Academic literature on the topic 'Distributed sensing pressure sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributed sensing pressure sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distributed sensing pressure sensing"
Becker, Matthew, Thomas Coleman, Christopher Ciervo, Matthew Cole, and Michael Mondanos. "Fluid pressure sensing with fiber-optic distributed acoustic sensing." Leading Edge 36, no. 12 (December 2017): 1018–23. http://dx.doi.org/10.1190/tle36121018.1.
Full textWang, Long, Sumit Gupta, Kenneth J. Loh, and Helen S. Koo. "Distributed Pressure Sensing Using Carbon Nanotube Fabrics." IEEE Sensors Journal 16, no. 12 (June 2016): 4663–64. http://dx.doi.org/10.1109/jsen.2016.2553045.
Full textDong, Yongkang. "High-Performance Distributed Brillouin Optical Fiber Sensing." Photonic Sensors 11, no. 1 (January 22, 2021): 69–90. http://dx.doi.org/10.1007/s13320-021-0616-7.
Full textAhmadi, Mahdi, Rajesh Rajamani, Gerald Timm, and A. Serdar Sezen. "Flexible Distributed Pressure Sensing Strip for a Urethral Catheter." Journal of Microelectromechanical Systems 24, no. 6 (December 2015): 1840–47. http://dx.doi.org/10.1109/jmems.2015.2444992.
Full textZhu, Xiongfeng, Tianxing Man, Xing Haw Marvin Tan, Pei-Shan Chung, Michael A. Teitell, and Pei-Yu Chiou. "Distributed colorimetric interferometer for mapping the pressure distribution in a complex microfluidics network." Lab on a Chip 21, no. 5 (2021): 942–50. http://dx.doi.org/10.1039/d0lc00960a.
Full textHao, Peng, Chao Yu, Ting Feng, Zeheng Zhang, Mingliang Qin, Xin Zhao, Hua He, and X. Steve Yao. "PM fiber based sensing tapes with automated 45° birefringence axis alignment for distributed force/pressure sensing." Optics Express 28, no. 13 (June 9, 2020): 18829. http://dx.doi.org/10.1364/oe.391376.
Full textSun Qizhen, 孙琪真, 汪静逸 Wang Jingyi, 张. 威. Zhang Wei, 向. 阳. Xiang Yang, 艾. 凡. Ai Fan, and 刘德明 Liu Deming. "Polymer packaged longitudinal microstructured fiber based distributed pressure sensing system." Infrared and Laser Engineering 45, no. 8 (2016): 802003. http://dx.doi.org/10.3788/irla201645.0802003.
Full textLevi, Alessandro, Matteo Piovanelli, Silvano Furlan, Barbara Mazzolai, and Lucia Beccai. "Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing." Sensors 13, no. 5 (May 17, 2013): 6578–604. http://dx.doi.org/10.3390/s130506578.
Full textYu, Li, Steven Parker, Haifeng Xuan, Yujing Zhang, Shan Jiang, Maryam Tousi, Majid Manteghi, Anbo Wang, and Xiaoting Jia. "Flexible Multi‐Material Fibers for Distributed Pressure and Temperature Sensing." Advanced Functional Materials 30, no. 9 (January 3, 2020): 1908915. http://dx.doi.org/10.1002/adfm.201908915.
Full textChen, Tong, Qingqing Wang, Rongzhang Chen, Botao Zhang, Charles Jewart, Kevin P. Chen, Mokhtar Maklad, and Phillip R. Swinehart. "Distributed high-temperature pressure sensing using air-hole microstructural fibers." Optics Letters 37, no. 6 (March 12, 2012): 1064. http://dx.doi.org/10.1364/ol.37.001064.
Full textDissertations / Theses on the topic "Distributed sensing pressure sensing"
Wang, Jing. "Distributed Pressure and Temperature Sensing Based on Stimulated Brillouin Scattering." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/78066.
Full textMaster of Science
Dusek, Jeff Ernest. "Development of bio-inspired distributed pressure sensor arrays for hydrodynamic sensing applications." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103496.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 277-284).
