 (2008): 283–300. http://dx.doi.org/10.1007/s11118-008-9077-5.
Full textMathey-Prevot, Maxime, and Alain Valette. "Wasserstein distance and metric trees." L’Enseignement Mathématique 69, no. 3 (2023): 315–33. http://dx.doi.org/10.4171/lem/1052.
Full textHarmati, István Á., Lucian Coroianu, and Robert Fullér. "Wasserstein distance for OWA operators." Fuzzy Sets and Systems 484 (May 2024): 108931. http://dx.doi.org/10.1016/j.fss.2024.108931.
Full textPeyre, Rémi. "Comparison between W2 distance and Ḣ−1 norm, and Localization of Wasserstein distance". ESAIM: Control, Optimisation and Calculus of Variations 24, № 4 (2018): 1489–501. http://dx.doi.org/10.1051/cocv/2017050.
Full textXu, Minkai. "Towards Generalized Implementation of Wasserstein Distance in GANs." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10514–22. http://dx.doi.org/10.1609/aaai.v35i12.17258.
Full textDou, Jason Xiaotian, Lei Luo, and Raymond Mingrui Yang. "An Optimal Transport Approach to Deep Metric Learning (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12935–36. http://dx.doi.org/10.1609/aaai.v36i11.21604.
Full textTong, Qijun, and Kei Kobayashi. "Entropy-Regularized Optimal Transport on Multivariate Normal and q-normal Distributions." Entropy 23, no. 3 (2021): 302. http://dx.doi.org/10.3390/e23030302.
Full textLu, Cheng, Jiusun Zeng, Shihua Luo, and Jinhui Cai. "Detection and Isolation of Incipiently Developing Fault Using Wasserstein Distance." Processes 10, no. 6 (2022): 1081. http://dx.doi.org/10.3390/pr10061081.
Full textWang, Zifan, Changgen Peng, Xing He, and Weijie Tan. "Wasserstein Distance-Based Deep Leakage from Gradients." Entropy 25, no. 5 (2023): 810. http://dx.doi.org/10.3390/e25050810.
Full textTóth, Géza, and József Pitrik. "Quantum Wasserstein distance based on an optimization over separable states." Quantum 7 (October 16, 2023): 1143. http://dx.doi.org/10.22331/q-2023-10-16-1143.
Full textBernton, Espen, Pierre E. Jacob, Mathieu Gerber, and Christian P. Robert. "On parameter estimation with the Wasserstein distance." Information and Inference: A Journal of the IMA 8, no. 4 (2019): 657–76. http://dx.doi.org/10.1093/imaiai/iaz003.
Full textTabak, Gil, Minjie Fan, Samuel Yang, Stephan Hoyer, and Geoffrey Davis. "Correcting nuisance variation using Wasserstein distance." PeerJ 8 (February 28, 2020): e8594. http://dx.doi.org/10.7717/peerj.8594.
Full textXu, Long, Ying Wei, Chenhe Dong, Chuaqiao Xu, and Zhaofu Diao. "Wasserstein Distance-Based Auto-Encoder Tracking." Neural Processing Letters 53, no. 3 (2021): 2305–29. http://dx.doi.org/10.1007/s11063-021-10507-9.
Full textShi, Jie, and Yalin Wang. "Hyperbolic Wasserstein Distance for Shape Indexing." IEEE Transactions on Pattern Analysis and Machine Intelligence 42, no. 6 (2020): 1362–76. http://dx.doi.org/10.1109/tpami.2019.2898400.
Full textAssa, Akbar, and Konstantinos N. Plataniotis. "Wasserstein-Distance-Based Gaussian Mixture Reduction." IEEE Signal Processing Letters 25, no. 10 (2018): 1465–69. http://dx.doi.org/10.1109/lsp.2018.2865829.
Full textBelili, Nacereddine, and Henri Heinich. "Approximation pour la distance de Wasserstein." Comptes Rendus Mathematique 335, no. 6 (2002): 537–40. http://dx.doi.org/10.1016/s1631-073x(02)02522-0.
