Academic literature on the topic 'Distributed filtering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributed filtering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distributed filtering"
FELIACHI, ALI. "Distributed filtering." International Journal of Systems Science 23, no. 11 (November 1992): 1857–69. http://dx.doi.org/10.1080/00207729208949426.
Full textLang Hong. "Multiresolutional distributed filtering." IEEE Transactions on Automatic Control 39, no. 4 (April 1994): 853–56. http://dx.doi.org/10.1109/9.286269.
Full textHong, L. "Distributed filtering using set models." IEEE Transactions on Aerospace and Electronic Systems 28, no. 4 (1992): 1144–53. http://dx.doi.org/10.1109/7.165375.
Full textCoutino, Mario, Elvin Isufi, and Geert Leus. "Advances in Distributed Graph Filtering." IEEE Transactions on Signal Processing 67, no. 9 (May 1, 2019): 2320–33. http://dx.doi.org/10.1109/tsp.2019.2904925.
Full textYiu, Simon, and Robert Schober. "Optimized Distributed Space-Time Filtering." IEEE Transactions on Wireless Communications 6, no. 3 (March 2007): 982–92. http://dx.doi.org/10.1109/twc.2007.05279.
Full textKarydi, Efthalia, and Konstantinos Margaritis. "Parallel and Distributed Collaborative Filtering." ACM Computing Surveys 49, no. 2 (November 11, 2016): 1–41. http://dx.doi.org/10.1145/2951952.
Full textBoutet, Antoine, Davide Frey, Rachid Guerraoui, Arnaud Jégou, and Anne-Marie Kermarrec. "Privacy-preserving distributed collaborative filtering." Computing 98, no. 8 (March 26, 2015): 827–46. http://dx.doi.org/10.1007/s00607-015-0451-z.
Full textMatei, Ion, and John S. Baras. "Consensus-based linear distributed filtering." Automatica 48, no. 8 (August 2012): 1776–82. http://dx.doi.org/10.1016/j.automatica.2012.05.042.
Full textManuel, Isaac L., and Adrian N. Bishop. "Distributed Monte Carlo Information Fusion and Distributed Particle Filtering." IFAC Proceedings Volumes 47, no. 3 (2014): 8681–88. http://dx.doi.org/10.3182/20140824-6-za-1003.00929.
Full textIzumi, Shinsaku, Ryosuke Katayama, Xin Xin, and Taiga Yamasaki. "Distributed Spatial Filtering Over Networked Systems." IEEE Control Systems Letters 5, no. 2 (April 2021): 617–22. http://dx.doi.org/10.1109/lcsys.2020.3004728.
Full textDissertations / Theses on the topic "Distributed filtering"
Shahid, Arslan. "Distributed ensemble Kalman filtering." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123276.
Full textL'estimation distribuée dans un réseau de capteurs sans fil possède plusieurs avantages. Elle élimine le besoin d'une connaissance centralisée des paramtres du modèle de mesure et n'apas un point de défaillance unique. Aussi, n'importe quel agent-capteur peut-être consulté pour obtenir une approximation de l'état général. De plus, pour des mesures de hautesdimensions, le calcul local d'informations résulte en une réduction significative des coûts decommunication.Les implémentations courantes du filtre de Kalman sont efficaces sur les plans de lacharge de calcul et de la communication mais ne le sont pas pour les problmes non-linéaires et non-gaussiens. D'un autre cˆoté, les techniques distribuées de filtrage particulaire gèrentavec succès les cas non-linéaires mais sont coûteuses sur les plans de la charge de calcul etde la communication.Dans cette thèse, nous proposons des techniques de filtrage distribué basées sur le filtre de Kalman d'ensemble (FKEn). Nous considérons trois formes du FKEn et exprimonsleurs équations de changement sous une forme alternative. Cela nous permet d'utiliser unalgorithme de gossip aléatoire afin d'atteindre un consensus sur les statistiques suffisantes etcalculer les changements locaux. Les résultats des simulations montrent que les trois formesde FKEn ont une charge de calcul bien moindre que les filtres de particules équivalents. Les rèsultats suggèrent que les techniques de filtrage distribué proposées sont plus efficaces quecelles de pointe pour deux scénarios: a) un modèle de mesure linéaire avec des dynamiques d'états non-linéaires et b) des mesures de hautes dimensions (les paramtres du modèle sontconnus de chaque agent) avec un modle de mesure non-linéaire et des dynamiques d'états non-linéaires. Dans les deux scénarios considérés, les techniques proposées atteignent une précision d'estimation comparable à celle des techniques de pointe tout en réduisant significativement les coûts de communication.
Shahbaz, Muhammad. "Active Harmonics Filtering of Distributed AC System." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20731.
Full textTsai, Harry Fisk. "A multigrid relevance filtering technique for distributed interactive simulation." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42719.
Full textDas, Subhro. "Distributed Linear Filtering and Prediction of Time-varying Random Fields." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/765.
Full textFILHO, HELIOS MALEBRANCHE OLBRISCH FRERES. "OPTIMAL SENSORS LOCATION FOR FILTERING AND IDENTIFICATION OF DISTRIBUTED SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1987. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8107@1.
Full textEste trabalho trata do problema não-linear de estimação simultânea de parâmetros e estado, em sistemas distribuídos, e ainda do problema de localização de sensores associado. A classe de modelos em que estamos interessados é caracterizada por operadores lineares, não- limitados, densamente definidos e dissipativos. Nossa abordagem aplica técnicas de filtragem linear a uma seqüência de linearizações em torno de trajetórias convenientemente escolhidas. A localização ótima de sensores é feita de modo a minimizar uma medida do erro da estimatição simultânea de parâmetros e estados. A contribuição original desta tese compreende o desenvolvimento de : (1) um algoritmo que realiza simultaneamente a identificação e a filtragem de uma classe de sistemas distribuídos operando em ambiente estocástico, e (2) um esquema eficiente de localização ótima de sensores para o problema acima mencionado. Alguns exemplos simulados são apresentados com o objetivo de ilustrar os resultados aqui desenvolvidos
This thesis deals with the nonlinear problem of simultaneous parameter and state estimation for distributed systems, including the associated optimal sensor location. The class of models under consideration is caracterrized by linear unbounded operators which are densely defined and dissipative. Our approach applies linear filtering techniquess to a sequence of linearizations at suitable trajectories. The optimal sensors location is carried out by minimizing a meassure of the state and parameter estimation error. The contribution of this thesis comprises: (1) an algorithm for simultaneous identification and filtering for a classs of distributed systems operting in a stochastic environment and (2) an efficient optimal sensors location scheme for the above mentioned problem. Some simulated exemples are presented to illustrate the proposed approach.
Caruana, Godwin. "MapReduce based RDF assisted distributed SVM for high throughput spam filtering." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7572.
Full textLi, Yifu. "Data Filtering and Modeling for Smart Manufacturing Network." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99713.
Full textDoctor of Philosophy
The advancement of the Internet-of-Things (IoT) integrates manufacturing processes and equipment into a network. Practitioners analyze and apply the data generated from the network to model the manufacturing network to improve product quality. The data quality directly affects the modeling performance and decision effectiveness. However, the data quality is not well controlled in a manufacturing network setting. In this dissertation, we propose a data quality assurance method, referred to as data filtering. The proposed method selects a data subset from raw data collected from the manufacturing network. The proposed method reduces the complexity in modeling while supporting decision effectiveness. To model the data from multiple similar-but-non-identical manufacturing processes, we propose a latent variable decomposition-based multi-task learning model to study the relationships between the process variables and product quality variable. Lastly, to adaptively determine the appropriate data subset for modeling each process in the manufacturing network, we further proposed an integrated data filtering and modeling framework. The proposed integrated framework improved the modeling performance of data generated by babycare manufacturing and semiconductor manufacturing.
Hore, Prodip. "Distributed clustering for scaling classic algorithms." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000395.
Full textJägenstedt, Gabriel. "Analysis and Simulation of Threats in an Open, Decentralized, Distributed Spam Filtering System." Thesis, Linköpings universitet, Databas och informationsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-81012.
Full textRautenberg, Carlos Nicolas. "A Distributed Parameter Approach to Optimal Filtering and Estimation with Mobile Sensor Networks." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/27103.
Full textPh. D.
Books on the topic "Distributed filtering"
Han, Fei, Zidong Wang, and Hongli Dong. Distributed Filtering, Control and Synchronization. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97075-8.
Full textLai, Cristian, Giovanni Semeraro, and Eloisa Vargiu, eds. New Challenges in Distributed Information Filtering and Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31546-6.
Full textLai, Cristian, Alessandro Giuliani, and Giovanni Semeraro, eds. Distributed Systems and Applications of Information Filtering and Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40621-8.
Full textLai, Cristian. New Challenges in Distributed Information Filtering and Retrieval: DART 2011: Revised and Invited Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textHubbard, James E. Spatial filtering for the control of smart structures: An Introduction. Heidelberg: Springer, 2010.
Find full textMahmoud, Magdi S. Distributed Control and Filtering for Industrial Systems. Institution of Engineering & Technology, 2012.
Find full textMahmoud. Distributed Control and Filtering for Industrial Systems. Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/pbce088e.
Full textDistributed Control And Filtering For Industrial Systems. Institution of Engineering and Technology, 2012.
Find full textDong, Hongli, Fei Han, and Zidong Wang. Distributed Filtering, Control and Synchronization: Local Performance Analysis Methods. Springer International Publishing AG, 2022.
Find full textDynamic Relevance Filtering in Asynchronous Transfer Mode-Based Distributed Interactive Simulation Exercises. Storming Media, 1996.
Find full textBook chapters on the topic "Distributed filtering"
Chui, Charles K., and Guanrong Chen. "Distributed Estimation on Sensor Networks." In Kalman Filtering, 185–95. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47612-4_12.
Full textTryfonopoulos, Christos, Stratos Idreos, Manolis Koubarakis, and Paraskevi Raftopoulou. "Distributed Large-Scale Information Filtering." In Transactions on Large-Scale Data- and Knowledge-Centered Systems XIII, 91–122. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45942-3_4.
Full textBoutet, Antoine, Davide Frey, Rachid Guerraoui, Arnaud Jégou, and Anne-Marie Kermarrec. "Privacy-Preserving Distributed Collaborative Filtering." In Networked Systems, 169–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09581-3_12.
Full textNarang, Ankur, Abhinav Srivastava, and Naga Praveen Kumar Katta. "Distributed Scalable Collaborative Filtering Algorithm." In Euro-Par 2011 Parallel Processing, 353–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23400-2_33.
Full textZhang, Dan, Qing-Guo Wang, and Li Yu. "Distributed Filtering with Communication Reduction." In Filtering and Control of Wireless Networked Systems, 111–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53123-6_7.
Full textZhang, Dan, Qing-Guo Wang, and Li Yu. "Distributed Filtering with Stochastic Sampling." In Filtering and Control of Wireless Networked Systems, 129–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-53123-6_8.
Full textLiu, Qinyuan, Zidong Wang, and Xiao He. "Event-Based Recursive Distributed Filtering." In Stochastic Control and Filtering over Constrained Communication Networks, 117–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00157-5_7.
Full textLiu, Qinyuan, Zidong Wang, and Xiao He. "Consensus-Based Recursive Distributed Filtering." In Stochastic Control and Filtering over Constrained Communication Networks, 159–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00157-5_9.
Full textJiao, Zhuang, YangQuan Chen, and Igor Podlubny. "Distributed-Order Filtering and Distributed-Order Optimal Damping." In Distributed-Order Dynamic Systems, 39–58. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2852-6_4.
Full textAgounad, Said, Younes Khandouch, and Abdelkader Elhanaoui. "Digital Filtering for Circumferential Wave Separation." In Distributed Sensing and Intelligent Systems, 667–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64258-7_57.
Full textConference papers on the topic "Distributed filtering"
Ryu, Kunhee, and Juhoon Back. "Distributed Kalman-filtering: Distributed optimization viewpoint." In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019. http://dx.doi.org/10.1109/cdc40024.2019.9029645.
Full textShahid, Arslan, Deniz Ustebay, and Mark Coates. "Distributed ensemble Kalman filtering." In 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2014. http://dx.doi.org/10.1109/sam.2014.6882379.
Full textAlmeida Neto, Fernando G., Vitor H. Nascimento, and Amanda de Paula. "Distributed multichannel adaptive filtering." In 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, 2015. http://dx.doi.org/10.1109/eusipco.2015.7362569.
Full textZamani, Mohammad, and Valery Ugrinovskii. "Minimum-energy distributed filtering." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039911.
Full textXie, Siyu, and Lei Guo. "Compressive distributed adaptive filtering." In 2016 35th Chinese Control Conference (CCC). IEEE, 2016. http://dx.doi.org/10.1109/chicc.2016.7554168.
Full textWang, Jun, Marcel J. T. Reinders, Reginald L. Lagendijk, and Johan Pouwelse. "Self-organizing distributed collaborative filtering." In the 28th annual international ACM SIGIR conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1076034.1076177.
Full textRabbat, Michael, Mark Coates, and Stephane Blouin. "Graph Laplacian distributed particle filtering." In 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. http://dx.doi.org/10.1109/eusipco.2016.7760497.
Full textLi, Qiongxiu, Mario Coutino, Geert Leus, and Mads Grasboll Christensen. "Privacy-Preserving Distributed Graph Filtering." In 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287429.
Full textYiu, Simon, and Robert Schober. "On distributed space-time filtering." In GLOBECOM '05. IEEE Global Telecommunications Conference. IEEE, 2005. http://dx.doi.org/10.1109/glocom.2005.1578390.
Full textMatei, Ion, and John S. Baras. "Consensus-based distributed linear filtering." In 2010 49th IEEE Conference on Decision and Control (CDC). IEEE, 2010. http://dx.doi.org/10.1109/cdc.2010.5718072.
Full textReports on the topic "Distributed filtering"
Chin, Toshio M., William C. Karl, and Alan S. Willsky. A Distributed and Iterative Method for Square Root Filtering in Space-Time Estimation. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada459794.
Full textNishizuka, K., M. Boucadair, T. Reddy.K, and T. Nagata. Controlling Filtering Rules Using Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel. RFC Editor, September 2021. http://dx.doi.org/10.17487/rfc9133.
Full textMathew, Jijo K., Christopher M. Day, Howell Li, and Darcy M. Bullock. Curating Automatic Vehicle Location Data to Compare the Performance of Outlier Filtering Methods. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317435.
Full text