The performance of marine vehicles is largely influenced by interactions with the flow around their hull, both self-generated and environmentally driven. To improve performance through flow control, a detailed, real-time measurement of the near-field flow is necessary, yet such sensing capability is presently unavailable. Looking to nature for inspiration, fish employ the distributed pressure and velocity sensing capability of their lateral line sensory organ to mediate navigation and control behaviors that, if replicated, could benefit engineered systems. Through a series of towing tank and field experiments, it was found that while distributed pressure measurements on marine vehicles enabled the detection of near-body flow phenomena, the size, cost, and mounting requirements of commercial sensors lead to sparse arrays and substantial gaps in the characterization of the flow field. To address the challenges associated with obtaining spatially-dense pressure measurements on curved surfaces in marine environments, a new waterproof and conformal pressure sensor array was developed based on a closed-cell piezo resistive foam composed of carbon black-doped-silicone composite (CBPDMS foam). The response of the CBPDMS foam sensor arrays was characterized using periodic hydrodynamic pressure stimuli from vertical plunging and water waves, and a piecewise polynomial calibration was developed to describe the sensor response. The sensitivity and frequency response of the sensor arrays was also documented through a series of biologically-inspired hydrodynamic stimuli, including the flow from a dipole source, and the Karmin vortical wake flow behind a circular cylinder. The CBPDMS foam sensor arrays have significant advantages over existing commercial sensors for distributed flow reconstruction and control. They are found to have sensitivity on the order of 5 Pascal, frequency range of 0.5-35 Hertz, are contained in a waterproof and completely flexible package, and have material cost less than $10 per sensor.
by Jeff Ernest Dusek.
Ph. D.
大岡, 昌博, Masahiro OHKA, 行宏 毛利, Yukihiro MOURI, 徳宏 杉浦, Tokuhiro SUGIURA, 保永 三矢, Yasunaga MITSUYA, 浩嗣 古賀, and Hiroshi KOGA. "分布圧覚ディスプレイ装置による仮想形状呈示." 日本機械学会, 2002. http://hdl.handle.net/2237/9060.
Full textAndries, Mihai. "Localisation et suivi d'humains et d'objets, et contrôle de robots au travers d'un sol sensible." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0293.
Full textThis thesis explores the capabilities of an ambient intelligence equipped with a load-sensing floor. It deals with the problem of perceiving the environment through a network of low-resolution sensors. Challenges include the interpretation of spread loads for objects with multiple points of support, weight ambiguities between objects, variation of persons’ weight during dynamic activities, etc. We introduce new techniques, partly inspired from the field of computer vision, for detecting, tracking and recognizing the entities located on the floor. We also introduce new modes of interaction between environments equipped with such floor sensors and robots evolving inside them. This enables non-intrusive interpretation of events happening inside environments with embedded ambient intelligence, with applications in assisted living, senile care, continuous health diagnosis, home security, and robotic navigation
Sundman, Dennis. "Greedy Algorithms for Distributed Compressed Sensing." Doctoral thesis, KTH, Kommunikationsteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-144907.
Full textCompressed sensing (CS) är en nyutvecklad teknik som utnyttjar gleshet i stora undersamplade signaler. Många intressanta signaler besitter dessa glesa egenskaper. Utifrån en undersamplad vektor återskapar CS-algoritmer hela den sökta signalen. En klass av rekonstruktionsalgoritmer är de så kallade giriga algoritmerna, som blivit populära tack vare låg komplexitet och god prestanda. CS kan användas i vissa typer av nätverk för att detektera eller estimera stora signaler. En typ av nätverk där detta kan göras är i sensornätverk för kognitiv radio, där man använder sensorer för att estimera effektspektrum. Datan som samplas av de olika sensorerna i sådana nätverk är typiskt korrelerad. En annan typ av nätverk är multiprocessornätverk bestående av distribuerade beräkningsnoder, där noderna genom samarbete kan lösa svårare problem än de kan göra ensamma. Avhandlingen kommer främst att behandla giriga algoritmer för distribuerade CS-problem. Vi börjar med en överblick av nuvarande kunskap inom området. Här introducerar vi signalmodeller för korrelation och nätverksmodeller som används för simulering i nätverk. Vi fortsätter med att studera två tillämpningar; estimering av effektspektrum och en distribuerad återskapningsalgoritm för multiprocessornätverk. Därefter tar vi ett djupare steg i studien av giriga algoritmer, där vi utvecklar nya algoritmer med förbättrad prestanda, detta till priset av ökad beräkningskomplexitet. Huvudmålet med avhandlingen är giriga algoritmer för distribuerad CS, där algoritmerna utnyttjar datakorrelationen i sensornätverk. Vi utvecklar flera sådana algoritmer, där en huvudingrediens är att använda demokratiska röstningsalgoritmer. Vi analyserar sedan denna typ av röstningsalgoritmer genom att introducera en ingång/utgångs modell. Analysen visar att algoritmerna ger bra resultat. Genom att jämföra algoritmer för enskilda sensorer med redan befintliga algoritmer i litteraturen ser vi att målet med ökad prestanda uppnås. Vi karaktäriserar också komplexiteten. Genom simulationer verifierar vi både prestandan och komplexiteten. Att analysera komplexitet hos distribuerade algoritmer är generellt svårare eftersom den beror på specifik signalrealisation, nätverkstopologi och andra parametrar. I de fall där vi inte kan göra analys presenterar vi istället genomgående simuleringsresultat. Vi jämför våra algoritmer med de vanligaste algoritmerna för enskilda sensorsystem, och våra resultat kan därför enkelt användas som referens för framtida forskning. Jämfört med prestandan för enskilda sensorer visar de nya distribuerade algoritmerna markant förbättring.