Full textLi, Long, Arthur Vidard, François-Xavier Le Dimet, and Jianwei Ma. "Topological data assimilation using Wasserstein distance." Inverse Problems 35, no. 1 (2018): 015006. http://dx.doi.org/10.1088/1361-6420/aae993.
Full textRüschendorf, Ludger. "The Wasserstein distance and approximation theorems." Probability Theory and Related Fields 70, no. 1 (1985): 117–29. http://dx.doi.org/10.1007/bf00532240.
Full textShi, Yong, Lei Zheng, Pei Quan, and Lingfeng Niu. "Wasserstein distance regularized graph neural networks." Information Sciences 670 (June 2024): 120608. http://dx.doi.org/10.1016/j.ins.2024.120608.
Full textKindelan Nuñez, Rolando, Mircea Petrache, Mauricio Cerda, and Nancy Hitschfeld. "A Class of Topological Pseudodistances for Fast Comparison of Persistence Diagrams." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 12 (2024): 13202–10. http://dx.doi.org/10.1609/aaai.v38i12.29220.
Full textCumings-Menon, Ryan, and Minchul Shin. "Probability Forecast Combination via Entropy Regularized Wasserstein Distance." Entropy 22, no. 9 (2020): 929. http://dx.doi.org/10.3390/e22090929.
Full textLi, Shengxi, Zeyang Yu, Min Xiang, and Danilo Mandic. "Solving General Elliptical Mixture Models through an Approximate Wasserstein Manifold." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (2020): 4658–66. http://dx.doi.org/10.1609/aaai.v34i04.5897.
Full textPonti, Andrea, Ilaria Giordani, Matteo Mistri, Antonio Candelieri, and Francesco Archetti. "The “Unreasonable” Effectiveness of the Wasserstein Distance in Analyzing Key Performance Indicators of a Network of Stores." Big Data and Cognitive Computing 6, no. 4 (2022): 138. http://dx.doi.org/10.3390/bdcc6040138.
Full textKelbert, Mark. "Survey of Distances between the Most Popular Distributions." Analytics 2, no. 1 (2023): 225–45. http://dx.doi.org/10.3390/analytics2010012.
Full textDe Palma, Giacomo, Milad Marvian, Dario Trevisan, and Seth Lloyd. "The Quantum Wasserstein Distance of Order 1." IEEE Transactions on Information Theory 67, no. 10 (2021): 6627–43. http://dx.doi.org/10.1109/tit.2021.3076442.
Full textFrohmader, Andrew, and Hans Volkmer. "1-Wasserstein distance on the standard simplex." Algebraic Statistics 12, no. 1 (2021): 43–56. http://dx.doi.org/10.2140/astat.2021.12.43.
Full textLi, Jie, Dan Xu, and Shaowen Yao. "Sliced Wasserstein Distance for Neural Style Transfer." Computers & Graphics 102 (February 2022): 89–98. http://dx.doi.org/10.1016/j.cag.2021.12.004.
Full textWu, Wei, Guangmin Hu, and Fucai Yu. "Graph Classification Method Based on Wasserstein Distance." Journal of Physics: Conference Series 1952, no. 2 (2021): 022018. http://dx.doi.org/10.1088/1742-6596/1952/2/022018.
Full textMémoli, Facundo. "The Gromov–Wasserstein Distance: A Brief Overview." Axioms 3, no. 3 (2014): 335–41. http://dx.doi.org/10.3390/axioms3030335.
Full textCarlsson, John Gunnar, Mehdi Behroozi, and Kresimir Mihic. "Wasserstein Distance and the Distributionally Robust TSP." Operations Research 66, no. 6 (2018): 1603–24. http://dx.doi.org/10.1287/opre.2018.1746.
Full textBernton, Espen, Pierre E. Jacob, Mathieu Gerber, and Christian P. Robert. "Approximate Bayesian computation with the Wasserstein distance." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 81, no. 2 (2019): 235–69. http://dx.doi.org/10.1111/rssb.12312.
Full textAbdellaoui, Taoufiq. "Approximation de la L1-distance de Wasserstein." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 12 (1999): 1203–6. http://dx.doi.org/10.1016/s0764-4442(99)80440-6.
