To see the other types of publications on this topic, follow the link: Distributed hydrological models.

Journal articles on the topic 'Distributed hydrological models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Distributed hydrological models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Anderson, M. G., and C. C. M. Rogers. "Catchment scale distributed hydrological models." Progress in Physical Geography: Earth and Environment 11, no. 1 (March 1987): 28–51. http://dx.doi.org/10.1177/030913338701100102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rushworth, Alastair M., Adrian W. Bowman, Mark J. Brewer, and Simon J. Langan. "Distributed Lag Models for Hydrological Data." Biometrics 69, no. 2 (February 14, 2013): 537–44. http://dx.doi.org/10.1111/biom.12008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

YAO, Huaxia, Michio HASHINO, Akira TERAKAWA, and Toshiro SUZUKI. "COMPARISON OF DISTRIBUTED AND LUMPED HYDROLOGICAL MODELS." PROCEEDINGS OF HYDRAULIC ENGINEERING 42 (1998): 163–68. http://dx.doi.org/10.2208/prohe.42.163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Refsgaard, Jens Christian. "Parameterisation, calibration and validation of distributed hydrological models." Journal of Hydrology 198, no. 1-4 (November 1997): 69–97. http://dx.doi.org/10.1016/s0022-1694(96)03329-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ocio, D., T. Beskeen, and K. Smart. "Fully distributed hydrological modelling for catchment-wide hydrological data verification." Hydrology Research 50, no. 6 (June 3, 2019): 1520–34. http://dx.doi.org/10.2166/nh.2019.006.

Full text
Abstract:
Abstract Hydrological data scarcity and uncertainty is a fundamental challenge in hydrology, particularly in places with weak or declining investment in hydrometric networks. It is well established that fully distributed hydrological models can provide robust estimation of flows at ungauged locations, through local calibration and regionalisation using spatial datasets of physical properties. Even in situations where data are abundant, the existence of inconsistent information is not uncommon. The measurement, estimation or interpolation of rainfall, potential evapotranspiration and flow as well as the difficulty in monitoring artificial influences are all sources of potential inconsistency. Less studied but as important, distributed hydrological models, given their capability of capturing both the temporal and spatial dimensions of the water balance and runoff generation, are suitable tools to identify potential deficiencies in, and reliability of, input data. Three heavily modified catchments in the East of England such as the Ely Ouse, the Witham, and the Black Sluice have been considered, all of which have issues of data scarcity and uncertainty. This paper demonstrates not only the benefits of fully distributed modelling in addressing data availability issues but also in its use as a catchment-wide data validation tool that serves to maximise the potential of limited data and contributes to improved basin representation.
APA, Harvard, Vancouver, ISO, and other styles
6

Xin, Zhuohang, Ke Shi, Chenchen Wu, Lu Wang, and Lei Ye. "Applicability of Hydrological Models for Flash Flood Simulation in Small Catchments of Hilly Area in China." Open Geosciences 11, no. 1 (December 31, 2019): 1168–81. http://dx.doi.org/10.1515/geo-2019-0089.

Full text
Abstract:
Abstract Flash flood in small catchments of hilly area is an extremely complicated nonlinear process affected by catchment properties and rainfall spatio-temporal variation characteristics including many physical-geographical factors, and thus accurate simulation of flash flood is very difficult. Given the fact that hundreds of hydrological models are available in the literature, how to choose a suitable hydrological model remains an unsolved task. In this paper, we selected five widely used hydrological models including three lumped hydrologic models, a semi-distributed hydrological model and a distributed hydrological model for flash flood simulation, and studied their applicability in fourteen typical catchments in hilly areas across China. The results show that the HEC-HMS distributed hydrological model outperforms the other models and is suitable to simulate the flash floods caused by highly intense rainfall. The Dahuofang model (lumped) has higher precision in peak runoff time simulation. However, its performance is quite poor on the flood volume simulation in the small catchments characterized by intense vegetation coverage and highly developed stream network. The Antecedent precipitation index and Xinanjiang models (lumped) can obtain good simulation results in small humid catchments as long as long-term historical precipitation and runoff data are provided. The TOPMODEL also shows good performance in small humid catchments, but it is unable to simulate the flash floods characterized by the rapid rise and recession. Our results could be very beneficial in practice, since these provide a solid foundation in the selection of hydrological model for flash flood simulation in small catchments in hilly area.
APA, Harvard, Vancouver, ISO, and other styles
7

Jin, Xin, and Yanxiang Jin. "Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets." Water 12, no. 3 (March 22, 2020): 897. http://dx.doi.org/10.3390/w12030897.

Full text
Abstract:
The calibration of hydrological models is often complex in regions with scarce data, and generally only uses site-based streamflow data. However, this approach will yield highly generalised values for all model parameters and hydrological processes. It is therefore necessary to obtain more spatially heterogeneous observation data (e.g., satellite-based evapotranspiration (ET)) to calibrate such hydrological models. Here, soil and water assessment tool (SWAT) models were built to evaluate the advantages of using ET data derived from the Global Land surface Evaporation Amsterdam Methodology (GLEAM) to calibrate the models for the Bayinhe River basin in northwest China, which is a typical data-scarce basin. The result revealed the following: (1) A great effort was required to calibrate the SWAT models for the study area to obtain an improved model performance. (2) The SWAT model performance for simulating the streamflow and water balance was reliable when calibrated with streamflow only, but this method of calibration grouped the hydrological processes together and caused an equifinality issue. (3) The combination of the streamflow and GLEAM-based ET data for calibrating the SWAT model improved the model performance for simulating the streamflow and water balance. However, the equifinality issue remained at the hydrologic response unit (HRU) level.
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Junzhi, A.-Xing Zhu, Cheng-Zhi Qin, Hui Wu, and Jingchao Jiang. "A two-level parallelization method for distributed hydrological models." Environmental Modelling & Software 80 (June 2016): 175–84. http://dx.doi.org/10.1016/j.envsoft.2016.02.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kunstmann, H., J. Krause, and S. Mayr. "Inverse distributed hydrological modelling of alpine catchments." Hydrology and Earth System Sciences Discussions 2, no. 6 (December 1, 2005): 2581–623. http://dx.doi.org/10.5194/hessd-2-2581-2005.

Full text
Abstract:
Abstract. Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2) in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m). Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis) narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. A detailed covariance analysis was performed allowing to derive confidence bounds for all estimated parameters. The correlation between the estimated parameters was in most cases negligible, showing that parameters were estimated independently from each other.
APA, Harvard, Vancouver, ISO, and other styles
10

Qin, Fangling, Ying Zhu, Tianqi Ao, and Ting Chen. "The Development Trend and Research Frontiers of Distributed Hydrological Models—Visual Bibliometric Analysis Based on Citespace." Water 13, no. 2 (January 13, 2021): 174. http://dx.doi.org/10.3390/w13020174.

Full text
Abstract:
Based on the bibliometric and data visualization analysis software Citespace, this study carried out document statistics and information mining on the Web of Science database and characterized the distributed hydrological model knowledge system from 1986 to 2019. The results show a few things: (1) from 1986 to 2019, the United States and China accounted for 41% of the total amount of publications, and they were the main force in the field of distributed hydrological model research; (2) field research involves multiple disciplines, mainly covering water resources, geology, earth sciences, environmental sciences, ecology and engineering; (3) the frontier of field research has shifted from using distributed hydrological models in order to simulate runoff and nonpoint source environmental responses to the coupling of technologies and products that can obtain high-precision, high-resolution data with distributed hydrological models. (4) Affected by climate warming, the melting of glaciers has accelerated, and the spatial distribution of permafrost and water resources have changed, which has caused a non-negligible impact on the hydrological process. Therefore, the development of distributed hydrological models suitable for alpine regions and the response of hydrological processes to climate change have also become important research directions at present.
APA, Harvard, Vancouver, ISO, and other styles
11

Kumar, Dilip, and Rajib Kumar Bhattacharjya. "Evaluating two GIS-based semi-distributed hydrological models in the Bhagirathi-Alkhnanda River catchment in India." Water Policy 22, no. 6 (October 20, 2020): 991–1014. http://dx.doi.org/10.2166/wp.2020.159.

Full text
Abstract:
Abstract The hydrological models are used for simulating the runoff of a river basin based on available rainfall data and other parameters. Over the years, several hydrological models have been developed in different parts of the world. Two such semi-distributed hydrologic models are SWAT and HEC-HMS. In this study, a comparative analysis has been carried out to evaluate the performance of these two distributed hydrological models as a flood forecasting tool. The Alkhnanda and Bhagirathi rivers, which flow into the Tehri Reservoir, Uttarakhand and pass through Tehri, Uttarkashi and Chamoli districts of Uttarakhand, India, are selected for the analysis. The performance of these two models is evaluated by using standard statistical methods. The comparative analysis of these two models shows that the SWAT model is performing slightly better in comparison to the HEC-HMS model, especially in the lean period. The underestimation of peak discharge may be due to the contribution of significant snowmelt discharge during the rainy season. The models are also used to predict future discharge under different climate change scenarios. The future prediction shows that the peak discharge of Alkhnanda may be increased by 27 and 47% under RCP4.5 and RCP8.5, respectively.
APA, Harvard, Vancouver, ISO, and other styles
12

Loritz, Ralf, Markus Hrachowitz, Malte Neuper, and Erwin Zehe. "The role and value of distributed precipitation data in hydrological models." Hydrology and Earth System Sciences 25, no. 1 (January 7, 2021): 147–67. http://dx.doi.org/10.5194/hess-25-147-2021.

Full text
Abstract:
Abstract. This study investigates the role and value of distributed rainfall for the runoff generation of a mesoscale catchment (20 km2). We compare four hydrological model setups and show that a distributed model setup driven by distributed rainfall only improves the model performances during certain periods. These periods are dominated by convective summer storms that are typically characterized by higher spatiotemporal variabilities compared to stratiform precipitation events that dominate rainfall generation in winter. Motivated by these findings, we develop a spatially adaptive model that is capable of dynamically adjusting its spatial structure during model execution. This spatially adaptive model allows the varying relevance of distributed rainfall to be represented within a hydrological model without losing predictive performance compared to a fully distributed model. Our results highlight that spatially adaptive modeling has the potential to reduce computational times as well as improve our understanding of the varying role and value of distributed precipitation data for hydrological models.
APA, Harvard, Vancouver, ISO, and other styles
13

Kunstmann, H., J. Krause, and S. Mayr. "Inverse distributed hydrological modelling of Alpine catchments." Hydrology and Earth System Sciences 10, no. 3 (June 7, 2006): 395–412. http://dx.doi.org/10.5194/hess-10-395-2006.

Full text
Abstract:
Abstract. Even in physically based distributed hydrological models, various remaining parameters must be estimated for each sub-catchment. This can involve tremendous effort, especially when the number of sub-catchments is large and the applied hydrological model is computationally expensive. Automatic parameter estimation tools can significantly facilitate the calibration process. Hence, we combined the nonlinear parameter estimation tool PEST with the distributed hydrological model WaSiM. PEST is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. WaSiM is a fully distributed hydrological model using physically based algorithms for most of the process descriptions. WaSiM was applied to the alpine/prealpine Ammer River catchment (southern Germany, 710 km2 in a 100×100 m2 horizontal resolution. The catchment is heterogeneous in terms of geology, pedology and land use and shows a complex orography (the difference of elevation is around 1600 m). Using the developed PEST-WaSiM interface, the hydrological model was calibrated by comparing simulated and observed runoff at eight gauges for the hydrologic year 1997 and validated for the hydrologic year 1993. For each sub-catchment four parameters had to be calibrated: the recession constants of direct runoff and interflow, the drainage density, and the hydraulic conductivity of the uppermost aquifer. Additionally, five snowmelt specific parameters were adjusted for the entire catchment. Altogether, 37 parameters had to be calibrated. Additional a priori information (e.g. from flood hydrograph analysis) narrowed the parameter space of the solutions and improved the non-uniqueness of the fitted values. A reasonable quality of fit was achieved. Discrepancies between modelled and observed runoff were also due to the small number of meteorological stations and corresponding interpolation artefacts in the orographically complex terrain. Application of a 2-dimensional numerical groundwater model partly yielded a slight decrease of overall model performance when compared to a simple conceptual groundwater approach. Increased model complexity therefore did not yield in general increased model performance. A detailed covariance analysis was performed allowing to derive confidence bounds for all estimated parameters. The correlation between the estimated parameters was in most cases negligible, showing that parameters were estimated independently from each other.
APA, Harvard, Vancouver, ISO, and other styles
14

Xing, Zikang, Miaomiao Ma, Zhicheng Su, Juan Lv, Peng Yi, and Wenlong Song. "A review of the adaptability of hydrological models for drought forecasting." Proceedings of the International Association of Hydrological Sciences 383 (September 16, 2020): 261–66. http://dx.doi.org/10.5194/piahs-383-261-2020.