Kelly, Devin WW. "A Practical Distributed Spectrum Sensing System." Digital WPI, 2011. https://digitalcommons.wpi.edu/etd-theses/378.
Full textFeced, Ricardo. "Nonlinear techniques for distributed optical fibre sensing." Thesis, King's College London (University of London), 1998. https://kclpure.kcl.ac.uk/portal/en/theses/nonlinear-techniques-for-distributed-optical-fibre-sensing(48661ada-da47-4da7-b6db-fc995f840603).html.
Full textDhliwayo, Jabulani. "Stimulated Brillouin scattering for distributed temperature sensing." Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242858.
Full textFrazier, Janay Amber Wright. "High-Definition Raman-based Distributed Temperature Sensing." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/95934.
Full textMS
Reyda, Caitlin J. (Caitlin Jilaine). "Design of a pressure sensing laparoscopic grasper." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68854.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 34).
With smaller incisions, laparoscopic, or minimally invasive, surgery is considered safer for patients than open surgery. However, the safety of current laparoscopic grasping instruments can still be improved. Current devices provide surgeons with limited tactile feedback, and the current alligator-style jaws create pinch points that can lead to torn or damaged tissue. Additionally, the angled jaws can result in excessive grasping forces, due to the uneven pressure distribution along the jaws, or slippage when grasping larger organs. Tissue trauma, in the form of mechanical injury (crushing), ischemia (cut off blood supply), or perforation, can occur. A new design uses a symmetric, 10-bar linkage to keep the grasping jaws parallel, creating a uniform pressure distribution along the length of the jaws. A pressure sensor, located near the trigger in the handle, can detect when the grasper jaws are applying too much force on an object. When the force is above a given threshold, a vibration motor in the handle activates, warning the surgeon. This improved tactile feedback can help surgeons control pressures applied during grasping. The grasper design is further enhanced through an ergonomic pistol-grip handle, which also includes a turning wheel to rotate the grasper and a locking mechanism to fix the jaws in place. A working lx scale prototype was built to verify the feasibility of the design.
by Caitlin J. Reyda.
S.B.
Books on the topic "Distributed sensing pressure sensing"
Coluccia, Giulio, Chiara Ravazzi, and Enrico Magli. Compressed Sensing for Distributed Systems. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-390-3.
Full textMazzeo, Pier Luigi, Paolo Spagnolo, and Thomas B. Moeslund, eds. Activity Monitoring by Multiple Distributed Sensing. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13323-2.
Full textSniatala, Pawel, M. Hadi Amini, and Kianoosh G. Boroojeni. Fundamentals of Brooks–Iyengar Distributed Sensing Algorithm. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33132-0.
Full textValis, Tomas. Distributed fiber optic sensing based on counterpropagating waves. [S.l.]: [s.n.], 1989.
Find full textTzou, H. S. Piezoelectric Shells: Distributed Sensing and Control of Continua. Dordrecht: Springer Netherlands, 1993.
Find full textTzou, H. S. Piezoelectric shells: Distributed sensing and control of continua. Dordrecht: Kluwer Academic, 1993.
Find full textNational Research Council (U.S.). Committee on Distributed Remote Sensing for Naval Undersea Warfare. Distributed remote sensing for naval undersea warfare: Abbreviated version. Washington: National Academies Press, 2007.
Find full textD'Errico, Marco. Distributed Space Missions for Earth System Monitoring. New York, NY: Springer New York, 2013.
Find full textO'Brien, D. M. Zones of feasibility for retrieval of surface pressure from observations of absorption in the A band of oxygen. Australia: CSIRO, 1989.
Find full textBook chapters on the topic "Distributed sensing pressure sensing"
Streit, Roy L. "Distributed Sensing." In Poisson Point Processes, 179–200. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6923-1_7.
Full textLoughlin, C. "Pressure Sensing." In Sensors for Industrial Inspection, 191–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2730-1_9.
Full textFan, Xinyu. "Distributed Rayleigh Sensing." In Handbook of Optical Fibers, 1559–607. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-7087-7_5.
Full textColuccia, Giulio, Chiara Ravazzi, and Enrico Magli. "Distributed Compressed Sensing." In SpringerBriefs in Electrical and Computer Engineering, 5–16. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-390-3_2.
Full textFan, Xinyu. "Distributed Rayleigh Sensing." In Handbook of Optical Fibers, 1–50. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-1477-2_5-1.
Full textSoto, Marcelo A., and Fabrizio Di Pasquale. "Distributed Raman Sensing." In Handbook of Optical Fibers, 1–55. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-1477-2_6-1.
