To see the other types of publications on this topic, follow the link: Distributed parameter systems (Computers).

Journal articles on the topic 'Distributed parameter systems (Computers)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Distributed parameter systems (Computers).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yang, B. "Distributed Transfer Function Analysis of Complex Distributed Parameter Systems." Journal of Applied Mechanics 61, no. 1 (1994): 84–92. http://dx.doi.org/10.1115/1.2901426.

Full text
Abstract:
This paper presents a new analytical and numerical method for modeling and synthesis of complex distributed parameter systems that are multiple continua combined with lumped parameter systems. In the analysis, the complex distributed parameter system is first divided into a number of subsystems; the distributed transfer functions of each subsystem are determined in exact and closed form by a state space technique. The complex distributed parameter system is then assembled by imposing displacement compatibility and force balance at the nodes where the subsystems are interconnected. With the dis
APA, Harvard, Vancouver, ISO, and other styles
2

Gubarev, V. F. "Rational approximation of distributed parameter systems." Cybernetics and Systems Analysis 44, no. 2 (2008): 234–46. http://dx.doi.org/10.1007/s10559-008-0023-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ZHANG, WEIJIAN. "Gain of optical distributed sensing in distributed parameter systems." International Journal of Systems Science 22, no. 12 (1991): 2521–40. http://dx.doi.org/10.1080/00207729108910811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

EL JAI, A., M. C. SIMON, E. ZERRIK, and A. J. PRITCHARD. "Regional controllability of distributed parameter systems." International Journal of Control 62, no. 6 (1995): 1351–65. http://dx.doi.org/10.1080/00207179508921603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

REBIAI, S. E., and A. S. I. ZINOBER. "Stabilization of uncertain distributed parameter systems." International Journal of Control 57, no. 5 (1993): 1167–75. http://dx.doi.org/10.1080/00207179308934438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

HARA, KEI, TESTSUHIKO YAMAMOTO, and KAZUYUKI OUGITA. "Parameter identification of distributed parameter systems using spline functions." International Journal of Systems Science 19, no. 1 (1988): 49–64. http://dx.doi.org/10.1080/00207728808967587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orlikowski, Cezary, and Rafał Hein. "Port-Based Modeling of Distributed-Lumped Parameter Systems." Solid State Phenomena 164 (June 2010): 183–88. http://dx.doi.org/10.4028/www.scientific.net/ssp.164.183.

Full text
Abstract:
This paper presents a uniform, port-based approach for modeling of both lumped and distributed parameter systems. Port-based model of the distributed system has been defined by application of bond graph methodology and distributed transfer function method (DTFM). The proposed approach combines versatility of port-based modeling and accuracy of distributed transfer function method. A concise representation of lumped-distributed systems has been obtained. The proposed method of modeling enables to formulate input data for computer analysis by application of DTFM.
APA, Harvard, Vancouver, ISO, and other styles
8

Plotnikov, A. V. "Control of distributed-parameter systems under uncertainty." Cybernetics and Systems Analysis 27, no. 6 (1991): 940–43. http://dx.doi.org/10.1007/bf01246529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bernoussi, A. "Spreadability and vulnerability of distributed parameter systems." International Journal of Systems Science 38, no. 4 (2007): 305–17. http://dx.doi.org/10.1080/00207720601159787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KODA, MASATO. "Sensitivity analysis of descriptor distributed parameter systems." International Journal of Systems Science 19, no. 10 (1988): 2103–14. http://dx.doi.org/10.1080/00207728808964102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

KOBAYASHI, TOSHIHIRO. "Spectrum assignability of hyperbolic distributed parameter systems." International Journal of Systems Science 20, no. 8 (1989): 1431–39. http://dx.doi.org/10.1080/00207728908910228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

KOBAYASHI, TOSHIHIRO. "Spectrum assignability of parabolic distributed parameter systems." International Journal of Systems Science 20, no. 9 (1989): 1779–85. http://dx.doi.org/10.1080/00207728908910260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

