Academic literature on the topic 'Distributed Feedback Laser (DFB)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributed Feedback Laser (DFB).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Distributed Feedback Laser (DFB)"

1

Huang, Wen Zhu, Wen Tao Zhang, Huai Xiang Ma, Fang Li, and Yan Liang Du. "Distributed Feedback Fiber Laser Rosette for Acoustic Emission Detection." Applied Mechanics and Materials 330 (June 2013): 412–17. http://dx.doi.org/10.4028/www.scientific.net/amm.330.412.

Full text
Abstract:
This study aims at providing a practical method in large structure health monitoring. A novel fiber optic rosette based on distributed feedback (DFB) fiber laser for acoustic emission (AE) detection and location is presented. The ultra-narrow line width of the DFB fiber laser will result in high resolution in AE wave detection using a fiber optic interferometric demodulation method. The directivity of the fiber optic rosette is investigated. A rosette with three DFB fiber lasers is tested in the experiment to determine the direction of propagation of AE waves.
APA, Harvard, Vancouver, ISO, and other styles
2

LUO, YI, and WEI WANG. "DISTRIBUTED FEEDBACK SEMICONDUCTOR LASERS AND THEIR APPLICATION IN PHOTONIC INTEGRATED DEVICES." International Journal of High Speed Electronics and Systems 07, no. 03 (September 1996): 409–28. http://dx.doi.org/10.1142/s0129156496000220.

Full text
Abstract:
Distributed feedback (DFB) semiconductor lasers, especially those with gain-coupled (GC) mechanisms, are studied. A GaAlAs/GaAs multi-quantum well GC-DFB laser with a loss grating is fabricated using MBE for the first time. A 1.3 µm InGaAsP/InP DFB laser with a loss grating and one with a gain grating formed by injected carriers are developed by LPE and MOVPE, respectively. GC-DFB lasers monolithically integrated with electroabsorption modulator is studied systematically for the first time. A novel integrated device structure is proposed and fabricated successfully.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhai, Tianrui, Xiaojie Ma, Liang Han, Shuai Zhang, Kun Ge, Yanan Xu, Zhiyang Xu, and Libin Cui. "Self-Aligned Emission of Distributed Feedback Lasers on Optical Fiber Sidewall." Nanomaterials 11, no. 9 (September 13, 2021): 2381. http://dx.doi.org/10.3390/nano11092381.

Full text
Abstract:
This article assembles a distributed feedback (DFB) cavity on the sidewalls of the optical fiber by using very simple fabrication techniques including two-beam interference lithography and dip-coating. The DFB laser structure comprises graduated gratings on the optical fiber sidewalls which are covered with a layer of colloidal quantum dots. Directional DFB lasing is observed from the fiber facet due to the coupling effect between the grating and the optical fiber. The directional lasing from the optical fiber facet exhibits a small solid divergence angle as compared to the conventional laser. It can be attributed to the two-dimensional light confinement in the fiber waveguide. An analytical approach based on the Bragg condition and the coupled-wave theory was developed to explain the characteristics of the laser device. The intensity of the output coupled laser is tuned by the coupling coefficient, which is determined by the angle between the grating vector and the fiber axis. These results afford opportunities to integrate different DFB lasers on the same optical fiber sidewall, achieving multi-wavelength self-aligned DFB lasers for a directional emission. The proposed technique may provide an alternative to integrating DFB lasers for applications in networking, optical sensing, and power delivery.
APA, Harvard, Vancouver, ISO, and other styles
4

Bousseta, Hamza, A. Zatni, A. Amghar, A. Moumen, and A. Elyamani. "Dynamic Response of Two-Electrode Distributed Feedback Laser for Stable Signal Mode Operation." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 1 (February 1, 2015): 23. http://dx.doi.org/10.11591/ijece.v5i1.pp23-30.

Full text
Abstract:
The longitudinal spatial hole burning (LSHB) effect has been known to limit the performance of distributed feedback (DFB) semiconductor lasers to achieve a better dynamic signal mode operation (DSMO). So, in order to ensure a stable (DSMO), we propose a novel device design of two electrode DFB lasers with longitudinal variation in the coupling coefficient (distributed coupling coefficient (DCC)), the structure also contains a phase shifted in middle of the cavity. By means of the finite difference time domain (FDTD) numerical method, we analyze dynamic response of our structure and we also compare the results with the conventional two electrode DFB laser (TE-DFB). The numerical simulation shows that, a better dynamic signal mode has been achieved by TE-DCC-DFB lasers in comparison with TE-DFB laser due to its better and high side mode suppression ratio (SMSR). Therefore, the TE-DCC-DFB lasers will be useful to extend the transmission distance in optical fiber communication systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhou, Puxi, Lianze Niu, Anwer Hayat, Fengzhao Cao, Tianrui Zhai, and Xinping Zhang. "Operating Characteristics of High-Order Distributed Feedback Polymer Lasers." Polymers 11, no. 2 (February 3, 2019): 258. http://dx.doi.org/10.3390/polym11020258.

Full text
Abstract:
In this study, high-order distributed-feedback (DFB) polymer lasers were comparatively investigated. Their performance relies on multiple lasing directions and their advantages include their high manufacturing tolerances due to the large grating periods. Nine laser cavities were fabricated by spin-coating the gain polymer films onto a grating structure, which was manufactured via interference lithography that operated at the 2nd, 3rd, and 4th DFB orders. Low threshold lasing and high slope efficiency were achieved in high-order DFB polymer lasers due to the large grating groove depth and the large gain layer thickness. A high-order DFB configuration shows possible advantages, including the ability to control the lasing direction and to achieve multiple-wavelength lasers. Furthermore, our investigation demonstrates that the increase in threshold and decrease in slope efficiency with an increase in the feedback order can be limited by controlling the structural parameters.
APA, Harvard, Vancouver, ISO, and other styles
6

Teng, Jing Hua, Lip Fah Chong, J. R. Dong, Soo Jin Chua, Norman Soo Seng Ang, Yan Jun Wang, and Ee Leong Lim. "Distributed Feedback Laser Using Buried Dielectric Grating." Advanced Materials Research 31 (November 2007): 189–91. http://dx.doi.org/10.4028/www.scientific.net/amr.31.189.

Full text
Abstract:
In this paper, we report a DFB laser diode with a buried SiO2 grating. Epitaxy lateral overgrowth by metalorganic chemical vapour deposition (MOCVD) is conducted to grow the p-type InP cladding layers in the nano-patterned dielectric grating template. The large refractive index difference between SiO2 and InP results an index coupling coefficient κ of about 250 cm-1. The fabricated DFB laser showed a side mode suppression ratio larger than 45 dB measured. The technology developed can also be used for other applications that require high efficiency grating structure.
APA, Harvard, Vancouver, ISO, and other styles
7

Bouchene, Mohammed Mehdi, Rachid Hamdi, and Qin Zou. "Theorical analysis of a monolithic all-active three-section semiconductor laser." Photonics Letters of Poland 9, no. 4 (December 31, 2017): 131. http://dx.doi.org/10.4302/plp.v9i4.785.

Full text
Abstract:
We propose a novel semiconductor laser structure. It is composed of three cascaded active sections: a Fabry-Pérot laser section sandwiched between two gain-coupled distributed feedback (DFB) laser sections. We have modeled this multi-section structure. The simulation results show that compared with index- and gain-coupled DFB lasers, a significant reduction in the longitudinal spatial-hole burning can be obtained with the proposed device, and that this leads to a stable single longitudinal mode operation at relatively high optical power with a SMSR exceeding 56dB. Full Text: PDF ReferencesL.A. Coldren, "Monolithic tunable diode lasers", IEEE J. Select. Topics Quant. Electron. 6, 988 (2000) CrossRef O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 [micro sign]m wavelength", Electron. Lett. 33(6), 488 (1997). CrossRef N. Kim, J. Shin, E. Sim, C.W. Lee, D.-S. Yee, M.Y. Jeon, Y. Jang, K.H. Park, "Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation", Opt. Expr. 17(16), 13851 (2009). CrossRef M.J. Wallace, R. ORreilly Meehan, R.R Enright, F. Bello, D. Mccloskey, B. Barabadi, E.N. Wang, J.F. Donegan, "Athermal operation of multi-section slotted tunable lasers", Opt. Expr. 25(13), 14426 (2017). CrossRef J.E. Carroll, J.E.A. Whiteaway, R.G.S. Plumb, "Distributed Feedback Semiconductor Lasers", Distributed feedback semiconductor lasers (IEE and SPIE, 1998). CrossRef H. Ghafour-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003). CrossRef D.D. Marcenac, Ph.D dissertation (University of Cambridge, 1993). DirectLink L.M. Zhang, J.E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser", IEEE J. Quant. Electr. 29, 1722 (1993). CrossRef W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation", IEEE J. Quant. Electro. 36(10), 1110 (2000). CrossRef B.M. Mehdi, H. Rachid, in Proc. 3rd Intern. Conf. on Embedded Systems in Telecomm. and Instrument., Annaba, Algeria (2016). DirectLinkC. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J.Quant. Electr. QE-18, 259 (1982). CrossRef K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, A. Kasukawa, "Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-/spl mu/m continuous-wave distributed-feedback (CW-DFB) laser diodes", IEEE J. Quant. Electr. 39, 1060 (2003) CrossRef
APA, Harvard, Vancouver, ISO, and other styles
8

Al-Hosiny, N. M., R. El-Agmy, M. M. Abd El-Raheem, and M. J. Adams. "Distributed feedback (DFB) laser under strong optical injection." Optics Communications 283, no. 4 (February 2010): 579–82. http://dx.doi.org/10.1016/j.optcom.2009.10.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Groothoff, Nathaniel, John Canning, Tom Ryan, Katja Lyytikainen, and Hugh Inglis. "Distributed feedback photonic crystal fibre (DFB-PCF) laser." Optics Express 13, no. 8 (2005): 2924. http://dx.doi.org/10.1364/opex.13.002924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dhoore, Sören, Anna Köninger, Ralf Meyer, Gunther Roelkens, and Geert Morthier. "Electronically Tunable Distributed Feedback (DFB) Laser on Silicon." Laser & Photonics Reviews 13, no. 3 (January 11, 2019): 1800287. http://dx.doi.org/10.1002/lpor.201800287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Distributed Feedback Laser (DFB)"

1

Espe, Burt Lann. "MATLAB simulation of a distributed feedback (DFB) laser with chirp effects." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA297053.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering) Naval Postgraduate School, December 1994.
"December 1994." Thesis advisor(s): John P. Powers,Randy L. Borchardt. Includes bibliographical references. Also available online.
APA, Harvard, Vancouver, ISO, and other styles
2

Yu, Zhou. "Optical Properties of Deoxyribonucleic Acid (DNA) and Its Application in Distributed Feedback (DFB) Laser Device Fabrication." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1154706431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moore, Jeanne. "TRANSPORTATION OF THE RF SPECTRA OVER FIBER: A WORKING SYSTEM." International Foundation for Telemetering, 2000. http://hdl.handle.net/10150/606790.

Full text
Abstract:
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California
This paper presents the results of installing a distributed feedback (DFB) laser transmitter and the appropriate optical receiver in an operational site. Frequencies from 1435 to 2400 megahertz are transported intact from a remote site to a local site. From the theoretical calculations, 10 dB of dynamic range may need to be recovered by the use of an automatic gain circuit. The actual device is a delight, needing no additional circuitry to meet specifications. Predictions of performance were made from calculations. The installed system was measured for 1 dB compression point and for figure of merit.
APA, Harvard, Vancouver, ISO, and other styles
4

Shen, Yangfei. "Coupled Wave Analysis of Two-Dimensional Second Order Surface-Emitting Distributed Feedback Lasers." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1461713975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dupont, Tiphaine. "Réalisation de sources laser III-V sur silicium." Phd thesis, Ecole Centrale de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00604962.

Full text
Abstract:
Le substrat SOI (Silicon-On-Insulator) constitue aujourd'hui le support de choix pour la fabrication de fonctions optiques compactes. Cette plateforme commune avec la micro-électronique favorise l'intégration de circuits photoniques avec des circuits CMOS. Néanmoins, si le silicium peut être utilisé de manière très avantageuse pour la fabrication de composants optiques passifs, il présente l'inconvénient d'être un très mauvais émetteur de lumière. Ceci constitue un obstacle majeur au développement de sources d'émission laser, briques de constructions indispensables à la fabrication d'un circuit photonique. La solution exploitée dans le cadre de cette thèse consiste à reporter sur SOI des épitaxies laser III-V par collage direct SiO2-SiO2. L'objectif est de réaliser sur SOI des sources lasers à cavité horizontale permettant d'injecter au moins 1mW de puissance dans un guide d'onde silicium inclus dans le SOI. Notre démarche est de transférer un maximum des fonctions du laser vers le silicium, dont les procédés sont familiers au monde de la micro-électronique. Dans l'idéal, le III-V ne devrait être utilisé que comme matériau à gain ; la cavité laser pouvant être fabriquée dans le silicium. Mais cette ligne de conduite n'est pas forcément aisée à mettre en œuvre. En effet, les photons sont produits dans le III-V mais doivent être injectés dans un guide silicium placé sous l'épitaxie. La difficulté est que les deux matériaux sont séparés par plus d'une centaine de nanomètres d'oxyde de collage faisant obstacle au transfert de photons. Le développement de lasers III-V couplés à un guide d'onde SOI demande alors de nouvelles conceptions du système laser dans son ensemble. Notre travail a donc consisté à concevoir un laser hybride III-IV / silicium se pliant aux contraintes technologiques du collage. En s'appuyant sur la théorie des modes couplés et les concepts des cristaux photoniques, nous avons imaginé, réalisé, puis caractérisé un laser à contre-réaction distribuée hybride (en anglais : " distributed feedback laser ", laser DFB). Son fonctionnement optique original, permet à la fois un maximum de gain et d'efficacité de couplage grâce à une circulation en boucle des photons du guide III-V au guide SOI. Sur ces dispositifs, nous montrons une émission laser monomode (SMSR de 35 dB) à température ambiante en pompage optique et électrique pulsé. Comme attendu, la longueur d'onde d'émission est dépendante du pas de réseau DFB. Les lasers fonctionnent avec une épaisseur de collage de silice de 200 nm, ce qui offre une grande souplesse quant au procédé d'intégration. Tous les lasers fonctionnent jusqu'à des longueurs de 150 μm (la plus petite longueur prévue sur le masque). Malgré les faibles niveaux de puissances récoltés dans la fibre lors des caractérisations, la prise en compte des pertes optiques induites pas les coupleurs fibres nous indique que la puissance réellement injectée dans le guide silicium dépasse le milliwatt. Notre objectif de ce point de vue est donc rempli. Malheureusement le fonctionnement des lasers en injection électrique continue n'a pas pu être obtenu dans les délais impartis. Cependant, les faibles densités de courant de seuil mesurées en injection pulsée (300A / cm2 à température ambiante sur les lasers de 550 μm de long) laissent présager un fonctionnement prochain en courant continu.
APA, Harvard, Vancouver, ISO, and other styles
6

Van, Dommelen Ronnie Francis. "Bistable distributed feedback laser diodes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0020/MQ48293.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Todt, René. "Widely tunable laser diodes with distributed feedback /." München : Walter-Schottky-Institut, Technische Universität München, 2006. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=3932749790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hadeler, Oliver. "Distributed feedback fibre laser strain and temperature sensors." Thesis, University of Southampton, 2002. https://eprints.soton.ac.uk/46100/.

Full text
Abstract:
This thesis presents the development of two new types of polarimetric distributed feedback (DFB) fibre laser sensors for simultaneous strain and temperature measurements. These fibre Bragg grating (FBG) based sensors offer strain and temperature measurement accuracies of ±0.3 - ±15 με and ±0.04 - ±0.2°C which are suitable for many applications. The main advantage of these DFB fibre laser sensors over other FBG based sensors is the simplicity of their interrogation system. The first type of sensor operates stably in a single longitudinal mode which splits into two orthogonally polarised modes. This sensor utilises the wavelength of one polarisation mode and the RF beat frequency between the two polarisation modes. The system complexity is reduced to a minimum in the dual longitudinal mode polarirnetric DFB fibre laser sensor which utilises the RF beat frequencies between two longitudinal modes and their associated orthogonal polarisations, therefore requiring only a simple and cost effective frequency counter. -ions and pump excited state absorption into account. An extended version of this model incorporates, for the first time, self-heating in DFB fibre lasers which is caused by non-radiative decays. The performance of DFB fibre lasers employed in telecommunication applications is likely to benefit from these modelled results, which are also verified by experimental data.
APA, Harvard, Vancouver, ISO, and other styles
9

Pang, Wing Chung. "Ultrashort pulse generation with a distributed feedback dye laser." Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kao, Tsung-Yu. "Surface-emitting distributed feedback terahertz quantum-cascade phase-locked laser arrays." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54235.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 111-114).
A new approach to achieve high-power, symmetric beam-pattern, single-mode THz emission from metal-metal waveguide quantum-cascade laser is proposed and implemented. Several surface-emitting distributed feedback terahertz lasers are coupled through the connection phase sectors between them. Through carefully choosing the length of phase sectors, each laser will be in-phase locked with each other and thus create a tighter beam-pattern along the phased-array direction. A clear proof of phase-locking phenomenon has been observed and the array can be operated in either in-phase or out-of-phase mode at different phase sector length. The phase sector can also be individually biased to provide another frequency tuning mechanism through gain-induced optical index change. A frequency tuning range of 1:5 GHz out of 3:9 THz was measured. Moreover, an electronically controlled "beam steering" device is also proposed based on the result of this work. This thesis focuses on the design, fabrication and measurement of the surface-emitting distributed feedback terahertz quantum-cascade phase-locked laser arrays.
by Tsung-Yu Kao.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Distributed Feedback Laser (DFB)"

1

Patrick, Vankwikelberge, ed. Handbook of distributed feedback laser diodes. Boston: Artech House, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patrick, Vankwikelberge, ed. Handbook of distributed feedback laser diodes. Boston: Artech House, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ghafouri-Shiraz, H. Distributed feedback laser diodes: Principles and physical modeling. New York: Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghafouri-Shiraz, H. Distributed feedback laser diodes: Principles and physical modeling. Chichester, West Sussex: Wiley, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode. [Washington, DC: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

D, Martin R., and United States. National Aeronautics and Space Administration., eds. CW performance of an InGaAs-GaAs-AlGaAs laterally-coupled distributed feedback (LC-DFB) ridge laser diode. [Washington, DC: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Distributed Feedback Laser Diodes and Optical Tunable Filters. Wiley, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ghafouri-Shiraz, H. Distributed Feedback Laser Diodes and Optical Tunable Filters. Wiley & Sons, Incorporated, John, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghafouri-Shiraz, H. Distributed Feedback Laser Diodes and Optical Tunable Filters. Wiley & Sons, Incorporated, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yeo, Terence Edward. Novel high precision microlithographic techniques applicable to distributed feedback laser grating manufacture. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Distributed Feedback Laser (DFB)"

1

Weik, Martin H. "distributed-feedback laser." In Computer Science and Communications Dictionary, 443. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weik, Martin H. "Surface-Emitting Distributed-Feedback Laser." In Computer Science and Communications Dictionary, 1693. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_18622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Golub, I., R. Shuker, and G. Erez. "Laser-Controlled Reflection with a Distributed Feedback Dye Laser." In Gas Flow and Chemical Lasers, 66–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71859-5_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Teng, Jing Hua, Lip Fah Chong, J. R. Dong, Soo Jin Chua, Norman Soo Seng Ang, Yan Jun Wang, and Ee Leong Lim. "Distributed Feedback Laser Using Buried Dielectric Grating." In Semiconductor Photonics: Nano-Structured Materials and Devices, 189–91. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

York, Pam, Ray Martinelli, Ray Menna, Dave Cooper, Harris Riris, and Clint Carlise. "Distributed Feedback Lasers for Diode Laser Gas Sensing." In Guided-Wave Optoelectronics, 115–23. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1039-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gale, G. M., P. Schanne, and P. Ranson. "Coherent Time- and Frequency-Domain Spectroscopy with a Picosecond Distributed Feedback Dye Laser." In Ultrafast Phenomena VI, 363–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Joshin, K., K. Kamite, T. Mimura, and M. Abe. "Electro-Optic Sampling of a Flip-Chip with a Distributed Feedback Laser Diode." In Ultrafast Phenomena VI, 189–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cho, Jun-Hyung, Seo Weon Heo, and Hyuk-Kee Sung. "Strong Self-Pulsations in a Multi-Electrode Distributed Feedback Laser Integrated With an Electro-Absorption Modulator." In Lecture Notes in Electrical Engineering, 467–70. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6516-0_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Akiba, Shigeyuki. "Distributed Feedback Laser." In Encyclopedic Handbook of Integrated Optics, 42–52. CRC Press, 2018. http://dx.doi.org/10.1201/9781315220949-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Distributed Feedback Lasers." In Semiconductor Laser Fundamentals. CRC Press, 2004. http://dx.doi.org/10.1201/9780203020470.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Distributed Feedback Laser (DFB)"

1

Hashimoto, Jun-ichi, Kenji Koyama, Takashi Ishizuka, Yukihiro Tsuji, Kousuke Fujii, Takashi Yamada, Chie Fukuda, Yutaka Onishi, and Tsukuru Katsuyama. "GaInNAs Distributed Feedback (DFB) Laser Diode." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Froidure, Jean-Christophe, Christophe Lebrun, Patrice Megret, Emmanuel Jaunart, P. Goerg, T. Tasia, M. Lamquin, and Michel Blondel. "Second-order distortions in CATV distributed feedback (DFB) laser diodes." In Advanced Networks and Services, edited by S. Iraj Najafi and Henri Porte. SPIE, 1995. http://dx.doi.org/10.1117/12.201977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

De Iuliis, Jason D., Nathaniel Groothoff, John L. Holdsworth, John Canning, Cicero Martelli, Andrew Michie, and Stuart Jackson. "10 kHz linewidth distributed feedback photonic crystal fibre (DFB-PCF) laser." In 19th International Conference on Optical Fibre Sensors, edited by David D. Sampson. SPIE, 2008. http://dx.doi.org/10.1117/12.785958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Guo P. "Gain-coupled distributed-feedback (DFB) laser array for wavelength division multiplexing systems." In Photonics West '95, edited by Emil S. Koteles. SPIE, 1995. http://dx.doi.org/10.1117/12.205281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Zhou, Yaling Zhou, David J. Klotzkin, James G. Grote, and Andrew J. Steckl. "Stimulated emission of sulforhodamine 640 doped DNA distributed feedback (DFB) laser devices." In Integrated Optoelectronic Devices 2007, edited by James G. Grote, Francois Kajzar, and Nakjoong Kim. SPIE, 2007. http://dx.doi.org/10.1117/12.701429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garrod, Toby J., Don Olson, Yan Xiao, and Manoj Kanskar. "Long wavelength surface-emitting distributed feedback (SE-DFB) laser for range finding applications." In SPIE LASE, edited by Mark S. Zediker. SPIE, 2012. http://dx.doi.org/10.1117/12.909639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garrod, Toby J., Don Olson, and Yan Xiao. "High-power surface emitting distributed feedback (SE-DFB) lasers." In 2012 IEEE Photonics Society Summer Topical Meeting Series. IEEE, 2012. http://dx.doi.org/10.1109/phosst.2012.6280695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoshinaga, Hiroyuki, Takashi Kato, Hiroki Mori, Yukihiro Tsuji, Makoto Murata, Masaki Migita, Jun-ichi Hashimoto, Mitsuru Ekawa, Yasuhiro Iguchi, and Tsukuru Katsuyama. "High-Temperature (200 °C) Operation of 7.4 μm Distributed Feedback (DFB) Quantum Cascade Laser." In 2018 IEEE International Semiconductor Laser Conference (ISLC). IEEE, 2018. http://dx.doi.org/10.1109/islc.2018.8516152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sunak, Harish R. D., and Clark P. Engert. "Design Of Distributed Feedback(DFB) Laser-Based External Cavity Structures For Coherent Communications." In O-E/Fiber LASE '88, edited by Paul M. Kopera and Harish R. Sunak. SPIE, 1989. http://dx.doi.org/10.1117/12.959762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Presti, Damian, Fabian Videla, and Gustavo Torchia. "Design, development and characterization of a DFB (distributed feedback) laser diode control system." In 2015 XVI Workshop on Information Processing and Control (RPIC). IEEE, 2015. http://dx.doi.org/10.1109/rpic.2015.7497095.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Distributed Feedback Laser (DFB)"

1

Browning, D. F., and G. V. Erbert. Distributed Feedback Fiber Laser The Heart of the National Ignition Facility. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/15006276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography