Academic literature on the topic 'Distillation apparatus Distillation apparatus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distillation apparatus Distillation apparatus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Distillation apparatus Distillation apparatus"

1

Hazra, N. K., and D. Mal. "Micropath Distillation Apparatus." Journal of Chemical Education 73, no. 5 (May 1996): A103. http://dx.doi.org/10.1021/ed073pa103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raper, D. "Azeotropic distillation apparatus." Journal of Applied Chemistry 1, no. 1 (April 19, 2007): 43–44. http://dx.doi.org/10.1002/jctb.5010010110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Imran. "A Compact Steam Distillation Apparatus." Journal of Chemical Education 73, no. 3 (March 1996): 285. http://dx.doi.org/10.1021/ed073p285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

WESOŁOWSKA, Aneta, Monika GRZESZCZUK, and Dorota Jadczak. "INFLUENCE OF DISTILLATION APPARATUS AND DISTILLATION TIME ON THE YIELD AND CHEMICAL COMPOSITION OF WINTER SAVORY ESSENTIAL OIL." Folia Pomeranae Universitatis Technologiae Stetinensis Agricultura, Alimentaria, Piscaria et Zootechnica 338, no. 44 (December 30, 2017): 227–40. http://dx.doi.org/10.21005/aapz2017.44.4.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yorke, S. G. "An improved automatic mercury-distillation apparatus." Journal of Applied Chemistry 2, no. 2 (May 4, 2007): 77–79. http://dx.doi.org/10.1002/jctb.5010020206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Milojevic, Svetomir, and Dejan Skala. "Refreshment topics II: Design of distillation columns." Chemical Industry 60, no. 3-4 (2006): 92–102. http://dx.doi.org/10.2298/hemind0604092m.

Full text
Abstract:
For distillation column design it is necessary to define all the variable parameters such as component concentrations in different streams temperatures, pressures, mass and energy flow, which are used to represent the separation process of some specific system. They are related to each other according to specific laws, and if the number of such parameters exceeds the number of their relationships, in order to solve a problem some of them must be specified in advance or some constraints assumed for the mass balance, the balance of energy, phase equilibria or chemical equilibria. Knowledge of specific elements which are the constituents of a distillation unit must be known to define the number of design parameters as well as some additional apparati also necessary to realize the distilation. Each separate apparatus might be designed and constructed only if all the necessary and variable parameters for such a unit are defined. This is the right route to solve a distilation unit in many different cases. The construction of some distillation unit requires very good knowledge of mass, heat and momentum transfer phenomena. Moreover, the designer needs to know which kind of apparatus will be used in the distillation unit to realize a specific production process. The most complicated apparatus in a rectification unit is the distillation column. Depending on the complexity of the separation process one, two or more columns are often used. Additional equipment are heat exchangers (reboilers, condensers, cooling systems, heaters), separators, tanks for reflux distribution, tanks and pumps for feed transportation, etc. Such equipment is connected by pipes and valves, and for the normal operation of a distillation unit other instruments for measuring the flow rate, temperature and pressure are also required. Problems which might arise during the determination and selection of such apparati and their number requires knowledge of the specific systems which must be separated. The experience of the designer and his creativity for proposing a solution for an industrial unit which enables optimal process operation accompanied with minimal energy consumption, as well as a small number of apparati, and minimal total length of pipes and number of instruments is always a valuable additional effect for minimal investment costs and an optimal production process.
APA, Harvard, Vancouver, ISO, and other styles
7

Hsu, Sheng-Yen, Chan-Chiung Liu, Chia-En Yang, and Lung-Ming Fu. "Multifunctional microchip-based distillation apparatus I - Steam distillation for formaldehyde detection." Analytica Chimica Acta 1062 (July 2019): 94–101. http://dx.doi.org/10.1016/j.aca.2019.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cagle, M. D., T. T. Denton, J. M. Lucas, and E. J. Eisenbraun. "Air-Free Distillation and Multifraction Sealing Apparatus." Journal of Chemical Education 70, no. 2 (February 1993): 168. http://dx.doi.org/10.1021/ed070p168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bart, H. J., and J. Reidetschläger. "Distillation with Chemical Reaction and Apparatus Selection." Separation Science and Technology 30, no. 7-9 (April 1995): 1849–65. http://dx.doi.org/10.1080/01496399508010380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

FADIAWATI, Noor, and Chansyanah DIAWATI. "CONSTRUCTING A SIMPLE DISTILLATION APPARATUS FROM USED GOODS BY USING PROJECT-BASED LEARNING." Periódico Tchê Química 16, no. 32 (August 20, 2019): 207–13. http://dx.doi.org/10.52571/ptq.v16.n32.2019.225_periodico32_pgs_207_213.pdf.

Full text
Abstract:
Students had been challenged to build a simple distillation apparatus by using project-based learning. In these project of the apparatus, they were applied their knowledges and skills to look for an alternative replacement tools, plan, build, and test the functioning of the apparatus. A simple distillation apparatus was designed and constructed by students where some tools could be replaced with used goods, such as: (1) a bunsen burner could be replaced with an spirit-wall lamp; (2) a soft drink glass bottle replaces a Pyrex flask as a distilling flask; (3) a modified plastic bottle with alumunium tube and plastic hoses replaces a glass tubing as a condenser, and (4) a modified dynamo from car toys was used as aerator with source of electric current from battery, power bank, or electric using phone charger. The apparatus already could be used to purify sea water that modeled by saline solution. The distillates were clearer and colorless compared to saline solution and did not conduct electricity. Based on that, the project was improved students’ understanding and creative thinking skills on the distillation concepts.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Distillation apparatus Distillation apparatus"

1

Nieuwoudt, Josias Jakobus (Jako). "Catalytic distillation : design and application of a catalytic distillation column." Thesis, Stellenbosch : University of Stellenbosch, 2005. http://hdl.handle.net/10019.1/2085.

Full text
Abstract:
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2005.
Catalytic Distillation (CD) is a hybrid technology that utilizes the dynamics of si- multaneous reaction and separation in a single process unit to achieve a more compact, economical, efficient and optimized process design when compared to the traditional multi-unit designs. The project goal (and key question) is (how) to design a cost-effective, simple and accurate laboratory-scale continuous CD system that will sufficiently and accurately supply useful data for model validation. The system to be investigated is the continuous hydrogenation of an a-olefin C6 (1-hexene) feed stream to the corresponding alkane (n-hexane) product with simultaneous reactant/product separation. Hypothetically, a system can be constructured to determine whether hydrogenation will benefit from the heat and mass transfer integration observed under CD conditions in terms of energy usage, temperature control and the catalyst's surface hydrogen concentration. System convergence with commercial distillation simulation packages ...
APA, Harvard, Vancouver, ISO, and other styles
2

García-Martínez, José Antonio. "Fundamental model for the prediction of distillation sieve tray efficiency : hydrocarbon and aqueous systems /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Everhardus Johannes. "A numerical analysis of the hydrodynamic mixing characteristics of a rectangular versus a cylindrical mixing crystallizer tank for a membrane distillation apparatus." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2827.

Full text
Abstract:
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2018.
A membrane distillation crystallization (MDC) experimental setup was designed, constructed and commissioned with rectangular mixing crystallizer tanks. The advantages and disadvantages of a rectangular mixing tank are compared to the traditional cylindrical mixing tank with baffling by means of a computational fluid dynamic (CFD) analysis in Ansys Fluent. The effect of tank configuration and geometry on the hydrodynamic and mixing characteristics for efficient momentum, solid suspension, heat and mass transfer were investigated. The hydrodynamic conditions in a crystallizer-mixing tank determine the quality of fluid mixing essential for optimal crystallization. Forty-five degree pitched blade turbines (PBT) were used to provide the agitation in the stainless steel rectangular jacketed tanks. Clear polycarbonate replicas of the rectangular tanks were manufactured to visually observe the mixing process in the tanks. Silica particles were used to represent the calcium carbonate crystals in the experiment. The data gathered from these experiments showed that the tanks should be operated between 600 to 750 rpm in the CFD simulations to simulate partial to complete suspension. In the numerical simulations a rectangular tank was compared to a cylindrical tank with baffling of the same volume. The partial differential equations solved in the numerical simulation were the conservation of mass (continuity), conservation of momentum and additional turbulence equations. In order to solve the turbulent fluid flow characteristics, the industry standard two-equation model, namely the K-epsilon model was used. This model was refined by the addition of the Wen-Yu drag model, the Simonin turbulent dissipation and the Simonin et al. turbulence interaction models. The RANS based RNG (k-ε), derived from the instantaneous Navier-Stokes equation was selected as the preferred model to analyse the hydrodynamic flow fields in the tanks. The 3D sliding mesh method was used to compute a time accurate solution. The Eulerian-granular multiphase model was used to predict the degree of solids suspension in the tanks. The efficiency of mixing within the tank was measured by the tank’s ability to keep the crystals in suspension and preventing any particle from settling at the bottom for more than 1-2 second(s). The mixing tanks were initially loaded with 5% v/v, which equates to a loaded height of approximately 10 mm. The simulations were done with the use of the volume fraction function to visually observe the cloud height and gauge the homogeneity and distribution of the particulates within the fluid flow fields. The results from the experimental setup were compared to the CFD simulations to qualify the use of CFD simulations for the comparison of the geometrically different tanks. Lastly, the findings from the CFD simulations were used to compare the tanks and determine if the rectangular tank built for the MDC experiment perform satisfactorily to replace a standard cylindrical tank with baffling for this application.
APA, Harvard, Vancouver, ISO, and other styles
4

Hartwig, Gerhard Rudolf. "Grey water reclamation utilising solar thermal energy." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85631.

Full text
Abstract:
Thesis (MScEng)-- Stellenbosch University, 2013.
ENGLISH ABSTRACT: The objective of this research was to obtain clean drinkable water from treated sewage effluent by using a solar-powered distillation cycle. Technologies and concepts were borrowed from the solar desalination industry to propose a unique circular distillation cell design. From the design, a specific mathematical correlation was developed to predict the distillate mass flow rate by using only evaporation and condensation temperature as inputs. This model was incorporated into a simulation model built using Transient System Simulation software. Long-term simulations were carried out to determine the operating capabilities of the design. A prototype was successfully constructed and operated. Experimental results indicated good agreement with the mass flow rate mathematical correlation. Water quality levels were tested against the South African National Standard 241 national drinking water quality standard. Four quality parameters are outside acceptable levels. Evidence suggested that acceptable quality levels could be reached. The circular distillation cell design is a major contribution made by this research. Another contribution is the simulation model capable of predicting an output for different locations. Finally, the proposed prototype is potentially a very valuable device contributing towards the reduction of consumer demand in terms of water and energy as well as the household load on the wastewater treatment system.
AFRIKAANSE OPSOMMING: Die doel van hierdie tesis is om te beskryf hoe behandelde rioolwater deur middel van ’n son aangedrewe distillasiesisteem gesuiwer kan word om drinkbare water as eindproduk te lewer. Die nodige tegnologieë en konsepte is oorgeneem uit kommersiële sonaangedrewe ontsoutingsisteme om met ’n unieke ontwerp voorendag te kom wat uit ’n sirkelvormige natuurlike konveksie distillasiesel bestaan. Met behulp van hierdie ontwerp is ’n wiskundige korrelasie ontwikkel om die gesuiwerde water se massavloei te bepaal. Slegs die verdampings- en kondensasietemperature word as insetwaardes gebruik om die massavloei te bereken. ’n Simulasiemodel is met behulp van die Transient System Simulation programmatuur gebou. Die wiskundige korrelasie is by die simulasiemodel geïnkorporeer om langtermynsimulasies te kan uitvoer. Voorts is ’n demonstrasiemodel suksesvol gebou en aangedryf. Eksperimentele resultate toon goeie ooreenstemming met die simulasieresultate. Die gesuiwerde water se gehalte is met die nationale SANS 241 drinkwaterstandaard as maatstaf getoets. Slegs vier gehalteparameters val buite die aanvaarbare vlakke, hoewel dit blyk dat hierdie elemente wel tot aanvaarbare vlakke verlaag kan word. Hierdie navorsing se grootstet bydrae is die ontwerp van die unieke sirkelvormige distillasiesel. ’n Bykomende bydra is die aanpasbaarheid van die simulasiemodel sodat dit produksievermoë op verskillende plekke kan voorspel. Die demonstrasiemodel is ’n potensieel waardevolle ontwerp wat kan bydra tot die verlaging in verbruikersaanvraag na water en energie. ’n Ontwerp van hierdie aard kan die las wat huishoudings op suiweringaanlegte vir rioolwater plaas, verlig.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Tianming. "Caractérisations chimiques et biologiques d’extraits de plantes aromatiques et médicinales oubliées ou sous-utilisées de Midi-Pyrénées (France) et de Chongqing (Chine)." Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0039/document.