UCIŃSKI, DARIUSZ, and JÓZEF KORBICZ. "Parameter identification of two-dimensional distributed systems." International Journal of Systems Science 21, no. 12 (1990): 2441–56. http://dx.doi.org/10.1080/00207729008910563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

KOBAYASHI, TOSHIHIRO. "Zeros and controllability of distributed parameter systems." International Journal of Systems Science 23, no. 12 (1992): 2359–68. http://dx.doi.org/10.1080/00207729208949460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Korbicz, Józef, and M. Z. Zgurovsky. "Computer Aided Design of the Distributed Parameter Control Systems." IFAC Proceedings Volumes 20, no. 12 (1987): 239–44. http://dx.doi.org/10.1016/s1474-6670(17)55637-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yang, B., and C. A. Tan. "Transfer Functions of One-Dimensional Distributed Parameter Systems." Journal of Applied Mechanics 59, no. 4 (1992): 1009–14. http://dx.doi.org/10.1115/1.2894015.

Full text
Abstract:
Distributed parameter systems describe many important physical processes. The transfer function of a distributed parameter system contains all information required to predict the system spectrum, the system response under any initial and external disturbances, and the stability of the system response. This paper presents a new method for evaluating transfer functions for a class of one-dimensional distributed parameter systems. The system equations are cast into a matrix form in the Laplace transform domain. Through determination of a fundamental matrix, the system transfer function is precise
APA, Harvard, Vancouver, ISO, and other styles
17

UKAI, HIROYUKI, and TETSUO IWAZUMI. "General servomechanism problems for distributed parameter systems." International Journal of Control 42, no. 5 (1985): 1195–212. http://dx.doi.org/10.1080/00207178508933421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

EL JAI, A., and M. AMOUROUX. "Sensors and observers in distributed parameter systems." International Journal of Control 47, no. 1 (1988): 333–47. http://dx.doi.org/10.1080/00207178808906013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Al-Dabass, David, Abdalla Zreiba, David J. Evans, and Siva Sivayoganathan. "Parameter Estimation Algorithms for Hierarchical Distributed Systems." International Journal of Computer Mathematics 79, no. 1 (2002): 65–88. http://dx.doi.org/10.1080/00207160211916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Helmicki, A. J., C. A. Jacobson, and C. N. Nett. "Control-Oriented Modeling of Distributed Parameter Systems." Journal of Dynamic Systems, Measurement, and Control 114, no. 3 (1992): 339–46. http://dx.doi.org/10.1115/1.2897353.

Full text
Abstract:
In this paper the use of linear, time-invariant, distributed parameter systems (LTI-DPS) as models of physical processes is considered from a control viewpoint. Specifically, recent theoretical results obtained by the authors for the control-oriented modeling of LTI-DPS are concisely reviewed and then a series of applications is given in order to illustrate the practical ramifications of these results.
APA, Harvard, Vancouver, ISO, and other styles
21

Pandolfi, L., and H. Zwart. "Stability of perturbed linear distributed parameter systems." Systems & Control Letters 17, no. 4 (1991): 257–64. http://dx.doi.org/10.1016/0167-6911(91)90141-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Khapalov, A. Yu. "Optimal measurement trajectories for distributed parameter systems." Systems & Control Letters 18, no. 6 (1992): 467–77. http://dx.doi.org/10.1016/0167-6911(92)90051-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

KOBAYASHI, TOSHIHIRO. "Zeros and design of control systems for distributed parameter systems." International Journal of Systems Science 23, no. 9 (1992): 1507–15. http://dx.doi.org/10.1080/00207729208949402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

NING, JIANG, and JIANG JIONG. "Parameter or non-parameter identification of distributed parameter systems via block-pulse functions." International Journal of Systems Science 19, no. 6 (1988): 1039–45. http://dx.doi.org/10.1080/00207728808547185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Point, N., A. Vande Wouwer, M. Remy, and M. Zeitz. "PC environment for simulation and parameter estimation of distributed parameter systems." Mathematics and Computers in Simulation 35, no. 6 (1993): 481–91. http://dx.doi.org/10.1016/0378-4754(93)90066-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Alaña, Jorge E., and Constantinos Theodoropoulos. "Optimal location of measurements for parameter estimation of distributed parameter systems." Computers & Chemical Engineering 35, no. 1 (2011): 106–20. http://dx.doi.org/10.1016/j.compchemeng.2010.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Demetriou, M. A., and I. G. Rosen. "Adaptive identification of second-order distributed parameter systems." Inverse Problems 10, no. 2 (1994): 261–94. http://dx.doi.org/10.1088/0266-5611/10/2/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kouvaritakis *, B., M. Cannon, B. Rohal-Ilkiv, A. Karas, and C. Belavý. "Constrained predictive control of linear distributed parameter systems." International Journal of Control 77, no. 10 (2004): 941–48. http://dx.doi.org/10.1080/00207170412331270541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

BURGER, J., та Y. JARNY. "Observability and ε-observability for distributed-parameter systems". International Journal of Control 41, № 6 (1985): 1493–507. http://dx.doi.org/10.1080/0020718508961211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SAGARA, SETSUO, ZI-JIANG YANG, and KIYOSHI WADA. "Parameter identification of distributed parameter systems in the presence of measurement noise." International Journal of Systems Science 22, no. 8 (1991): 1391–401. http://dx.doi.org/10.1080/00207729108910716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Helmicki, A. J., C. A. Jacobson, and C. N. Nett. "Ill-posed distributed parameter systems: a control viewpoint." IEEE Transactions on Automatic Control 36, no. 9 (1991): 1053–57. http://dx.doi.org/10.1109/9.83536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kharitonov, A., and O. Sawodny. "Flatness-based feedforward control for parabolic distributed parameter systems with distributed control." International Journal of Control 79, no. 7 (2006): 677–87. http://dx.doi.org/10.1080/00207170600622858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kugi, Andreas, and Kurt Schlacher. "Modelling of distributed-parameter systems for control purposes." Mathematical and Computer Modelling of Dynamical Systems 14, no. 3 (2008): 177–78. http://dx.doi.org/10.1080/13873950701844816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Schlacher, Kurt, and Markus Schöberl. "Modelling, analysis and control of distributed parameter systems." Mathematical and Computer Modelling of Dynamical Systems 17, no. 1 (2011): 1–2. http://dx.doi.org/10.1080/13873954.2010.537507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gubarev, V. F. "Problem of Mathematical Data Interpretation. II. Distributed-Parameter Systems*." Cybernetics and Systems Analysis 56, no. 3 (2020): 356–65. http://dx.doi.org/10.1007/s10559-020-00252-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lee, Jaehwan, Hyeonseong Choi, Hyeonwoo Jeong, Baekhyeon Noh, and Ji Sun Shin. "Communication Optimization Schemes for Accelerating Distributed Deep Learning Systems." Applied Sciences 10, no. 24 (2020): 8846. http://dx.doi.org/10.3390/app10248846.

Full text
Abstract:
In a distributed deep learning system, a parameter server and workers must communicate to exchange gradients and parameters, and the communication cost increases as the number of workers increases. This paper presents a communication data optimization scheme to mitigate the decrease in throughput due to communication performance bottlenecks in distributed deep learning. To optimize communication, we propose two methods. The first is a layer dropping scheme to reduce communication data. The layer dropping scheme we propose compares the representative values of each hidden layer with a threshold
APA, Harvard, Vancouver, ISO, and other styles
37

Pleshivtseva, Yu E., and E. Ya Rapoport. "Optimal Energy-Efficient Programmed Control of Distributed Parameter Systems." Journal of Computer and Systems Sciences International 59, no. 4 (2020): 518–32. http://dx.doi.org/10.1134/s1064230720030120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Deutscher, J., and Ch Harkort. "Parametric state feedback design of linear distributed-parameter systems." International Journal of Control 82, no. 6 (2009): 1060–69. http://dx.doi.org/10.1080/00207170802434383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

KOBAYASHI, TOSHIHIRO. "Discrete-time servomechanism design of parabolic distributed-parameter systems." International Journal of Control 41, no. 4 (1985): 845–64. http://dx.doi.org/10.1080/0020718508961168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Curtain, Ruth F., and Job C. Oostveen. "The Popov criterion for strongly stable distributed parameter systems." International Journal of Control 74, no. 3 (2001): 265–80. http://dx.doi.org/10.1080/00207170010003450a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

CHOURA, SLIM, and SUHADA JAYASURIYA. "Robust finite time settling control of distributed parameter systems." International Journal of Control 52, no. 6 (1990): 1425–53. http://dx.doi.org/10.1080/00207179008953603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Manna, and Weijie Mao. "DC-boundary finite-time stabilisation for distributed parameter systems." IET Control Theory & Applications 14, no. 15 (2020): 2186–96. http://dx.doi.org/10.1049/iet-cta.2019.0542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Li, Xueyang, and Weijie Mao. "Finite-time stability and stabilisation of distributed parameter systems." IET Control Theory & Applications 11, no. 5 (2017): 640–46. http://dx.doi.org/10.1049/iet-cta.2016.1087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ungureşan, Mihaela Ligia, and Vlad Mureşan. "PID Control System for a Distributed Parameter Process." Applied Mechanics and Materials 555 (June 2014): 222–31. http://dx.doi.org/10.4028/www.scientific.net/amm.555.222.

Full text
Abstract:
This paper presents the numerical simulation of a control system, with PID algorithm, for a process modeled through a partial differential equation of second order (PDE II.2), with respect to time (t) and to a spatial variable (p). Because these types of control systems are less usual, this paper develops a case study, with a program run on the computer. The details of using the PID control are pointed out, for an example of a system which contains a process with PDE II.2 structure.
APA, Harvard, Vancouver, ISO, and other styles
45

Helmicki, A. J., C. A. Jacobson, and C. N. Nett. "On zero-order hold equivalents of distributed parameter systems." IEEE Transactions on Automatic Control 37, no. 4 (1992): 488–91. http://dx.doi.org/10.1109/9.126582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yang, S. M., and C. A. Jeng. "Structural Control of Distributed Parameter Systems by Output Feedback." Journal of Dynamic Systems, Measurement, and Control 120, no. 3 (1998): 322–27. http://dx.doi.org/10.1115/1.2805404.

Full text
Abstract:
Most of the controller design in distributed parameter systems requires not only the measurement and/or estimation of distributed states, but also the feedback gain in a function of time and spatial coordinates. These requirements are difficult, if not impossible, to meet in engineering implementation. An output feedback algorithm for the structural control of distributed parameter systems is presented in this paper. The algorithm employs a solution technique to simplify the functional Riccati equation into a set of algebraic equations such that sensor and actuator can be applied at discrete,
APA, Harvard, Vancouver, ISO, and other styles
47

Jiang, Yushan, Chao Liu, Qingling Zhang, and Tieyu Zhao. "Two side observer design for singular distributed parameter systems." Systems & Control Letters 124 (February 2019): 112–20. http://dx.doi.org/10.1016/j.sysconle.2019.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Schöberl, Markus, and Kurt Schlacher. "Distributed parameter systems - new methods for modelling and control." Mathematical and Computer Modelling of Dynamical Systems 23, no. 1 (2016): 1–2. http://dx.doi.org/10.1080/13873954.2016.1232291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Aggelogiannaki, Eleni, and Haralambos Sarimveis. "Robust nonlinear H∞ control of hyperbolic distributed parameter systems." Control Engineering Practice 17, no. 6 (2009): 723–32. http://dx.doi.org/10.1016/j.conengprac.2008.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sergienko, I. V., V. V. Skopetskii, V. A. Stoyan, T. Yu Blagoveshchenskaya, and V. A. Bogaenko. "Program-Analytical Simulation of Problems for Distributed-Parameter Dynamic Systems." Cybernetics and Systems Analysis 41, no. 2 (2005): 183–202. http://dx.doi.org/10.1007/s10559-005-0052-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!