Full textSun, Fengdong, and Wenhui Li. "Saliency detection based on aggregated Wasserstein distance." Journal of Electronic Imaging 27, no. 04 (2018): 1. http://dx.doi.org/10.1117/1.jei.27.4.043014.
Full textNichols, Jonathan M., Meredith N. Hutchinson, Nicole Menkart, Geoff A. Cranch, and Gustavo Kunde Rohde. "Time Delay Estimation Via Wasserstein Distance Minimization." IEEE Signal Processing Letters 26, no. 6 (2019): 908–12. http://dx.doi.org/10.1109/lsp.2019.2895457.
Full textMa, Ming, Na Lei, Kehua Su, et al. "Surface-based shape classification using Wasserstein distance." Geometry, Imaging and Computing 2, no. 4 (2015): 237–55. http://dx.doi.org/10.4310/gic.2015.v2.n4.a1.
Full textWang, Kedi, Ping Yi, Futai Zou, and Yue Wu. "Generating Adversarial Samples With Constrained Wasserstein Distance." IEEE Access 7 (2019): 136812–21. http://dx.doi.org/10.1109/access.2019.2942607.
Full textVerdinelli, Isabella, and Larry Wasserman. "Hybrid Wasserstein distance and fast distribution clustering." Electronic Journal of Statistics 13, no. 2 (2019): 5088–119. http://dx.doi.org/10.1214/19-ejs1639.
Full textPiccoli, Benedetto, and Francesco Rossi. "On Properties of the Generalized Wasserstein Distance." Archive for Rational Mechanics and Analysis 222, no. 3 (2016): 1339–65. http://dx.doi.org/10.1007/s00205-016-1026-7.
Full textRobin, Yoann, Pascal Yiou, and Philippe Naveau. "Detecting changes in forced climate attractors with Wasserstein distance." Nonlinear Processes in Geophysics 24, no. 3 (2017): 393–405. http://dx.doi.org/10.5194/npg-24-393-2017.
Full textZhao, Chun Jiang. "A Modified Method to Measure Similarity of Generalized Fuzzy Numbers." Advanced Materials Research 159 (December 2010): 393–98. http://dx.doi.org/10.4028/www.scientific.net/amr.159.393.
Full textTao, Yang, Chunyan Li, Zhifang Liang, Haocheng Yang, and Juan Xu. "Wasserstein Distance Learns Domain Invariant Feature Representations for Drift Compensation of E-Nose." Sensors 19, no. 17 (2019): 3703. http://dx.doi.org/10.3390/s19173703.
Full textXu, Bi-Cun, Kai Ming Ting, and Yuan Jiang. "Isolation Graph Kernel." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10487–95. http://dx.doi.org/10.1609/aaai.v35i12.17255.
Full textHe, Shuncheng, Yuhang Jiang, Hongchang Zhang, Jianzhun Shao, and Xiangyang Ji. "Wasserstein Unsupervised Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6884–92. http://dx.doi.org/10.1609/aaai.v36i6.20645.
Full textZhang, Zhonghui, Huarui Jing, and Chihwa Kao. "High-Dimensional Distributionally Robust Mean-Variance Efficient Portfolio Selection." Mathematics 11, no. 5 (2023): 1272. http://dx.doi.org/10.3390/math11051272.
Full textXu, Hongteng, Dixin Luo, Lawrence Carin, and Hongyuan Zha. "Learning Graphons via Structured Gromov-Wasserstein Barycenters." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (2021): 10505–13. http://dx.doi.org/10.1609/aaai.v35i12.17257.
Full textXia, Aihua. "On the rate of Poisson process approximation to a Bernoulli process." Journal of Applied Probability 34, no. 4 (1997): 898–907. http://dx.doi.org/10.2307/3215005.
Full textXia, Aihua. "On the rate of Poisson process approximation to a Bernoulli process." Journal of Applied Probability 34, no. 04 (1997): 898–907. http://dx.doi.org/10.1017/s0021900200101603.
Full text