Full textSoto, Marcelo A., and Fabrizio Di Pasquale. "Distributed Raman Sensing." In Handbook of Optical Fibers, 1609–62. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-7087-7_6.
Full textChen, Yanping, Yulong Gao, and Yongkui Ma. "Distributed Compressive Sensing Based Spectrum Sensing Method." In Machine Learning and Intelligent Communications, 239–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73564-1_24.
Full textLynch, J. P., K. J. Loh, T. C. Hou, and N. Kotov. "Nanocomposite Sensing Skins for Distributed Structural Sensing." In Nanotechnology in Construction 3, 303–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00980-8_40.
Full textTolk, Andreas. "Modeling Sensing." In Engineering Principles of Combat Modeling and Distributed Simulation, 127–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118180310.ch8.
Full textConference papers on the topic "Distributed sensing pressure sensing"
Assiri, Wisam, Ilkay Uzun, and Erdal Ozkan. "Distributed Pressure Sensing for Production Data Analysis." In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/194799-ms.
Full textLecoy, Pierre, Abdelrafik Malki, H. Dammak, Mohamed Ketata, Olivier Latry, and R. Miry. "New pressure optical sensor for distributed sensing." In OE Fiber 91, edited by Alan D. Kersey and John P. Dakin. SPIE, 1992. http://dx.doi.org/10.1117/12.56511.
Full textSah, Sripati, and Robert X. Gao. "An Embedded Pressure Sensing Approach for Stamping Process Monitoring." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42190.
Full textCellucci, Daniel, Nicholas Cramer, and Sean S. M. Swei. "Distributed Pressure Sensing for Enabling Self-Aware Autonomous Aerial Vehicles." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8593664.
Full textDang, Fengying, and Feitian Zhang. "DMD-Based Distributed Flow Sensing for Bio-Inspired Autonomous Underwater Robots." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9113.
Full textLaurence, Roger J., Brian Argrow, and Eric W. Frew. "Development of Wind Sensing from Small UAS with Distributed Pressure Sensors." In 8th AIAA Atmospheric and Space Environments Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4199.
Full textZhang, Zeheng, Ting Feng, Xichen Wang, Yanling Shang, Mingming Wang, and X. Steve Yao. "Demonstration of Liquid Pressure Fiber Sensing Based on Distributed Polarization Crosstalk Analysis." In 2018 Asia Communications and Photonics Conference (ACP). IEEE, 2018. http://dx.doi.org/10.1109/acp.2018.8595992.
Full textSchenato, Luca, Alessandro Pasuto, Andrea Galtarossa, and Luca Palmieri. "An optical fibre cable for distributed pressure sensing: a proof of concept." In Seventh European Workshop on Optical Fibre Sensors (EWOFS 2019), edited by Kyriacos Kalli, Gilberto Brambilla, and Sinead O. O'Keeffe. SPIE, 2019. http://dx.doi.org/10.1117/12.2539832.
Full textKahn, Jeff C., Brooke E. Flammang, and James L. Tangorra. "Hover kinematics and distributed pressure sensing for force control of biorobotic fins." In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). IEEE, 2012. http://dx.doi.org/10.1109/iros.2012.6386066.
Full textZhang, Li, Zhisheng Yang, Łukasz Szostkiewicz, Krzysztof Markiewicz, Tomasz Nasilowski, and Luc Thévenaz. "Fully distributed pressure sensing with ultra-high-sensitivity using side-hole fibers." In Optical Fiber Sensors. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/ofs.2018.wf13.
Full textReports on the topic "Distributed sensing pressure sensing"
Baron, Dror, Marco F. Duarte, Michael B. Wakin, Shriram Sarvotham, and Richard G. Baraniuk. Distributed Compressive Sensing. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada521228.
Full textHurtado, John E. Distributed Sensing & Cooperative Control for Plume Tracing. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada410645.
Full textMoura, Jose M. Distributed Sensing and Processing: A Graphical Model Approach. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada455686.
Full textWalmsley, Ian. Scalable Quantum Networks for Distributed Computing and Sensing. Fort Belvoir, VA: Defense Technical Information Center, April 2016. http://dx.doi.org/10.21236/ad1007637.
Full textJuntao Wu. Distributed Fiber Optic Gas Sensing for Harsh Environment. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/938805.
Full textLevchuk, Georgiy, Andres Ortiz, and John-Collonna Romano. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE). Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada608436.
Full textQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41325.
Full textShepard, R. L., and L. H. Thacker. Evaluation of pressure sensing concepts: A technology assessment. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10190000.
Full textMecimore, Ivan, Chuck D. Creusere, and Bion John Merchant. Distributed video coding for arrays of remote sensing nodes : final report. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/992327.
Full textFreifeld, B., and S. Finsterle. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1016576.
Full text