Full text
Abstract:
Abstract. Drought intensity and frequency are increasing in recent years in multiple regions across the world due to global climate change and consequently drought forecasting research has received more and more attention. Previous studies on drought forecasting mostly focus on meteorological drought based on precipitation and temperature. However, the trend of predicting agriculture and hydrological drought, which consider soil moisture and runoff, have developed rapidly in recent years. Hydrological drought forecasting is based on the hydrological models and the model structure plays a role to improve predictions. This study scrutinized more than 50 hydrological models, including lumped models, semi-distributed models, distributed models, surface water and groundwater coupled models, to explore the adaptability of hydrological models in drought simulation and forecasting. The advantages and disadvantages of typical models, such as DTVGM, GWAVA, and HEC-HMS models were analyzed to provide valuable reference for drought forecasting model development. Future work aims at improving the hydrological models to simulate the drought processes and make better prediction.
APA, Harvard, Vancouver, ISO, and other styles
15

Bork, H. R., and H. Rohdenburg. "Transferable parameterization methods for distributed hydrological and agroecological catchment models." CATENA 13, no. 1-2 (June 1986): 99–117. http://dx.doi.org/10.1016/s0341-8162(86)80007-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Golmohammadi, Golmar, Shiv Prasher, Ali Madani, and Ramesh Rudra. "Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT." Hydrology 1, no. 1 (May 28, 2014): 20–39. http://dx.doi.org/10.3390/hydrology1010020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ricard, S., R. Bourdillon, D. Roussel, and R. Turcotte. "Global Calibration of Distributed Hydrological Models for Large-Scale Applications." Journal of Hydrologic Engineering 18, no. 6 (June 2013): 719–21. http://dx.doi.org/10.1061/(asce)he.1943-5584.0000665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

李, 兰. "Multi-Source Data Fusion Pretreatment System in Distributed Hydrological Models." Journal of Water Resources Research 03, no. 03 (2014): 267–74. http://dx.doi.org/10.12677/jwrr.2014.33033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gandoy-Bernasconi, William, and Oscar Palacios-Velez. "Automatic cascade numbering of unit elements in distributed hydrological models." Journal of Hydrology 112, no. 3-4 (January 1990): 375–93. http://dx.doi.org/10.1016/0022-1694(90)90024-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yao, C., L. Chang, J. Ding, Z. Li, D. An, and Y. Zhang. "Evaluation of the effects of underlying surface change on catchment hydrological response using the HEC-HMS model." Proceedings of the International Association of Hydrological Sciences 364 (September 16, 2014): 145–50. http://dx.doi.org/10.5194/piahs-364-145-2014.

Full text
Abstract:
Abstract. Due to rapid population growth, China, and urbanization, the Dongwan catchment, with a drainage area of 2856 km2 and located in Henan Province, has been subjected to considerable land-use changes since the 1990s. Distributed or semi-distributed models have been widely used in catchment hydrological modeling, along with the rapid development of computer and GIS technologies. The objective of this study is to assess the impact of underlying surface change on catchment hydrological response using the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS), which is a distributed hydrological model. Specifically, 21 flood events were selected for calibrating and validating the model parameters. The satisfactory results show that the HEC-HMS model can be used to simulate the rainfall–runoff response in the Dongwan catchment. In light of the analyses of simulation results, it is shown that the flood peaks and runoff yields after 1990 moderately decrease in comparison with that before 1990 at the same precipitation level. It is also indicated that the underlying surface change leads to the increased flood storage capacity after 1990 in this region.
APA, Harvard, Vancouver, ISO, and other styles
21

Hollaus, M., W. Wagner, and K. Kraus. "Airborne laser scanning and usefulness for hydrological models." Advances in Geosciences 5 (December 16, 2005): 57–63. http://dx.doi.org/10.5194/adgeo-5-57-2005.

Full text
Abstract:
Abstract. Digital terrain models form the basis for distributed hydrologic models as well as for two-dimensional hydraulic river flood models. The technique used for generating high accuracy digital terrain models has shifted from stereoscopic aerial-photography to airborne laser scanning during the last years. Since the disastrous floods 2002 in Austria, large airborne laser-scanning flight campaigns have been carried out for several river basins. Additionally to the topographic information, laser scanner data offer also the possibility to estimate object heights (vegetation, buildings). Detailed land cover maps can be derived in conjunction with the complementary information provided by high-resolution colour-infrared orthophotos. As already shown in several studies, the potential of airborne laser scanning to provide data for hydrologic/hydraulic applications is high. These studies were mostly constraint to small test sites. To overcome this spatial limitation, the current paper summarises the experiences to process airborne laser scanner data for large mountainous regions, thereby demonstrating the applicability of this technique in real-world hydrological applications.
APA, Harvard, Vancouver, ISO, and other styles
22

Overgaard, J., D. Rosbjerg, and M. B. Butts. "Land-surface modelling in hydrological perspective." Biogeosciences Discussions 2, no. 6 (December 13, 2005): 1815–48. http://dx.doi.org/10.5194/bgd-2-1815-2005.

Full text
Abstract:
Abstract. A comprehensive review of energy-based land-surface modelling, as seen from a hydrological perspective, is provided. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail, and the difficulties inherent in various evaluation procedures are presented. Remote sensing is the only source of distributed data at scales that correspond to hydrological modelling scales. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the future perspectives of such efforts are discussed.
APA, Harvard, Vancouver, ISO, and other styles
23

Chen, Y., J. Li, and H. Xu. "Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization." Hydrology and Earth System Sciences 20, no. 1 (January 21, 2016): 375–92. http://dx.doi.org/10.5194/hess-20-375-2016.