Full text
Abstract:
Les régions de Midi-Pyrénées (France) et de Chongqing (Chine) sont riches en plantes aromatiques et médicinales dites oubliées (ou médiévales). Afin de valoriser pleinement les différentes bio-molécules extractibles de ces plantes, le concept de MAP-raffinerie a été créé et appliqué à une sélection de plantes issues de ces deux régions. Plusieurs technologies d’extraction utilisant l’eau comme solvant vert (hydrodistillation, distillation à la vapeur et extraction par eau sub-critique) ont ainsi été employées et leur impact tant sur la composition des huiles essentielles que sur la récupération des molécules anti-oxydantes a été évalué. Dans un premier temps, une liste de plantes aromatiques et médicinales oubliées, voire sous-utilisées dans les deux régions a été établie selon des règles de sélection prédéfinies. Six plantes modèles de la région de Midi-Pyrénées (Tussilago farfara L., Calendula arvensis L., Robinia pseudoacacia L., Geranium robertianum L., Cytisus scoparius L. et Spartium junceum L.) et trois plantes de la région de Chongqing (Tussilago farfara L., Citrus aurantium L. et Saussurea costus) ont finalement été retenues. Puis, le concept de MAP-raffinerie a été appliqué à ces plantes afin d’étudier leur possible valorisation globale. L’étude des compositions chimiques des extraits volatils des racines de Tussilago farfara L. et de Calendula arvensis L., ainsi que des boutons de fleurs de Spartium junceum L. a été réalisée par GC et GC-MS pour la première fois. Les principaux composés chimiques dans l’extrait volatil de racines de Tussilago farfara L. étaient des hydrocarbures sesquiterpéniques et des composés aliphatiques tandis que les principaux composés chimiques dans l’extrait volatil de racines de Calendula arvensis L. étaient des sesquiterpènes oxygénés, des monoterpènes oxygénés et des diterpènes oxygénés. L’extrait volatil de boutons de fleurs de Spartium junceum L. était principalement composé de composés aliphatiques. Par ailleurs, les résultats de l’évaluation des capacités anti-oxydantes des extraits (par les tests DPPH, ABTS, FRAP, ORAC et Folin-Ciocalteu) ont montrés que plusieurs plantes comme Cytisus scoparius L., Tussilago farfara L., Citrus aurantium L. ou Robinia pseudoacacia L. pourraient être des sources potentielles d’anti-oxydants naturels. D’un point de vue technologique, les comparaisons de l’utilisation de l’hydrodistillation (HD), de la distillation à la vapeur (SD) et de l’extraction par eau sub-critique (SWE) ont montrées que si la HD et la SD ont des effets limités sur la composition des huiles essentielles, la HD semble être une méthode plus efficace pour la récupération des composés anti-oxydants à partir des résidus de distillation que la SD tandis que la SWE s’avère être une technologie prometteuse pour l’extraction directe de ces molécules à partir des plantes. Si la composition minérale de l’eau lors de l’hydrodistillation n’a que des effets très limités sur les rendements d’extraction, les teneurs en ions calcium et bicarbonate des eaux ont par contre des effets décroissants significatifs sur la capacité anti-oxydante et sur la teneur phénolique totale des extraits aqueux et méthanoliques. Au vue de ces résultats, un concept amélioré de MAP-raffinerie a été développé en intégrant une extraction à l’eau sub-critique pour l’extraction des composés anti-oxydants des résidus d’extraction primaire. Selon ce nouveau concept, cinq extraits peuvent être obtenus à partir des matières végétales: un extrait volatil, un extrait aqueux, un extrait méthanolique, un extrait à l’eau sub-critique et in fine un résidu solide. Les premiers résultats ont montrés que la "MAP-raffinerie améliorée" augmente de manière significative la récupération des antioxydants par rapport à la MAP-raffinerie originale et permet d’envisager une valorisation plus facile du résidu solide en agro-matériaux du fait de sa faible teneur en eau résiduelle
In both Midi-Pyrénées region (France) and Chongqing region (China), there are rich and underutilized medicinal and aromatic plants (MAP). Aiming at fully exploiting different molecules in these plants, the concept of MAP-refinery was developed and applied to several underutilized medicinal and aromatic plants in these two regions. Several water-based green extraction technologies of natural products (e.g. hydrodistillation, steam distillation and subcritical water extraction) were also investigated to look at their effects on essential oil composition and antioxidants recovery from selected plants. Firstly, lists of forgotten or underutilized medicinal and aromatic plants in both regions were established according to the rules of selection. From the lists, six plants in the Midi-Pyrénées region (Tussilago farfara L., Calendula arvensis L., Robinia pseudoacacia L., Geranium robertianum L., Cytisus scoparius L. and Spartium junceum L.) and three plants in the Chongqing region (Tussilago farfara L., Citrum aurantium L. and Saussurea costus) were finally selected for investigations. Then the MAP-refinery was applied to the selected plants in two regions in order to realise their global valorisation. Volatile extracts composition in the roots of Tussilago farfara L. and Calendula arvensis L., as well as flower buds of Spartium junceum L. were firstly investigated. The main chemical compounds in volatile extract from Tussilago farfara L. roots were sesquiterpene hydrocarbons and aliphatic compounds while main chemical compounds in volatile extract from Calendula arvensis L. roots were oxygenated sesquiterpenes, oxygenated monoterpenes and oxygenated diterpenes. The volatile extract from flower buds of Spartium junceum L. was mainly composed of aliphatic compounds. Antioxidant capacity evaluation results (by DPPH, ABTS, FRAC, ORAC and Folin-Ciocalteu tests) showed that several plant samples like Cytisus scoparius L., Tussilago farfara L., Citrum aurantium L. and Robinia pseudoacacia L. could be potential sources of natural antioxidants. Comparisons of hydrodistillation (HD), steam distillation (SD) and subcritical water extraction (SWE) showed that HD and SD had limited effects on essential oil composition but HD, SD and SWE had significant impacts on the recovery of antioxidants. Hydrodistillation seemed to be a better method for recovery of antioxidant compounds from residues of distillation than steam distillation. However, SWE appeared to be a more efficient method for direct extraction of antioxidant molecules (or phenolic compounds) from plants. In the hydrodistillation process, mineral contents in water were found to have very limited effects on yields of extracts but calcium and bicarbonate ions, had significant decreasing effects on antioxidant capacity and total phenolic content of both aqueous and methanolic extracts. Finally, an improved MAP-refinery was developed. Subcritical water was used for further extraction of antioxidant compounds from residues in original MAP-refinery. In this way, five parts could be obtained from plant materials: volatile extract, aqueous extract, methanolic extract, subcritical water extract and the final residue. The results showed that the improved MAP-refinery significantly increased the recovery of antioxidants compared with original MAP-refinery. This promising process will also allow a better valorisation of the final solid residue due to the lower content of residual water
APA, Harvard, Vancouver, ISO, and other styles
6

Peng, Jianjun. "Modeling and control of packed reactive distillation columns." 2003. http://wwwlib.umi.com/cr/utexas/fullcit?p3116136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaymak, Devrim B. "Quantitative comparison of a reactive distillation column with a conventional multi-unit process /." Diss., 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3167059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lextrait, Sébastien Walter. "Packed reactive distillation columns modeling, simulation, and control analyses /." Thesis, 2003. http://wwwlib.umi.com/cr/utexas/fullcit?p3116372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Levien, Keith Lester. "Studies in the design and control of coupled distillation columns." 1985. http://catalog.hathitrust.org/api/volumes/oclc/12292882.html.

Full text
Abstract:
Thesis (Ph. D.)--University of Wisconsin--Madison, 1985.
Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 453-462).
APA, Harvard, Vancouver, ISO, and other styles
10

Talanda, Colin Erlo. "The design, construction and testing of a mobile essential oil distillation unit." Thesis, 2005. http://hdl.handle.net/10413/10670.

Full text
Abstract:
Steam distillation is the most widely accepted process for the large scale production of volatile essential oils from herbaceous material and is also regarded as the standard practice throughout the flavour and fragrance industry. A mobile essential oil distillation unit for the extraction of oils from herbaceous materials would be extremely valuable to the essential oil industry in South Africa. Using a mobile platform, the extraction technology could be taken to rural areas where essential oil crops are grown in order to extract and then analyse the oils produced. Existing systems in South Africa are static distillation units which are usually owned by commercial growers that are generally positioned large distances away from the rural areas. The objective of this project was to design, construct and test a prototype mobile distillation unit for the extraction of essential oils from herbaceous materials. The unit was to have a charge vessel capacity of approximately 250 kg of plant material and should be able to perform in-field distillations in areas where electricity is not available. A literature review on all the essential oil extraction methods, the theory behind steam distillation and oil isolation and the effect that each of the distillation components have on the distillation process was performed. A small test distillation unit was set up in a laboratory in order to investigate the effects of varying steam flow . rates on the distillation time, oil yield and oil quality. A double charge vessel unit was designed, constructed and mounted onto a frame which in turn was fixed onto a trailer to be hauled by a light delivery vehicle (LDV). The steam generator with all its ancillary equipment was fixed onto a separate trailer. The unit could thus be easily transported and in-field distillations on various crops could be conducted. Field distillations were conducted with two crop types, namely rose geranium and lemon grass. Satisfactory results were obtained as the oil yields were within the expected oil yield range.
Thesis (M.Sc.)-University of KwaZulu-Natal, 2005.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Distillation apparatus Distillation apparatus"

1

Kister, Henry Z. Distillation troubleshooting. Hoboken, N.J: Wiley, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Distillation troubleshooting. Hoboken, NJ: Wiley-Interscience, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kister, Henry Z. Distillation troubleshooting. Hoboken, N.J: AIChE, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Distillation tray fundamentals. Cambridge: Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Erika. Pervaporation, vapor permeation, and membrane distillation. Norwalk, CT: Business Communications Co., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Distillation design in practice. Amsterdam: Elsevier, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lockett, M. J. Distillationtray fundamentals. Cambridge: Cambridge University Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Luyben, William L. Reactive distillation design and control. Hoboken, N.J: John Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1956-, Yu Cheng-Ching, ed. Reactive distillation design and control. Hoboken, N.J: John Wiley, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

L, Luyben William, and Shunta Joseph P, eds. Design of distillation column control systems. London: Edward Arnold, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Conference papers on the topic "Distillation apparatus Distillation apparatus"

1

Sari, Mila, and Irvan S. Kartawiria. "Design of spray distillation apparatus for ethanol purification." In THE 11TH REGIONAL CONFERENCE ON CHEMICAL ENGINEERING (RCChE 2018). Author(s), 2019. http://dx.doi.org/10.1063/1.5095048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diawati, Chansyanah, Liliasari, Agus Setiabudi, and Buchari. "Students’ construction of a simple steam distillation apparatus and development of creative thinking skills: A project-based learning." In MATHEMATICS, SCIENCE, AND COMPUTER SCIENCE EDUCATION (MSCEIS 2016): Proceedings of the 3rd International Seminar on Mathematics, Science, and Computer Science Education. Author(s), 2017. http://dx.doi.org/10.1063/1.4983934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Madhusoodanan, M. R., V. Sajith, and C. B. Sobhan. "Experimental Investigation of Phase Change Phenomena in Nanofluids." In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32771.

Full text
Abstract:
Thermophysical properties of water like the thermal conductivity, viscosity and the surface tension are observed to change by the addition of nanoparticles. The nature of the variation of these properties with the addition of nanoparticles is a topic of increasing research interest. Rate of evaporation at a liquid surface is affected by various factors, among which the surface tension is the most predominant, and inversely affects the rate of evaporation. The introduction of nano particles into a base fluid obviously makes changes in surface geometry, which in turns alters the surface tension and hence the rate of evaporation. The present experimental study deals with the evaporation of nanofluids, obtained by suspending metal oxide nanoparticles in water. The rate of evaporation was determined by precise measurement of the rate of loss of weight of the nanofluid upon heating, keeping other parameters constant. Experiments with pure water and suspension of aluminum oxide nanoparticles showed that the rate of evaporation of the nanofluid is less compared to that of water, though a definite trend in the variation of the rate of evaporation with respect to the dosing level of nanoparticles was not found to exist. The surface tension is measured using the capillary rise method, which was observed to increase with nanoparticle addition without showing any clear functional relation with the nanoparticle dosing level. Distillation of nanofluids using standard apparatus also indicated a decrease in the evaporation rate with the addition of nanoparticles to the base fluid.
APA, Harvard, Vancouver, ISO, and other styles
4

Terada, Atsuhiko, Jin Iwatsuki, Hirokaki Takegami, Shinji Kubo, Nariaki Sakaba, and Kaoru Onuki. "Research and Development on Hydrogen Production by Thermochemical Water-Splitting IS Process." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58088.

Full text
Abstract:
A project using the High Temperature Engineering Test Reactor (HTTR) is being proceeded at the Japan Atomic Energy Agency (JAEA), which aims to develop technologies of nuclear production of hydrogen to meet its massive demand in future. The HTTR with thermal power of 30MW is the Japanese high-temperature gas-cooled reactor (HTGR), built and operated at the site of the Oarai Research & Development Center of JAEA. Under the HTTR project, JAEA has been conducting research and development on thermochemical IS process aiming to reach its final goal of demonstrating the nuclear hydrogen production by an HTTR-IS system. The IS process is a chemical process composed of three reactions, i.e. hydrogen iodide decomposition, sulfuric acid decomposition, and production of hydrogen iodide and sulfuric acid. JAEA completed one-week continuous hydrogen production using a glass-made bench-scale test apparatus equipped with an automatic control system in 2004, where the hydrogen production rate was about 30 NL/hr. Based on the successful test, present activity focuses on the development of components to be used in the corrosive process environments and, also, of technologies to realize high thermal efficiency of hydrogen production. This paper describes present status of the activities such as conceptual design of a test plant driven by sensible heat of helium gas heated by an electric heater simulating the HTTR, and component tests for service in the corrosive environments of high temperature sulfuric acid. Also, R&D results are described on glass lining technologies and a reliability evaluation of components made of SiC ceramics, which are promising candidates for application to, e.g. the sulfuric acid decomposer and the hydriodic acid distillation column.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography