Academic literature on the topic 'Distributed high temperature sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributed high temperature sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distributed high temperature sensing"
Kuncha, Syam Prasad, Balaji Chakravarthy, Harishankar Ramachandran, and Balaji Srinivasan. "Distributed High Temperature Sensing Using Fiber Bragg Gratings." International Journal of Optomechatronics 2, no. 1 (April 11, 2008): 4–15. http://dx.doi.org/10.1080/15599610801985483.
Full textLiu, Bo, Zhihao Yu, Cary Hill, Yujie Cheng, Daniel Homa, Gary Pickrell, and Anbo Wang. "Sapphire-fiber-based distributed high-temperature sensing system." Optics Letters 41, no. 18 (September 15, 2016): 4405. http://dx.doi.org/10.1364/ol.41.004405.
Full textBuck, C. R., and S. E. Null. "Modeling insights from distributed temperature sensing data." Hydrology and Earth System Sciences Discussions 10, no. 8 (August 1, 2013): 9999–10034. http://dx.doi.org/10.5194/hessd-10-9999-2013.
Full textde Jong, S. A. P., J. D. Slingerland, and N. C. van de Giesen. "Fiber optic distributed temperature sensing for the determination of air temperature." Atmospheric Measurement Techniques Discussions 7, no. 6 (June 23, 2014): 6287–98. http://dx.doi.org/10.5194/amtd-7-6287-2014.
Full textDong, Yongkang. "High-Performance Distributed Brillouin Optical Fiber Sensing." Photonic Sensors 11, no. 1 (January 22, 2021): 69–90. http://dx.doi.org/10.1007/s13320-021-0616-7.
Full textZhang, Zhongshu, Hao Wu, Can Zhao, and Ming Tang. "High-Performance Raman Distributed Temperature Sensing Powered by Deep Learning." Journal of Lightwave Technology 39, no. 2 (January 15, 2021): 654–59. http://dx.doi.org/10.1109/jlt.2020.3032150.
Full textHöbel, M., J. Ricka, M. Wüthrich, and Th Binkert. "High-resolution distributed temperature sensing with the multiphoton-timing technique." Applied Optics 34, no. 16 (June 1, 1995): 2955. http://dx.doi.org/10.1364/ao.34.002955.
Full textChen, Tong, Qingqing Wang, Rongzhang Chen, Botao Zhang, Charles Jewart, Kevin P. Chen, Mokhtar Maklad, and Phillip R. Swinehart. "Distributed high-temperature pressure sensing using air-hole microstructural fibers." Optics Letters 37, no. 6 (March 12, 2012): 1064. http://dx.doi.org/10.1364/ol.37.001064.
Full textde Jong, S. A. P., J. D. Slingerland, and N. C. van de Giesen. "Fiber optic distributed temperature sensing for the determination of air temperature." Atmospheric Measurement Techniques 8, no. 1 (January 15, 2015): 335–39. http://dx.doi.org/10.5194/amt-8-335-2015.
Full textJderu, Alin, Marius Enachescu, and Dominik Ziegler. "Mass Flow Monitoring by Distributed Fiber Optical Temperature Sensing." Sensors 19, no. 19 (September 25, 2019): 4151. http://dx.doi.org/10.3390/s19194151.
Full textDissertations / Theses on the topic "Distributed high temperature sensing"
Frazier, Janay Amber Wright. "High-Definition Raman-based Distributed Temperature Sensing." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/95934.
Full textMS
Liu, Bo. "Sapphire Fiber-based Distributed High-temperature Sensing System." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82741.
Full textPh. D.
Wang, Jing. "Distributed Pressure and Temperature Sensing Based on Stimulated Brillouin Scattering." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/78066.
Full textMaster of Science
Dhliwayo, Jabulani. "Stimulated Brillouin scattering for distributed temperature sensing." Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242858.
Full textRead, Tom Oliver Trevett. "Applications of distributed temperature sensing in subsurface hydrology." Thesis, University of East Anglia, 2016. https://ueaeprints.uea.ac.uk/59401/.
Full textMoa, Sandberg. "Distributed Temperature Sensing för kontroll av inläckage i spillvattenledningar." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445633.
Full textTillskottsvatten är ett vanligt problem i spillvattenledningsnätet. DTS, Distributed Temperature Sensing är en metod som inte är vanlig i Sverige för kontroll av spillvattenledningar. Tekniken bygger på kontinuerliga temperaturmätningar under en tidsperiod över en förutbestämd sträcka och registrerar temperaturavvikelser som kan uppstå i samband med inläckage av tillskottsvatten. Syftet med projektet var att granska tidigare utförda studier med DTS för att ta reda på hur tekniken kan användas för att lokalisera inläckage i spillvattenledningar. För att vidare illustrera problematiken med tillskottsvatten i spillvattennätet samt föreslå hur DTS kan appliceras i Sverige genomfördes en analys av mätdata på inkommande vatten till reningsverket på Ön, Umeå. Både visuella och automatiserade analyser genomfördes där tolkningar gjordes utifrån mätdata från reningsverket tillsammans med nederbörds- och lufttemperaturdata. En regressionsanalys genomfördes som automatiserad analys för att undersöka eventuella samband mellan spillvattentemperatur, spillvattenflöde och nederbörd. Projektet inleddes med en litteraturstudie där det utreddes hur DTS fungerar teoretiskt och praktiskt. Litteraturstudien visade att DTS är praktiskt möjligt att applicera i spillvattenledningsnätet för att leta inläckagepunkter för tillskottsvatten. Inläckage kan registreras som ökningar eller sänkningar i spillvattentemperaturen beroende på lufttemperaturen. Den är inte beroende av material på ledningarna men däremot är DTS beroende av att tillskottsvattnet är av annan temperatur än spillvattnet. Det är en dyr teknik men kan vara värt investeringskostnaderna om mätningar tänkt ske många gånger under längre perioder. Vid kontroll av större områden med hjälp av röktest kombinerat med färgning av vatten och filmning är kostnaderna ungefär de samma. Utifrån mätdatan från reningsverket och nederbördsdatan från Umeå universitet kunde vissa samband påvisas mellan spillvattentemperatur, spillvattenflöde och nederbörd. Ett visst samband kunde även urskiljas mellan spillvattentemperatur och spillvattenflöde. Utspädningsgraden av spillvattnet beräknades till 1,34 vilket innebär att cirka 25% av vattnet i spillvattenledningarna är tillskottsvatten. Slutsatsen som kunde dras utifrån detta var att tillskottsvatten existerar i spillvattenledningsnätet som leder till reningsverket på Ön i Umeå. Däremot kunde inga slutsatser dras för att säga var inläckage av tillskottsvatten sker. DTS skulle kunna appliceras i ledningsnäten för att undersöka närmare var inläckagepunkterna är och tillskillnad från rökning, färgning av vatten och filmning som används idag kan DTS sannolikt upptäcka fler typer av inläckage.
Koob, Christopher E. "High temperature fiber optic strain sensing." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-02132009-171339/.
Full textEk, Simon. "Distributed Temperature Sensing Using Phase-Sensitive Optical Time Domain Reflectometry." Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285902.
Full textDet här examensarbetet utforskar och utvärderar förmågorna att mäta temperatur hos en fas-känslig optisk tidsdomän-reflektometer (φ-OTDR), som utnyttjar bakåtriktad Rayleigh-spridning i vanliga optiska singelmodfibrer. Anordningen konstrueras och dess komponentstruktur förklaras, och ett protokoll tas fram för att utföra mätningar med den. Prestandatester utförs och anordningen visas kapabel att göra fullt distribuerade temperaturmätningar längs hundratals meter långa fibrer, med en rymdsupplösning på 1 m och en temperaturupplösning på 0.1 K. Dessutom testas förmågan att mäta normaltöjning hos testfibern med samma metod, dock med mindre framgång. Anordningen är väldigt känslig för förhållandena i omgivningen runt mätningsfibern, vilket gör den kapabel till mätningar med mycket hög precision, men också mottaglig för störningar. Lite diskussion hålls kring hur dessa störningar kan undvikas eller hanteras. Vidare visas att mätningstekniken kan köras samtidigt som andra φ-OTDR-baserade tekniker från samma anordning.
Carver, Robert. "Inferring hydrogeologic processes with distributed temperature sensing in Indian River Bay, Delaware." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114580.
Full textLes interactions entre les aquifères côtiers et les estuaires régissent beaucoup de processus écologiques importants qui ont des implications sur la qualité de l'eau souterraine et marine. La compréhension de la nature et de l'ampleur de ces interactions est devenu un foyer de recherches, facilité par des avances récentes dans notre capacité de détecter la décharge submersible d'eaux souterraines. Cette étude emploie la détection distribuée de température (DDT) dans l'estuaire de la baie Indian River, sur la côte du Delaware, afin de détecter des différences dans la variance et la moyenne de la température des eaux à l'interface entre la baie et le sédiment dans la zone près du rivage du parc Holts Landing. Des variances basses sont interprétées comme étant le résultat de l'influence de modération des eaux souterraines, compatible avec les autres études, et le fait que les zones peu profondes près du rivage, qui devraient éprouver plus de variation de la température que des zones plus profondes, sont au contraire plus stables. La variance augmente avec la distance du rivage à mesure que la fonction s2=-33.63 (d(- 1.012)) +2.685 (r2=0.78). Près du rivage, il y a des endroits étroits avec des variances (Kruskal-Wallis avec Tukey's HSD, p<0.05) et moyens (Friedman avec Tukey's HSD, p<0.05) sensiblement plus basse que leurs zones proximales. Des zones de la variance élevée aux bords a l'ouest et l'est de l'emplacement d'étude sont associées aux anciennes vallées peu profondes remplies de la tourbe et maintenant couvertes avec les sédiments fins. Une large bande de bas désaccord à côté de la vallée occidentale implique que les eaux souterraines fraîches sosu pression élevée coulent aux marges de la vallée, créant un modèle du SGD qui n'équipe pas des modèles précédents. Une tentative d'employer des amplitudes de signal de la température à de diverses profondeurs de sédiment pour calculer le flux vertical d'eau interstitielle a échoué, probablement en raison des temperatures croissantes, interférence entre les signaux de la marée et diurne, et une période d'échantillon courte. DDT semble tenir la promesse en détectant des tendences de la température à travers différentes gammes simultanément, et peut être employé pour trouver les pieces manquantes de la connaissance des systèmes hydrogéologiques.
Wang, Haichao. "A fibre optic system for distributed temperature sensing based on raman scattering." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5498.
Full textBooks on the topic "Distributed high temperature sensing"
Maturi, Eileen. An experimental technique for producing moisture corrected imagery from 1 km Advanced Very High Resolution Radiometer (AVHRR) data. Washington, D.C: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, 1986.
Find full textMaturi, Eileen. An experimental technique for producing moisture corrected imagery from 1 km advanced very high resolution radiometer (AVHRR) data. Washington, D.C: U.S. Dept. of Commerce, 1986.
Find full textMenzel, W. Paul. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data: Final report on NASA contract NAS8-36169 for the period of 7 November 1986 to 18 September 1991. Madison, Wis: Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin, 1991.
Find full textCarlson, Toby N. A remotely sensed index of deforestation/urbanization for use in climate models: Annual performance report for the period 1 January 1995 - 31 December 1995. University Park, PA: Pennsylvania State University, 1995.
Find full textCarlson, Toby N. A remotely sensed index of deforestation/urbanization for use in climate models: Annual performance report for the period 1 January 1995 - 31 December 1995. University Park, PA: Pennsylvania State University, 1995.
Find full text1947-, Dakin John, ed. The Distributed fibre optic sensing handbook. Kempston, Bedford, UK: IFS Publications, 1990.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., ed. Strain sensing technology for high temperature applications. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Find full textCarl, Bouvier, and United States. National Aeronautics and Space Administration., eds. X-33/RLV: Reusable cryogenic tank VHM using fiber optic distributed sensing technology. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textCarl, Bouvier, and United States. National Aeronautics and Space Administration., eds. X-33/RLV: Reusable cryogenic tank VHM using fiber optic distributed sensing technology. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textCarl, Bouvier, and United States. National Aeronautics and Space Administration., eds. X-33/RLV: Reusable cryogenic tank VHM using fiber optic distributed sensing technology. [Washington, DC: National Aeronautics and Space Administration, 1998.
Find full textBook chapters on the topic "Distributed high temperature sensing"
Wanser, Keith H., Michael Haselhuhn, and Michael Lafond. "High Temperature Distributed Strain and Temperature Sensing Using OTDR." In Applications of Fiber Optic Sensors in Engineering Mechanics, 194–209. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872628953.ch13.
Full textBoiarski, A. A. "Distributed Fiber Optic Temperature Sensing." In Applications of Fiber Optic Sensors in Engineering Mechanics, 210–24. New York, NY: American Society of Civil Engineers, 1993. http://dx.doi.org/10.1061/9780872628953.ch14.
Full textClarke, David R. "Luminescence Sensing of Temperature in Oxides." In High-Performance Ceramics V, 1–4. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.1.
Full textMurphy, K. A., C. Koob, M. Miller, S. Feth, and R. O. Claus. "Optical Fiber-Based Sensing of Strain and Temperature at High Temperature." In Review of Progress in Quantitative Nondestructive Evaluation, 1231–37. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3742-7_13.
Full textPriyadarisshini, Balasoundirame, Dhanabalan Sindhanaiselvi, and Thangavelu Shanmuganantham. "Performance Analysis of High Sensitive Microcantilever for Temperature Sensing." In Soft Computing Systems, 641–48. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1936-5_65.
Full textDinh, Toan, Nam-Trung Nguyen, and Dzung Viet Dao. "Future Prospects of SiC Thermoelectrical Sensing Devices." In Thermoelectrical Effect in SiC for High-Temperature MEMS Sensors, 107–15. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2571-7_7.
Full textVarga, Rastislav, Peter Klein, Rudolf Sabol, Kornel Richter, Radovan Hudak, Irenej Polaček, Dušan Praslicka, et al. "Magnetically Bistable Microwires: Properties and Applications for Magnetic Field, Temperature, and Stress Sensing." In High Performance Soft Magnetic Materials, 169–212. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49707-5_8.
Full textOgawa, K., Y. Ozawa, H. Kawakami, T. Tsutsui, and S. Yamamoto. "A Fiber-Optic Distributed Temperature Sensor with High Distance Resolution." In Springer Proceedings in Physics, 544–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75088-5_81.
Full textBernini, Romeo, Aldo Minardo, and Luigi Zeni. "Distributed Strain and Temperature Sensing at CM-Scale Spatial Resolution by BOFDA." In Lecture Notes in Electrical Engineering, 235–39. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_40.
Full textBecker, François, and Zhao-Liang Li. "Infrared Remote Sensing of Surface Temperature and Surface Spectral Emissivities." In High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies, 265–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84599-4_18.
Full textConference papers on the topic "Distributed high temperature sensing"
Scurti, Federico, and Justin Schwartz. "Optical fiber distributed sensing for high temperature superconductor magnets." In 25th International Conference on Optical Fiber Sensors, edited by Youngjoo Chung, Wei Jin, Byoungho Lee, John Canning, Kentaro Nakamura, and Libo Yuan. SPIE, 2017. http://dx.doi.org/10.1117/12.2265947.
Full textJulian, Princy L., Mahmoud Farhadiroushan, Vincent A. Handerek, and Alan J. Rogers. "High-spatial-resolution distributed optical fiber strain or temperature sensing." In Photonics East (ISAM, VVDC, IEMB), edited by John P. Dakin, Alan D. Kersey, and Dilip K. Paul. SPIE, 1999. http://dx.doi.org/10.1117/12.339105.
Full textLecomte, Pierre, Sylvain Blairon, Didier Boldo, Frédéric Taillade, Matthieu Caussanel, Gwendal Beauvois, Hervé Duval, et al. "High temperature measurements in irradiated environment using Raman fiber-optics distributed temperature sensing." In SPIE Photonics Europe, edited by Francis Berghmans and Anna G. Mignani. SPIE, 2016. http://dx.doi.org/10.1117/12.2219174.
Full textWang, Jing, Di Hu, Dorothy Y. Wang, and Anbo Wang. "Fully-distributed fiber-optic high temperature sensing based on stimulated Brillouin scattering." In SPIE Defense, Security, and Sensing, edited by Eric Udd, Gary Pickrell, Henry H. Du, Jerry J. Benterou, Xudong Fan, Alexis Mendez, Stephen J. Mihailov, Anbo Wang, and Hai Xiao. SPIE, 2013. http://dx.doi.org/10.1117/12.2015459.
Full textIezzi, Victor Lambin, Sebastien Loranger, and Raman Kashyap. "Distributed temperature and strain sensing with high order stimulated Brillouin scattering." In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086884.
Full textHill, W., M. Busker, B. Callsen, A. Dreß, M. Fromme, D. Gavrila, St Ketzer, et al. "P3.2 - Robust, High-Performance Raman-OFDR System for Distributed Temperature Sensing." In SENSOR+TEST Conferences 2011. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2011. http://dx.doi.org/10.5162/sensor11/sp3.2.
Full textBERNINI, R., A. MINARDO, and L. ZENI. "HIGH-RESOLUTION TEMPERATURE/STRAIN DISTRIBUTED MEASUREMENTS BY FIBER-OPTIC BRILLOUIN SENSING." In Proceedings of the 10th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812833532_0085.
Full textReinsch, T., and J. Henninges. "Well Integrity Analysis in a High Temperature Geothermal Well using Distributed Temperature Sensing Behind Casing." In EAGE/DGG Workshop 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700167.
Full textBuric, M., P. Ohodnicki, A. Yan, S. Huang, and K. P. Chen. "Distributed fiber-optic sensing in a high-temperature solid-oxide fuel cell." In SPIE Optical Engineering + Applications, edited by Philip E. Ardanuy and Jeffery J. Puschell. SPIE, 2016. http://dx.doi.org/10.1117/12.2238534.
Full textInaudi, Daniele, and Branko Glisic. "Long-Range Pipeline Monitoring by Distributed Fiber Optic Sensing." In 2006 International Pipeline Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ipc2006-10287.
Full textReports on the topic "Distributed high temperature sensing"
May, Russell, Raymond Rumpf, John Coggin, Williams Davis, Taeyoung Yang, Alan O'Donnell, and Peter Bresnahan. Ultra-High Temperature Distributed Wireless Sensors. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1116992.
Full textFlorian Solzbacher, Anil Virkar, Loren Rieth, Srinivasan Kannan, Xiaoxin Chen, and Hannwelm Steinebach. Novel High Temperature Materials for In-Situ Sensing Devices. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/992584.
Full textZhi Chen and Kozo Saito. Novel Carbon Nanotube-Based Nanostructures for High-Temperature Gas Sensing. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/947007.
Full textMawalkar, Sanjay, Andrew Burchwell, and Neeraj Gupta. Distributed Temperature Sensing (DTS) to Monitor CO2 Migration in an Enhanced Oil Recovery Field in Northern Michigan. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1773169.
Full textBoyd, D. M., G. E. Spanner, and P. D. Sperline. Direct measurement of solids: High temperature sensing Final report Experimental development and testing of high temperature pulsed EMATs (electromagnetic acoustic transducer):. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/7145606.
Full textQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41325.
Full textWang, Xingwei, Chengyu Cao, and Xinsheng Lou. Distributed fiber sensing systems for 3D combustion temperature field monitoring in coal-fired boilers using optically generated acoustic waves. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1507128.
Full textKwang Y. Lee, Stuart S. Yin, and Andre Boehman. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/907882.
Full textKwang Y. Lee, Stuart S. Yin, and Andre Boheman. Intelligent Monitoring System With High Temperature Distributed Fiberoptic Sensor For Power Plant Combustion Processes. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/882505.
Full textKwang Y. Lee, Stuart S. Yin, and Andre Boheman. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/839165.
Full text