Full text
Abstract:
Abstract. Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.
APA, Harvard, Vancouver, ISO, and other styles
24

Pawitan, Hidayat, and Muh Taufik. "Non-linear Routing Scheme at Grid Cell Level for Large Scale Hydrologic Models: A Review." Agromet 35, no. 2 (August 12, 2021): 60–72. http://dx.doi.org/10.29244/j.agromet.35.2.60-72.

Full text
Abstract:
New tools and concepts in the form of mathematical models, remote sensing and Geographic Information System (GIS), communication and telemetering have been developed for the complex hydrologic systems that permit a different analysis of processes and allow watershed to be considered as an integrated planning and management unit. Hydrological characteristics can be generated through spatial analysis, and ready for input into a distributed hydrologic models to define adequately the hydrological response of a watershed that can be related back to the specific environmental, climatic, and geomorphic conditions. In the present paper, some recent development in hydrologic modeling will be reviewed with recognition of the role of horizontal routing scheme in large scale hydrologic modeling. Among others, these developments indicated the needs of alternative horizontal routing models at grid scale level that can be coupled to land surface parameterization schemes that presently still employed the linear routing model. Non-linear routing scheme will be presented and discussed in this paper as possible extension.
APA, Harvard, Vancouver, ISO, and other styles
25

Wang, Shao, Su, Cui, and Zhang. "The Application of Improved SWAT Model to Hydrological Cycle Study in Karst Area of South China." Sustainability 11, no. 18 (September 13, 2019): 5024. http://dx.doi.org/10.3390/su11185024.

Full text
Abstract:
In the karst area of southern China, karst water is important for supporting the sustainable production and home living for the local residents. Consequently, it is of significance to fully understand the water cycle, so as to make full use of water resources. In karst areas, epikarst and conduits are developed, participating in the hydrological cycle actively. For conventional lumped hydrologic models, it is difficult to simulate the hydrological cycle accurately. These models neglect to consider the variation of underlying surface and weather change. Meanwhile, for the original distributed hydrological model, the existence of epikarst and underground conduits as well as inadequate data information also make it difficult to achieve accurate simulation. To this end, the framework combining the advantages of lumped model–reservoir model and distributed hydrologic model–Soil and Water Assessment Tool (SWAT) model is established to simulate the water cycle efficiently in a karst area. Xianghualing karst watershed in southern China was selected as the study area and the improved SWAT model was used to simulate the water cycle. Results show that the indicators of ENS and R2 in the calibration and verification periods are both above 0.8, which is evidently improved in comparison with the original model. The improved SWAT model is verified to have better efficiency in describing the hydrological cycle in a typical karst area.
APA, Harvard, Vancouver, ISO, and other styles
26

Nijzink, R. C., L. Samaniego, J. Mai, R. Kumar, S. Thober, M. Zink, D. Schäfer, H. H. G. Savenije, and M. Hrachowitz. "The importance of topography controlled sub-grid process heterogeneity in distributed hydrological models." Hydrology and Earth System Sciences Discussions 12, no. 12 (December 21, 2015): 13301–58. http://dx.doi.org/10.5194/hessd-12-13301-2015.

Full text
Abstract:
Abstract. Heterogeneity of landscape features like terrain, soil, and vegetation properties affect the partitioning of water and energy. However, it remains unclear to which extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated in the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge based model constraints reduces model uncertainty; and (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both, the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as overall measure for model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 % respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. Besides, it was shown that suitable semi-quantitative prior constraints in combination with the transfer function based regularization approach of mHM, can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
APA, Harvard, Vancouver, ISO, and other styles
27

Turcotte, Richard, Pierre Lacombe, Corrine Dimnik, and Jean-Pierre Villeneuve. "Prévision hydrologique distribuée pour la gestion des barrages publics du Québec." Canadian Journal of Civil Engineering 31, no. 2 (February 1, 2004): 308–20. http://dx.doi.org/10.1139/l04-011.

Full text
Abstract:
The development of a flow forecasting system for public dam management in southern Quebec is presented. The system is based on distributed hydrological models using 3-h time steps to correctly perform short-term forecasts on small watersheds, located upstream of these dams, with quick hydrological responses. The contribution of models in the complete process of forecast evaluation is also studied. A numerical application, using the flood of the Chaudière river in July 2001, illustrated that distributed models with short time steps are needed despite the added complexity in the installation, calibration, and operation of the forecasting system. Also, the analysis of flow forecasted for the Spring 2003 flood shows that interpretation of model runs can lead the operational forecaster to better forecasting of results and can be improved by the use of distributed models.Key words: hydrology, flow forecast, distributed hydrological model, flood.
APA, Harvard, Vancouver, ISO, and other styles
28

Velázquez, J. A., J. Schmid, S. Ricard, M. J. Muerth, B. Gauvin St-Denis, M. Minville, D. Chaumont, D. Caya, R. Ludwig, and R. Turcotte. "An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources." Hydrology and Earth System Sciences 17, no. 2 (February 8, 2013): 565–78. http://dx.doi.org/10.5194/hess-17-565-2013.

Full text
Abstract:
Abstract. Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000) and a future (2041–2070) period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.
APA, Harvard, Vancouver, ISO, and other styles
29

Overgaard, J., D. Rosbjerg, and M. B. Butts. "Land-surface modelling in hydrological perspective – a review." Biogeosciences 3, no. 2 (May 17, 2006): 229–41. http://dx.doi.org/10.5194/bg-3-229-2006.

Full text
Abstract:
Abstract. The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed.
APA, Harvard, Vancouver, ISO, and other styles
30

Jin, Xin, Yanxiang Jin, and Xufeng Mao. "Land Use/Cover Change Effects on River Basin Hydrological Processes Based on a Modified Soil and Water Assessment Tool: A Case Study of the Heihe River Basin in Northwest China’s Arid Region." Sustainability 11, no. 4 (February 19, 2019): 1072. http://dx.doi.org/10.3390/su11041072.

Full text
Abstract:
Land use/cover change (LUCC) affects canopy interception, soil infiltration, land-surface evapotranspiration (ET), and other hydrological parameters during rainfall, which in turn affects the hydrological regimes and runoff mechanisms of river basins. Physically based distributed (or semi-distributed) models play an important role in interpreting and predicting the effects of LUCC on the hydrological processes of river basins. However, conventional distributed (or semi-distributed) models, such as the soil and water assessment tool (SWAT), generally assume that no LUCC takes place during the simulation period to simplify the computation process. When applying the SWAT, the subject river basin is subdivided into multiple hydrologic response units (HRUs) based on the land use/cover type, soil type, and surface slope. The land use/cover type is assumed to remain constant throughout the simulation period, which limits the ability to interpret and predict the effects of LUCC on hydrological processes in the subject river basin. To overcome this limitation, a modified SWAT (LU-SWAT) was developed that incorporates annual land use/cover data to simulate LUCC effects on hydrological processes under different climatic conditions. To validate this approach, this modified model and two other models (one model based on the 2000 land use map, called SWAT 1; one model based on the 2009 land use map, called SWAT 2) were applied to the middle reaches of the Heihe River in northwest China; this region is most affected by human activity. Study results indicated that from 1990 to 2009, farmland, forest, and urban areas all showed increasing trends, while grassland and bare land areas showed decreasing trends. Primary land use changes in the study area were from grassland to farmland and from bare land to forest. During this same period, surface runoff, groundwater runoff, and total water yield showed decreasing trends, while lateral flow and ET volume showed increasing trends under dry, wet, and normal conditions. Changes in the various hydrological parameters were most evident under dry and normal climatic conditions. Based on the existing research of the middle reaches of the Heihe River, and a comparison of the other two models from this study, the modified LU-SWAT developed in this study outperformed the conventional SWAT when predicting the effects of LUCC on the hydrological processes of river basins.
APA, Harvard, Vancouver, ISO, and other styles
31

Gichamo, Tseganeh Z., Nazmus S. Sazib, David G. Tarboton, and Pabitra Dash. "HydroDS: Data services in support of physically based, distributed hydrological models." Environmental Modelling & Software 125 (March 2020): 104623. http://dx.doi.org/10.1016/j.envsoft.2020.104623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Karssenberg, Derek. "The value of environmental modelling languages for building distributed hydrological models." Hydrological Processes 16, no. 14 (2002): 2751–66. http://dx.doi.org/10.1002/hyp.1068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Francés, Félix, Jaime Ignacio Vélez, and Jorge Julián Vélez. "Split-parameter structure for the automatic calibration of distributed hydrological models." Journal of Hydrology 332, no. 1-2 (January 2007): 226–40. http://dx.doi.org/10.1016/j.jhydrol.2006.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Beven*, K. "How far can we go in distributed hydrological modelling?" Hydrology and Earth System Sciences 5, no. 1 (March 31, 2001): 1–12. http://dx.doi.org/10.5194/hess-5-1-2001.

Full text
Abstract:
Abstract. This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of the problems of distributed modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the problem of uniqueness and the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an uncertain or fuzzy landscape space to model space mapping. This is suggested as the basis for an Alternative Blueprint for distributed modelling in the form of an application methodology. This Alternative Blueprint is scientific in that it allows for the formulation of testable hypotheses. It focuses attention on the prior evaluation of models in terms of physical realism and on the value of data in model rejection. Finally, some unresolved questions that distributed modelling must address in the future are outlined, together with a vision for distributed modelling as a means of learning about places.
APA, Harvard, Vancouver, ISO, and other styles
35

Marsh, Christopher B., John W. Pomeroy, and Howard S. Wheater. "The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview." Geoscientific Model Development 13, no. 1 (January 29, 2020): 225–47. http://dx.doi.org/10.5194/gmd-13-225-2020.

Full text
Abstract:
Abstract. Despite debate in the rainfall–runoff hydrology literature about the merits of physics-based and spatially distributed models, substantial work in cold-region hydrology has shown improved predictive capacity by including physics-based process representations, relatively high-resolution semi-distributed and fully distributed discretizations, and the use of physically identifiable parameters that require limited calibration. While there is increasing motivation for modelling at hyper-resolution (< 1 km) and snowdrift-resolving scales (≈ 1 to 100 m), the capabilities of existing cold-region hydrological models are computationally limited at these scales. Here, a new distributed model, the Canadian Hydrological Model (CHM), is presented. Although designed to be applied generally, it has a focus for application where cold-region processes play a role in hydrology. Key features include the ability to do the following: capture spatial heterogeneity in the surface discretization in an efficient manner via variable-resolution unstructured meshes; include multiple process representations; change, remove, and decouple hydrological process algorithms; work at both a point and spatially distributed scale; scale to multiple spatial extents and scales; and utilize a variety of forcing fields (boundary and initial conditions). This paper focuses on the overall model philosophy and design, and it provides a number of cold-region-specific features and examples.
APA, Harvard, Vancouver, ISO, and other styles
36

Gautam, Narayan Prasad. "Flow routing with Semi-distributed hydrological model HEC- HMS in case of Narayani River Basin." Journal of the Institute of Engineering 10, no. 1 (July 31, 2014): 45–58. http://dx.doi.org/10.3126/jie.v10i1.10877.

Full text
Abstract:
Routing is the modeling process to determine the outflow at an outlet from given inflow at upstream of the channel. A hydrological simulation model use mathematical equations that establish relationships between inputs and outputs of water system and simulates the catchment response to the rainfall input. Several hydrological models have been developed to assist in understanding of hydrologic system and water resources management. A model, once calibrated and verified on catchments, provides a multi-purpose tool for further analysis. Semi-Distributed models in hydrology are usually physically based in that they are defined in terms of theoretically acceptable continuum equations. They do, however, involve some degree of lumping since analytical solutions to the equations cannot be found, and so approximate numerical solutions, based on a finite difference or finite element discretization of the space and time dimensions, are implemented. Many rivers in Nepal are either ungauged or poorly gauged due to extreme complex terrains, monsoon climate and lack of technical and financial supports. In this context the role of hydrological models are extremely useful. In practical applications, hydrological routing methods are relatively simple to implement reasonably accurate. In this study, Gandaki river basin was taken for the study area. Kinematic wave method was used for overland routing and Muskingum cunge method was applied for channel routing to describe the discharge on Narayani river and peak flow attenuation and dispersion observed in the direct runoff hydrograph. Channel cross section parameters are extracted using HEC- GeoRAS extension tool of GIS. From this study result, Annual runoff, Peak flow and time of peak at the outlet are similar to the observed flow in calibration and verification period using trapezoidal channel. Hence Hydrological modeling is a powerful technique in the planning and development of integrated approach for management of water resources. DOI: http://dx.doi.org/10.3126/jie.v10i1.10877Journal of the Institute of Engineering, Vol. 10, No. 1, 2014 pp. 45-58
APA, Harvard, Vancouver, ISO, and other styles
37

Velázquez, J. A., J. Schmid, S. Ricard, M. J. Muerth, B. Gauvin St-Denis, M. Minville, D. Chaumont, D. Caya, R. Ludwig, and R. Turcotte. "An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources." Hydrology and Earth System Sciences Discussions 9, no. 6 (June 12, 2012): 7441–74. http://dx.doi.org/10.5194/hessd-9-7441-2012.

Full text
Abstract:
Abstract. Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971–2000) and a future (2041–2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.
APA, Harvard, Vancouver, ISO, and other styles
38

Mendoza, Manuel, Gerardo Bocco, and Miguel Bravo. "Spatial prediction in hydrology: status and implications in the estimation of hydrological processes for applied research." Progress in Physical Geography: Earth and Environment 26, no. 3 (September 2002): 319–38. http://dx.doi.org/10.1191/0309133302pp335ra.

Full text
Abstract:
Based on a review of research, the linkages between distributed hydrological modelling (DHM) remote sensing (RS) and geographical information system (GIS) techniques, coupled with geomorphological knowledge are discussed. While presenting characteristics of the models, techniques, and supporting analytical tools of geographical hydrology, the emphasis is on the estimation of hydrological variables. The first is limited to the spatialization and integration of low resolution meteorological data with hydrological models in a GIS environment. The second includes research in the calculation of precipitation, evapotranspiration, radiation, etc., from the digital analyses of remote sensing data, to feed either lumped or spatially distributed models. The third links the tools of GIS and RS with hydrological modelling; usually it makes intensive use of the tools of GIS for several scales of spatial modelling. The last group integrates GIS, RS and hydrological modelling supported by the delimitation and characterization of environmental units, generally to detailed and semi-detailed scales.
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, Jiongfeng, and Wan-chang Zhang. "A new numerical model for simulating top surface soil moisture and runoff." Engineering Computations 35, no. 3 (May 8, 2018): 1344–63. http://dx.doi.org/10.1108/ec-01-2017-0031.

Full text
Abstract:
PurposeThis paper aims to construct a simplified distributed hydrological model based on the surveyed watershed soil properties database.Design/methodology/approachThe new established model requires fewer parameters to be adjusted than needed by former hydrological models. However, the achieved stream-flow simulation results are similar and comparable to the classic hydrological models, such as the Xinanjiang model and the TOPMODEL.FindingsGood results show that the discharge and the top surface soil moisture can be simultaneously simulated, and that is the exclusive character of this new model. The stream-flow simulation results from two moderate hydrological watershed models show that the daily stream-flow simulation achieved the classic hydrological results shown in the TOPMODEL and Xinanjiang model. The soil moisture validation results show that the modeled watershed scale surface soil moisture has general agreement with the obtained measurements, with a root-mean-square error (RMSE) value of 0.04 (m3/m3) for one of the one-measurement sites and an averaged RMSE of 0.08 (m3/m3) over all measurements.Originality/valueIn this paper, a new simplified distributed hydrological model was constructed.
APA, Harvard, Vancouver, ISO, and other styles
40

Seibert, Jan, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl. "Technical note: Representing glacier geometry changes in a semi-distributed hydrological model." Hydrology and Earth System Sciences 22, no. 4 (April 9, 2018): 2211–24. http://dx.doi.org/10.5194/hess-22-2211-2018.

Full text
Abstract:
Abstract. Glaciers play an important role in high-mountain hydrology. While changing glacier areas are considered of highest importance for the understanding of future changes in runoff, glaciers are often only poorly represented in hydrological models. Most importantly, the direct coupling between the simulated glacier mass balances and changing glacier areas needs feasible solutions. The use of a complex glacier model is often not possible due to data and computational limitations. The Δh parameterization is a simple approach to consider the spatial variation of glacier thickness and area changes. Here, we describe a conceptual implementation of the Δh parameterization in the semi-distributed hydrological model HBV-light, which also allows for the representation of glacier advance phases and for comparison between the different versions of the implementation. The coupled glacio-hydrological simulation approach, which could also be implemented in many other semi-distributed hydrological models, is illustrated based on an example application.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Fangli, Qiming Zhou, Qingquan Li, Guofeng Wu, and Jun Liu. "A HIGH-PERFORMANCE METHOD FOR SIMULATING SURFACE RAINFALL-RUNOFF DYNAMICS USING PARTICLE SYSTEM." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-2 (June 2, 2016): 109–12. http://dx.doi.org/10.5194/isprsannals-iii-2-109-2016.

Full text
Abstract:
The simulation of rainfall-runoff process is essential for disaster emergency and sustainable development. One common disadvantage of the existing conceptual hydrological models is that they are highly dependent upon specific spatial-temporal contexts. Meanwhile, due to the inter-dependence of adjacent flow paths, it is still difficult for the RS or GIS supported distributed hydrological models to achieve high-performance application in real world applications. As an attempt to improve the performance efficiencies of those models, this study presents a high-performance rainfall-runoff simulating framework based on the flow path network and a separate particle system. The vector-based flow path lines are topologically linked to constrain the movements of independent rain drop particles. A separate particle system, representing surface runoff, is involved to model the precipitation process and simulate surface flow dynamics. The trajectory of each particle is constrained by the flow path network and can be tracked by concurrent processors in a parallel cluster system. The result of speedup experiment shows that the proposed framework can significantly improve the simulating performance just by adding independent processors. By separating the catchment elements and the accumulated water, this study provides an extensible solution for improving the existing distributed hydrological models. Further, a parallel modeling and simulating platform needs to be developed and validate to be applied in monitoring real world hydrologic processes.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhang, Fangli, Qiming Zhou, Qingquan Li, Guofeng Wu, and Jun Liu. "A HIGH-PERFORMANCE METHOD FOR SIMULATING SURFACE RAINFALL-RUNOFF DYNAMICS USING PARTICLE SYSTEM." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III-2 (June 2, 2016): 109–12. http://dx.doi.org/10.5194/isprs-annals-iii-2-109-2016.

Full text
Abstract:
The simulation of rainfall-runoff process is essential for disaster emergency and sustainable development. One common disadvantage of the existing conceptual hydrological models is that they are highly dependent upon specific spatial-temporal contexts. Meanwhile, due to the inter-dependence of adjacent flow paths, it is still difficult for the RS or GIS supported distributed hydrological models to achieve high-performance application in real world applications. As an attempt to improve the performance efficiencies of those models, this study presents a high-performance rainfall-runoff simulating framework based on the flow path network and a separate particle system. The vector-based flow path lines are topologically linked to constrain the movements of independent rain drop particles. A separate particle system, representing surface runoff, is involved to model the precipitation process and simulate surface flow dynamics. The trajectory of each particle is constrained by the flow path network and can be tracked by concurrent processors in a parallel cluster system. The result of speedup experiment shows that the proposed framework can significantly improve the simulating performance just by adding independent processors. By separating the catchment elements and the accumulated water, this study provides an extensible solution for improving the existing distributed hydrological models. Further, a parallel modeling and simulating platform needs to be developed and validate to be applied in monitoring real world hydrologic processes.
APA, Harvard, Vancouver, ISO, and other styles
43

Qi, W., C. Zhang, G. T. Fu, C. Sweetapple, and H. C. Zhou. "Evaluation of global fine-resolution precipitation products and their uncertainty quantification in ensemble discharge simulations." Hydrology and Earth System Sciences Discussions 12, no. 9 (September 10, 2015): 9337–91. http://dx.doi.org/10.5194/hessd-12-9337-2015.

Full text
Abstract:
Abstract. The applicability of six fine-resolution precipitation products, including precipitation radar, infrared, microwave and gauge-based products using different precipitation computation recipes, is comprehensively evaluated using statistical and hydrological methods in a usually-neglected area (northeastern China), and a framework quantifying uncertainty contributions of precipitation products, hydrological models and their interactions to uncertainties in ensemble discharges is proposed. The investigated precipitation products include TRMM3B42, TRMM3B42RT, GLDAS/Noah, APHRODITE, PERSIANN and GSMAP-MVK+. Two hydrological models of different complexities, i.e., a water and energy budget-based distributed hydrological model and a physically-based semi-distributed hydrological model, are employed to investigate the influence of hydrological models on simulated discharges. Results show APHRODITE has high accuracy at a monthly scale compared with other products, and the cloud motion vectors used by GSMAP-MVK+ show huge advantage. These findings could be very useful for validation, refinement and future development of satellite-based products (e.g., NASA Global Precipitation Measurement). Although significant uncertainty exists in heavy precipitation, hydrological models contribute most of the uncertainty in extreme discharges. Interactions between precipitation products and hydrological models contribute significantly to uncertainty in discharge simulations and a better precipitation product does not guarantee a better discharge simulation because of interactions. It is also found that a good discharge simulation depends on a good coalition of a hydrological model and a precipitation product, suggesting that, although the satellite-based precipitation products are not as accurate as the gauge-based product, they could have better performance in discharge simulations when appropriately combined with hydrological models. This information is revealed for the first time and very beneficial for precipitation product applications.
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Y., J. Li, and H. Xu. "Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization." Hydrology and Earth System Sciences Discussions 12, no. 10 (October 16, 2015): 10603–49. http://dx.doi.org/10.5194/hessd-12-10603-2015.

Full text
Abstract:
Abstract. Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
APA, Harvard, Vancouver, ISO, and other styles
45

Paul, Pranesh Kumar, Yongqiang Zhang, Ashok Mishra, Niranjan Panigrahy, and Rajendra Singh. "Comparative Study of Two State-of-the-Art Semi-Distributed Hydrological Models." Water 11, no. 5 (April 26, 2019): 871. http://dx.doi.org/10.3390/w11050871.

Full text
Abstract:
Performance of a newly developed semi-distributed (grid-based) hydrological model (satellite-based hydrological model (SHM)) has been compared with another semi-distributed soil and water assessment tool (SWAT)—a widely used hydrological response unit (HRU)-based hydrological model at a large scale (12,900 km2) river basin for monthly streamflow simulation. The grid-based model has a grid cell size of 25 km2, and the HRU-based model was set with an average HRU area of 25.2 km2 to keep a balance between the discretization of the two models. Both the model setups are calibrated against the observed streamflow over the period 1977 to 1990 (with 1976 as the warm-up period) and validated over the period 1991 to 2004 by comparing simulated and observed hydrographs as well as using coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) as statistical indices. Result of SHM simulation (NSE: 0.92 for calibration period; NSE: 0.92 for validation period) appears to be superior in comparison to SWAT simulation (NSE: 0.72 for calibration period; NSE: 0.50 for validation period) for both calibration and validation periods. The models’ performances are also analyzed for annual peak flow, monthly flow variability, and for different flow percentiles. SHM has performed better in simulating annual peak flows and has reproduced the annual variability of observed streamflow for every month of the year. In addition, SHM estimates normal, moderately high, and high flows better than SWAT. Furthermore, total uncertainties of models’ simulation have been analyzed using quantile regression technique and eventually quantified with scatter plots between P (measured data bracketed by the 95 percent predictive uncertainty (PPU) band) and R (the relative length of the 95PPU band with respect to the model simulated values)-values, for calibration and validation periods, for both the model simulations. The analysis confirms the superiority of SHM over its counterpart. Differences in data interpolation techniques and physical processes of the models are identified as the probable reasons behind the differences among the models’ outputs.
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Chuanhai, Wenjuan Hua, Gang Chen, Xing Fang, and Xiaoning Li. "Distributed-Framework Basin Modeling System: I. Overview and Model Coupling." Water 13, no. 5 (March 2, 2021): 678. http://dx.doi.org/10.3390/w13050678.

Full text
Abstract:
To better simulate the river basin hydrological cycle and to solve practical engineering application issues, this paper describes the distributed-framework basin modeling system (DFBMS), which concatenate a professional hydrological model system, a geographical integrated system, and a database management system. DFBMS has two cores, which are the distributed-frame professional modeling system (DF-PMS) and the double-object sharing structure (DOSS). An area/region that has the same mechanism of runoff generation and/or movement is defined as one type of hydrological feature unit (HFU). DF-PMS adopts different kinds of HFUs to simulate the whole watershed hydrological cycle. The HFUs concept is the most important component of DF-PMS, enabling the model to simulate the hydrological process with empirical equations or physical-based submodules. Based on the underlying source code, the sharing uniform data structure, named DOSS, is proposed to accomplish the integration of a hydrological model and geographical information system (GIS), which is a new way of exploring temporal GIS. DFBMS has different numerical schemes including conceptual and distributed models. The feasibility and practicability of DFBMS are proven through its application in different study areas.
APA, Harvard, Vancouver, ISO, and other styles
47

Brirhet, Hassan, and Lahcen Benaabidate. "Comparison Of Two Hydrological Models (Lumped And Distributed) Over A Pilot Area Of The Issen Watershed In The Souss Basin, Morocco." European Scientific Journal, ESJ 12, no. 18 (June 29, 2016): 347. http://dx.doi.org/10.19044/esj.2016.v12n18p347.

Full text
Abstract:
The present study aims to develop a hydrological model of flood forecasting to arid environment in the Issen basin (sub-chatchement of Aguenza basin) through a comparison between two conceptual hydrological models (HEC HMS) and ATHYS which is a conceptual distributed model rarely used in the Moroccan context. The aim is to measure the degree of adaptability of these models to the study area in order to generalize the selected model to the entire watershed. The obtained results from the validation phase of the two models were satisfactory, the two models were able to reproduce the hydrological behavior of the Aguenza watershed during flooding periods. Besides, this study has shown that a good distributed model can provide improvements over a global model for flood forecasting and particularly in terms of volume as in the present study case.
APA, Harvard, Vancouver, ISO, and other styles
48

Cho, Younghyun. "Application of NEXRAD Radar-Based Quantitative Precipitation Estimations for Hydrologic Simulation Using ArcPy and HEC Software." Water 12, no. 1 (January 17, 2020): 273. http://dx.doi.org/10.3390/w12010273.

Full text
Abstract:
Recent availability of various spatial data, especially for gridded rainfall amounts, provide a great opportunity in hydrological modeling of spatially distributed rainfall–runoff analysis. In order to support this advantage using gridded precipitation in hydrological application, (1) two main Python script programs for the following three steps of radar-based rainfall data processing were developed for Next Generation Weather Radar (NEXRAD) Stage III products: conversion of the XMRG format (binary to ASCII) files, geo-referencing (re-projection) with ASCII file in ArcGIS, and DSS file generation using HEC-GridUtil (existing program); (2) eight Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) models of ModClark and SCS Unit Hydrograph transform methods for rainfall–runoff flow simulations using both spatially distributed radar-based and basin-averaged lumped gauged rainfall were respectively developed; and (3) three storm event simulations including a model performance test, calibration, and validation were conducted. For the results, both models have relatively high statistical evaluation values (Nash–Sutcliffe efficiency—ENS 0.55–0.98 for ModClark and 0.65–0.93 for SCS UH), but it was found that the spatially distributed rainfall data-based model (ModClark) gives a better fit regarding observed streamflow for the two study basins (Cedar Creek and South Fork) in the USA, showing less requirements to calibrate the model with initial parameter values. Thus, the programs and methods developed in this research possibly reduce the difficulties of radar-based rainfall data processing (not only NEXRAD but also other gridded precipitation datasets—i.e., satellite-based data, etc.) and provide efficiency for HEC-HMS hydrologic process application in spatially distributed rainfall–runoff simulations.
APA, Harvard, Vancouver, ISO, and other styles
49

Gorgan, D., V. Bacu, D. Mihon, D. Rodila, K. Abbaspour, and E. Rouholahnejad. "Grid based calibration of SWAT hydrological models." Natural Hazards and Earth System Sciences 12, no. 7 (July 31, 2012): 2411–23. http://dx.doi.org/10.5194/nhess-12-2411-2012.

Full text
Abstract:
Abstract. The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool), developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Huanyu, and Yangbo Chen. "Identifying Key Hydrological Processes in Highly Urbanized Watersheds for Flood Forecasting with a Distributed Hydrological Model." Water 11, no. 8 (August 8, 2019): 1641. http://dx.doi.org/10.3390/w11081641.

Full text
Abstract:
The world has experienced large-scale urbanization in the past century, and this trend is ongoing. Urbanization not only causes land use/cover (LUC) changes but also changes the flood responses of watersheds. Lumped conceptual hydrological models cannot be effectively used for flood forecasting in watersheds that lack long time series of hydrological data to calibrate model parameters. Thus, physically based distributed hydrological models are used instead in these areas, but considerable uncertainty is associated with model parameter derivation. To reduce model parameter uncertainty in physically based distributed hydrological models for flood forecasting in highly urbanized watersheds, a procedure is proposed to control parameter uncertainty. The core concept of this procedure is to identify the key hydrological and flood processes in the highly urbanized watersheds and the sensitive model parameters related to these processes. Then, the sensitive model parameters are adjusted based on local runoff coefficients to reduce the parameter uncertainty. This procedure includes these steps: collecting the latest LUC information or estimating this information using satellite remote sensing images, analyzing LUC spatial patterns and identifying dominant LUC types and their spatial structures, choosing and establishing a distributed hydrological model as the forecasting tool, and determining the initial model parameters and identifying the key hydrological processes and sensitive model parameters based on a parameter sensitivity analysis. A highly urbanized watershed called Shahe Creek in the Pearl River Delta area was selected as a case study. This study finds that the runoff production processes associated with both the ferric luvisol and acric ferralsol soil types and the runoff routing process on urban land are key hydrological processes. Additionally, the soil water content under saturated conditions, the soil water content under field conditions and the roughness of urban land are sensitive parameters.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography