To see the other types of publications on this topic, follow the link: Distributed Feedback Lasers.

Journal articles on the topic 'Distributed Feedback Lasers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Distributed Feedback Lasers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tianrui Zhai, Tianrui Zhai, Xinping Zhang Xinping Zhang, Zhaoguang Pang Zhaoguang Pang, and Hongmei Liu Hongmei Liu. "Experimental study of polymer distributed feedback lasers." Chinese Optics Letters 10, s1 (2012): S11409–311411. http://dx.doi.org/10.3788/col201210.s11409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zavelani-Rossi, M., S. Perissinotto, G. Lanzani, M. Salerno, and G. Gigli. "Laser dynamics in organic distributed feedback lasers." Applied Physics Letters 89, no. 18 (October 30, 2006): 181105. http://dx.doi.org/10.1063/1.2372597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turitsyn, Sergei K., Sergey A. Babin, Dmitry V. Churkin, Ilya D. Vatnik, Maxim Nikulin, and Evgenii V. Podivilov. "Random distributed feedback fibre lasers." Physics Reports 542, no. 2 (September 2014): 133–93. http://dx.doi.org/10.1016/j.physrep.2014.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Syms, R. "Multiple-waveguide distributed feedback lasers." IEEE Journal of Quantum Electronics 22, no. 3 (March 1986): 411–18. http://dx.doi.org/10.1109/jqe.1986.1072980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bor, Z., and A. Muller. "Picosecond distributed feedback dye lasers." IEEE Journal of Quantum Electronics 22, no. 8 (August 1986): 1524–33. http://dx.doi.org/10.1109/jqe.1986.1073136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faist, Jérome, Claire Gmachl, Federico Capasso, Carlo Sirtori, Deborah L. Sivco, James N. Baillargeon, and Alfred Y. Cho. "Distributed feedback quantum cascade lasers." Applied Physics Letters 70, no. 20 (May 19, 1997): 2670–72. http://dx.doi.org/10.1063/1.119208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McGehee, M. D., M. A. Dı́az-Garcı́a, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger. "Semiconducting polymer distributed feedback lasers." Applied Physics Letters 72, no. 13 (March 30, 1998): 1536–38. http://dx.doi.org/10.1063/1.121679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Zhenyu, and Demetri Psaltis. "Optofluidic Distributed Feedback Dye Lasers." IEEE Journal of Selected Topics in Quantum Electronics 13, no. 2 (2007): 185–93. http://dx.doi.org/10.1109/jstqe.2007.894051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ghafouri-Shiraz, H., and C. Y. J. Chu. "Distributed feedback lasers: An overview." Fiber and Integrated Optics 10, no. 1 (January 1991): 23–47. http://dx.doi.org/10.1080/01468039108201603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vurgaftman, I., and J. R. Meyer. "Photonic-crystal distributed-feedback lasers." Applied Physics Letters 78, no. 11 (March 12, 2001): 1475–77. http://dx.doi.org/10.1063/1.1355670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dutta, N. K., A. B. Piccirilli, T. Cella, and R. L. Brown. "Electronically tunable distributed feedback lasers." Applied Physics Letters 48, no. 22 (June 2, 1986): 1501–3. http://dx.doi.org/10.1063/1.96900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Xi, Yanping, Xun Li, Seyed M. Sadeghi, and Wei-Ping Huang. "Dispersive-grating distributed feedback lasers." Optics Express 16, no. 14 (July 3, 2008): 10809. http://dx.doi.org/10.1364/oe.16.010809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Westbrook, Paul S., Kazi S. Abedin, Jeffrey W. Nicholson, Tristan Kremp, and Jerome Porque. "Raman fiber distributed feedback lasers." Optics Letters 36, no. 15 (July 27, 2011): 2895. http://dx.doi.org/10.1364/ol.36.002895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Westbrook, P. S., K. S. Abedin, T. F. Taunay, T. Kremp, J. Porque, E. Monberg, and M. Fishteyn. "Multicore fiber distributed feedback lasers." Optics Letters 37, no. 19 (September 20, 2012): 4014. http://dx.doi.org/10.1364/ol.37.004014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kneubühl, F. K., and J. Feng. "Distributed feedback lasers and solitons." Infrared Physics & Technology 36, no. 1 (January 1995): 237–43. http://dx.doi.org/10.1016/1350-4495(94)00104-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, G., S. R. Seshadri, and F. Cerrina. "Distributed feedback lasers with distributed phase‐shift structure." Applied Physics Letters 60, no. 21 (May 25, 1992): 2586–88. http://dx.doi.org/10.1063/1.106917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Minch, J. R., Chih-Sheng Chang, and Shun-Lien Chuang. "Wavelength conversion in distributed-feedback lasers." IEEE Journal of Selected Topics in Quantum Electronics 3, no. 2 (April 1997): 569–76. http://dx.doi.org/10.1109/2944.605708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wright, Jeremy B., Salvatore Campione, Sheng Liu, Julio A. Martinez, Huiwen Xu, Ting S. Luk, Qiming Li, et al. "Distributed feedback gallium nitride nanowire lasers." Applied Physics Letters 104, no. 4 (January 27, 2014): 041107. http://dx.doi.org/10.1063/1.4862193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Mathies, Florian, Philipp Brenner, Gerardo Hernandez-Sosa, Ian A. Howard, Ulrich W. Paetzold, and Uli Lemmer. "Inkjet-printed perovskite distributed feedback lasers." Optics Express 26, no. 2 (January 4, 2018): A144. http://dx.doi.org/10.1364/oe.26.00a144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Del Carro, P., A. Camposeo, R. Stabile, E. Mele, L. Persano, R. Cingolani, and D. Pisignano. "Near-infrared imprinted distributed feedback lasers." Applied Physics Letters 89, no. 20 (November 13, 2006): 201105. http://dx.doi.org/10.1063/1.2387974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sadeghi, S. M., and W. Li. "Electromagnetically induced distributed feedback intersubband lasers." IEEE Journal of Quantum Electronics 41, no. 10 (October 2005): 1227–34. http://dx.doi.org/10.1109/jqe.2005.853871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Winful, Herbert G., Irina V. Kabakova, and Benjamin J. Eggleton. "Model for distributed feedback Brillouin lasers." Optics Express 21, no. 13 (June 28, 2013): 16191. http://dx.doi.org/10.1364/oe.21.016191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

NAKANO, Yoshiaki, and Kunio TADA. "Short wavelength distributed feedback semiconductor lasers." Review of Laser Engineering 16, no. 11 (1988): 732–40. http://dx.doi.org/10.2184/lsj.16.732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

TIAN Kun, 田. 锟., 邹永刚 ZOU Yong-gang, 马晓辉 MA Xiao-hui, 郝永芹 HAO Yong-qin, 关宝璐 GUAN Bao-lu, and 侯林宝 HOU Lin-bao. "Surface emitting distributed feedback semiconductor lasers." Chinese Optics 9, no. 1 (2016): 51–64. http://dx.doi.org/10.3788/co.20160901.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Persano, Luana, Andrea Camposeo, Pompilio Del Carro, Vito Fasano, Maria Moffa, Rita Manco, Stefania D'Agostino, and Dario Pisignano. "Distributed Feedback Imprinted Electrospun Fiber Lasers." Advanced Materials 26, no. 38 (July 10, 2014): 6542–47. http://dx.doi.org/10.1002/adma.201401945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pourdavoud, Neda, André Mayer, Maximilian Buchmüller, Kai Brinkmann, Tobias Häger, Ting Hu, Ralf Heiderhoff, et al. "Distributed Feedback Lasers Based on MAPbBr3." Advanced Materials Technologies 3, no. 4 (January 22, 2018): 1700253. http://dx.doi.org/10.1002/admt.201700253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Adams, M. J., and I. D. Henning. "Linewidth calculations for distributed-feedback lasers." IEE Proceedings J Optoelectronics 132, no. 2 (1985): 136. http://dx.doi.org/10.1049/ip-j.1985.0027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kuznetsov, M., L. W. Stulz, T. L. Koch, B. Tell, and U. Koren. "Tunable two-segment distributed feedback lasers." Electronics Letters 25, no. 11 (May 25, 1989): 686–88. http://dx.doi.org/10.1049/el:19890464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Agrawal, Govind P., and Niloy K. Dutta. "Distributed Feedback InGaAsP Lasers (Invited Paper)." IETE Journal of Research 32, no. 4 (July 1986): 187–95. http://dx.doi.org/10.1080/03772063.1986.11436597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Flood, K. M., and D. L. Jaggard. "Distributed feedback lasers in chiral media." IEEE Journal of Quantum Electronics 30, no. 2 (1994): 339–45. http://dx.doi.org/10.1109/3.283779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Takigawa, Shinichi, Tomoaki Uno, Ken Hamada, Masahiro Kume, Hirokazu Shimizu, and Gota Kano. "780 nm GaAlAs distributed feedback lasers." Solid-State Electronics 32, no. 7 (July 1989): 577–81. http://dx.doi.org/10.1016/0038-1101(89)90115-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Szczepaiński, Paweł. "Saturation effects in distributed feedback lasers." Infrared Physics 32 (January 1991): 443–52. http://dx.doi.org/10.1016/0020-0891(91)90133-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Zhou, Puxi, Lianze Niu, Anwer Hayat, Fengzhao Cao, Tianrui Zhai, and Xinping Zhang. "Operating Characteristics of High-Order Distributed Feedback Polymer Lasers." Polymers 11, no. 2 (February 3, 2019): 258. http://dx.doi.org/10.3390/polym11020258.

Full text
Abstract:
In this study, high-order distributed-feedback (DFB) polymer lasers were comparatively investigated. Their performance relies on multiple lasing directions and their advantages include their high manufacturing tolerances due to the large grating periods. Nine laser cavities were fabricated by spin-coating the gain polymer films onto a grating structure, which was manufactured via interference lithography that operated at the 2nd, 3rd, and 4th DFB orders. Low threshold lasing and high slope efficiency were achieved in high-order DFB polymer lasers due to the large grating groove depth and the large gain layer thickness. A high-order DFB configuration shows possible advantages, including the ability to control the lasing direction and to achieve multiple-wavelength lasers. Furthermore, our investigation demonstrates that the increase in threshold and decrease in slope efficiency with an increase in the feedback order can be limited by controlling the structural parameters.
APA, Harvard, Vancouver, ISO, and other styles
34

Riechel, S., U. Lemmer, J. Feldmann, T. Benstem, W. Kowalsky, U. Scherf, A. Gombert, and V. Wittwer. "Laser modes in organic solid-state distributed feedback lasers." Applied Physics B 71, no. 6 (December 2000): 897–900. http://dx.doi.org/10.1007/s003400000467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bouchene, Mohammed Mehdi, Rachid Hamdi, and Qin Zou. "Theorical analysis of a monolithic all-active three-section semiconductor laser." Photonics Letters of Poland 9, no. 4 (December 31, 2017): 131. http://dx.doi.org/10.4302/plp.v9i4.785.

Full text
Abstract:
We propose a novel semiconductor laser structure. It is composed of three cascaded active sections: a Fabry-Pérot laser section sandwiched between two gain-coupled distributed feedback (DFB) laser sections. We have modeled this multi-section structure. The simulation results show that compared with index- and gain-coupled DFB lasers, a significant reduction in the longitudinal spatial-hole burning can be obtained with the proposed device, and that this leads to a stable single longitudinal mode operation at relatively high optical power with a SMSR exceeding 56dB. Full Text: PDF ReferencesL.A. Coldren, "Monolithic tunable diode lasers", IEEE J. Select. Topics Quant. Electron. 6, 988 (2000) CrossRef O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. Stalnacke, L. Backbom, "30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 [micro sign]m wavelength", Electron. Lett. 33(6), 488 (1997). CrossRef N. Kim, J. Shin, E. Sim, C.W. Lee, D.-S. Yee, M.Y. Jeon, Y. Jang, K.H. Park, "Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation", Opt. Expr. 17(16), 13851 (2009). CrossRef M.J. Wallace, R. ORreilly Meehan, R.R Enright, F. Bello, D. Mccloskey, B. Barabadi, E.N. Wang, J.F. Donegan, "Athermal operation of multi-section slotted tunable lasers", Opt. Expr. 25(13), 14426 (2017). CrossRef J.E. Carroll, J.E.A. Whiteaway, R.G.S. Plumb, "Distributed Feedback Semiconductor Lasers", Distributed feedback semiconductor lasers (IEE and SPIE, 1998). CrossRef H. Ghafour-Shiraz, Distributed Feedback Laser Diodes and Optical Tunable Filters (Wiley, 2003). CrossRef D.D. Marcenac, Ph.D dissertation (University of Cambridge, 1993). DirectLink L.M. Zhang, J.E. Carroll, C. Tsang, "Dynamic response of the gain-coupled DFB laser", IEEE J. Quant. Electr. 29, 1722 (1993). CrossRef W. Li, W.-P. Huang, X. Li, J. Hong, "Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation", IEEE J. Quant. Electro. 36(10), 1110 (2000). CrossRef B.M. Mehdi, H. Rachid, in Proc. 3rd Intern. Conf. on Embedded Systems in Telecomm. and Instrument., Annaba, Algeria (2016). DirectLinkC. Henry, "Theory of the linewidth of semiconductor lasers", IEEE J.Quant. Electr. QE-18, 259 (1982). CrossRef K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, A. Kasukawa, "Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-/spl mu/m continuous-wave distributed-feedback (CW-DFB) laser diodes", IEEE J. Quant. Electr. 39, 1060 (2003) CrossRef
APA, Harvard, Vancouver, ISO, and other styles
36

Hillmer, H., H. Burkhard, and A. Grabmaier. "Continuously distributed phase shifts by chirped distributed-feedback gratings for 1.55 µm distributed-feedback lasers." IEE Proceedings - Optoelectronics 144, no. 4 (August 1, 1997): 256–60. http://dx.doi.org/10.1049/ip-opt:19971113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhai, Tianrui, Liang Han, Xiaojie Ma, and Xiaolei Wang. "Low-Threshold Microlasers Based on Holographic Dual-Gratings." Nanomaterials 11, no. 6 (June 9, 2021): 1530. http://dx.doi.org/10.3390/nano11061530.

Full text
Abstract:
Among the efforts to improve the performances of microlasers, optimization of the gain properties and cavity parameters of these lasers has attracted significant attention recently. Distributed feedback lasers, as one of the most promising candidate technologies for electrically pumped microlasers, can be combined with dual-gratings. This combination provides additional freedom for the design of the laser cavity. Here, a holographic dual-grating is designed to improve the distributed feedback laser performance. The holographic dual-grating laser consists of a colloidal quantum dot film with two parallel gratings, comprising first-order (210 nm) and second-order (420 nm) gratings that can be fabricated easily using a combination of spin coating and interference lithography. The feedback and the output from the cavity are controlled using the first-order grating and the second-order grating, respectively. Through careful design and analysis of the dual-grating, a balance is achieved between the feedback and the cavity output such that the lasing threshold based on the dual-grating is nearly half the threshold of conventional distributed feedback lasers. Additionally, the holographic dual-grating laser shows a high level of stability because of the high stability of the colloidal quantum dots against photobleaching.
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Gonghai, Gongyuan Zhao, Gong Zhang, Qiaoyin Lu, and Weihua Guo. "Directly modulated active distributed reflector distributed feedback lasers over wide temperature range operation (−40 to 85°C)." Chinese Optics Letters 18, no. 6 (2020): 061401. http://dx.doi.org/10.3788/col202018.061401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

LUO, YI, and WEI WANG. "DISTRIBUTED FEEDBACK SEMICONDUCTOR LASERS AND THEIR APPLICATION IN PHOTONIC INTEGRATED DEVICES." International Journal of High Speed Electronics and Systems 07, no. 03 (September 1996): 409–28. http://dx.doi.org/10.1142/s0129156496000220.

Full text
Abstract:
Distributed feedback (DFB) semiconductor lasers, especially those with gain-coupled (GC) mechanisms, are studied. A GaAlAs/GaAs multi-quantum well GC-DFB laser with a loss grating is fabricated using MBE for the first time. A 1.3 µm InGaAsP/InP DFB laser with a loss grating and one with a gain grating formed by injected carriers are developed by LPE and MOVPE, respectively. GC-DFB lasers monolithically integrated with electroabsorption modulator is studied systematically for the first time. A novel integrated device structure is proposed and fabricated successfully.
APA, Harvard, Vancouver, ISO, and other styles
40

Mazarei, Fatemeh, Gholamreza Honarasa, Hassan Pakarzadeh, and Iraj Sadegh Amiri. "Random distributed feedback fiber lasers: Impact of third-order dispersion." Journal of Nonlinear Optical Physics & Materials 28, no. 04 (December 2019): 1950035. http://dx.doi.org/10.1142/s0218863519500358.

Full text
Abstract:
In this paper, one of the most modern random lasers known as random distributed feedback fiber laser is investigated when the third-order dispersion (TOD) is taken into account. The laser characteristics are simulated based on the nonlinear Schrödinger equations (NLSEs) where the power evolution of three interacting waves: the pump, the forward and the backward Stokes waves, are investigated as they propagate down the fiber. The results show that due to TOD, the output characteristics of the laser are changed and particularly, the output power becomes asymmetrical. Moreover, the impacts of fiber nonlinear coefficient and input power on the output power and the output spectrum are studied.
APA, Harvard, Vancouver, ISO, and other styles
41

Karami Keshmarzi, Elham, R. Niall Tait, and Pierre Berini. "Single-mode surface plasmon distributed feedback lasers." Nanoscale 10, no. 13 (2018): 5914–22. http://dx.doi.org/10.1039/c7nr09183d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhai, Tianrui, Xiaojie Ma, Liang Han, Shuai Zhang, Kun Ge, Yanan Xu, Zhiyang Xu, and Libin Cui. "Self-Aligned Emission of Distributed Feedback Lasers on Optical Fiber Sidewall." Nanomaterials 11, no. 9 (September 13, 2021): 2381. http://dx.doi.org/10.3390/nano11092381.

Full text
Abstract:
This article assembles a distributed feedback (DFB) cavity on the sidewalls of the optical fiber by using very simple fabrication techniques including two-beam interference lithography and dip-coating. The DFB laser structure comprises graduated gratings on the optical fiber sidewalls which are covered with a layer of colloidal quantum dots. Directional DFB lasing is observed from the fiber facet due to the coupling effect between the grating and the optical fiber. The directional lasing from the optical fiber facet exhibits a small solid divergence angle as compared to the conventional laser. It can be attributed to the two-dimensional light confinement in the fiber waveguide. An analytical approach based on the Bragg condition and the coupled-wave theory was developed to explain the characteristics of the laser device. The intensity of the output coupled laser is tuned by the coupling coefficient, which is determined by the angle between the grating vector and the fiber axis. These results afford opportunities to integrate different DFB lasers on the same optical fiber sidewall, achieving multi-wavelength self-aligned DFB lasers for a directional emission. The proposed technique may provide an alternative to integrating DFB lasers for applications in networking, optical sensing, and power delivery.
APA, Harvard, Vancouver, ISO, and other styles
43

Bewley, W. W., C. L. Felix, I. Vurgaftman, R. E. Bartolo, J. R. Lindle, J. R. Meyer, H. Lee, and R. U. Martinelli. "Mid-infrared photonic-crystal distributed-feedback lasers." Solid-State Electronics 46, no. 10 (October 2002): 1557–66. http://dx.doi.org/10.1016/s0038-1101(02)00105-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shi, Jindan, Shaif-ul Alam, and Morten Ibsen. "Highly efficient Raman distributed feedback fibre lasers." Optics Express 20, no. 5 (February 15, 2012): 5082. http://dx.doi.org/10.1364/oe.20.005082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Heliotis, G., R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes. "Blue, surface-emitting, distributed feedback polyfluorene lasers." Applied Physics Letters 83, no. 11 (September 15, 2003): 2118–20. http://dx.doi.org/10.1063/1.1612903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Agrawal, G., and N. Dutta. "Analysis of ridge-waveguide distributed feedback lasers." IEEE Journal of Quantum Electronics 21, no. 6 (June 1985): 534–38. http://dx.doi.org/10.1109/jqe.1985.1072703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Noda, S., K. Kojima, K. Mitsunaga, K. Kyuma, K. Hamanaka, and T. Nakayama. "Ridge waveguide AlGaAs/GaAs distributed feedback lasers." IEEE Journal of Quantum Electronics 23, no. 2 (February 1987): 188–93. http://dx.doi.org/10.1109/jqe.1987.1073306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vurgaftman, I., and J. R. Meyer. "Photonic-crystal distributed-feedback quantum cascade lasers." IEEE Journal of Quantum Electronics 38, no. 6 (June 2002): 592–602. http://dx.doi.org/10.1109/jqe.2002.1005409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Szczepanski, P., A. Mossakowska, and D. Dejnarowicz. "Relaxation oscillations in waveguide distributed feedback lasers." Journal of Lightwave Technology 10, no. 2 (1992): 220–26. http://dx.doi.org/10.1109/50.120578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhu, Xiao-Lei, Sio-Kuan Lam, and Dennis Lo. "Distributed-feedback dye-doped solgel silica lasers." Applied Optics 39, no. 18 (June 20, 2000): 3104. http://dx.doi.org/10.1364/ao.39.003104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography