Dissertations / Theses on the topic 'Distribution asymptotique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 47 dissertations / theses for your research on the topic 'Distribution asymptotique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Muller, Aurélie. "Comportement asymptotique de la distribution des pluies extrêmes en France." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2006. http://tel.archives-ouvertes.fr/tel-00122997.
Full textHuang, Zhizhong. "Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM036/document.
Full textThe study of the distribution of rational points on algebraic varieties is a classic subject of Diophantine geometry. The program proposed by V. Batyrev and Y. Manin in the 1990s gives a prediction on the order of growth whereas its later version due to E. Peyre conjectures the existence of a global distribution. In this thesis we propose a study of the local distribution of rational points of bounded height on algebraic manifolds. This aims at giving a description finer than the global one by counting the points closest to a fixed point. We set ourselves on the recent framework of the work of D. McKinnon and M. Roth who prefers that the geometry of the variety governs the Diophantine approximation on it and we take up the results of S. Pagelot. The expected order of growth and the existence of an asymptotic measure on some toric surfaces are demonstrated, while we demonstrate a totally different result for another surface on which there is no asymptotic measure and the best generic approximates are obtained on nodal rational curves. These two phenomena are of a radically different nature from the point of view of the Diophantine approximation
Rittaud, Benoît. "Convergence ponctuelle de moyennes ergodiques non conventionnelles et distribution asymptotique de suites oscillantes." Tours, 1999. http://www.theses.fr/1999TOUR4001.
Full textZohoorianazad, Elahe. "Comportement asymptotique des mots aléatoires et des arbres aléatoires, et applications." Nancy 1, 2007. http://www.theses.fr/2007NAN10034.
Full textThis thesis is divided in two parts. The first part is interested in the probabilistic analysis on words, especially in what concerns Lyndon words. We find in this part the limit law of the length of the standard right factor of random Lyndon words, first in the simple case of the alphabet of two equiprobable letters, then in the case of the finite random words with independent letters pulled of a totally ordered finite or infinite alphabet, according to a general probability distribution. Moreover in this general case, we shall find the asymptotic joint law of the normalized lengths of the Lyndon factors of a finite word. We finally give in this part, a look on the structure of Lyndon trees. The second part studies first the limit distribution of an additive functional on Cayley trees, then a new type of a one dimensional percolation model that can be seen as the study of cars parking after a random walk
GUGLIELMO, FRANCOIS. "Etude de la distribution spatiale des etoiles de la branche asymptotique des geantes de notre galaxie." Paris 7, 1993. http://www.theses.fr/1993PA077261.
Full textSahnoun, Réda. "Composition asymptotique de processus d'urne de Pólya et applications à l'algorithmique." Versailles-St Quentin en Yvelines, 2010. http://www.theses.fr/2010VERS0051.
Full textPolya processes are discrete-time random walks in R^d, natural generalizations of Pólya-Eggenberger urns. In this latter model, a urn may contain balls of different colors and a matrix (deterministic) with integer coefficients describes the rules for replacement after each draw. Many situations from the computer sciences (tree structures) or theoretical physics (percolation fragmentation) are modeled by these objects. The asymptotic behavior of these processes reveals a new family of probability laws, some of them are determined by their moments, while for the other, the exponential generating function of moments diverges. This attests to the richness of this model, however, the cases reviewed permit to identify the complex combinatorics of the general case
Reinhold, Küstner. "Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation." Nice, 2003. http://www.theses.fr/2003NICE4054.
Full textWe determine the asymptotic pole distribution for three types of best approximants (Padé at infinity, rational in L2 on the unit circle, meromorphic in the unit disk in Lp on the unit circle, p>2) of the Cauchy transform of a complex measure under the hypothesis that the support S of the measure is of positive capacity and included in (-1 1), that the measure satisfies a density condition and that the argument of the measure is the restriction of a function of bounded variation ? The denominator polynomials of the approximants satisfay orthogonality relations ? By means of a theorem of Kestelman we obtain geometric constraints for the zeros which imply that every weak limit measure of the associated counting measures has support included in S. Then, with the help of results from potential theory in the plane, we show that the counting measures converge weakly to the logarithmic respectively hyperbolic equilibrium distribution of S
Lhote, Loïck. "Algorithmes du PGCD et Fouille de Données : le point de vue de l’analyse dynamique." Caen, 2006. http://www.theses.fr/2006CAEN2021.
Full textThis thesis deals with two main algorithmical domains : Data Mining and Arithmetical computations. In both, we are interested in the average-case analysis of algorithms, and, we adopt more precisely the dynamical analysis point of vue which is a mixed method between Analysis of Algorithms and Dynamical Systems. The Euclid algorithms compute the gcd of two numbers ; these are fundamental blocks in computer algebra, but their fine probabilistic behavior is always unknown. Thanks to Dynamical Analysis methods, recent important results have been obtained. In this thesis, we extend this approach to a precise analysis of parameters, as the binary complexity or the size of remainders. These parameters are essential for the Divide and Conquer gcd algorithm due to Knuth-Schönhage. Dynamical Analysis is also used for proven computations of spectral constants. The dynamical approach is then adapted to on polynomial Euclid algorithms even if, in this case, classical Analytic Combinatorics already applies. We also deal with Data Mining. We restrict ourselves to binary databases where the knowledge is represented by 'frequent patterns'. The number of frequent patterns is essential for analysing algorithms but experiments show that it significantly changes with the parameters of the database. Then, the worst case analysis is not meaningful in practice. In this thesis, we elucidate the average beahvior of the number of frequent patterns under a large model of databases built with eventually correlated sources
Rabenoro, Dimbihery. "Distribution asymptotique de vecteurs aléatoires indépendants non identiquement distribués conditionnés par leur somme. Lois limites fonctionnelles pour les incréments d’un processus de Lévy." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS572.
Full textIn the first part of this work, we develop conditional limit theorems for independent not necessarily identically distributed random vectors. We extend thus classical theorems, as the Gibbs conditioning principle, obtained in the i.i.d. case. We use, among other tools, some saddlepoint approximations. In the second part, we obtain a functional form of Erdös-Renyi theorems for the increments of Lévy processes. The main tools are here functional large deviations principles
Markeviciute, Jurgita. "Résultats asymptotiques sur des processus quasi non stationnaires." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10066/document.
Full textWe study some Hölderian functional central limit theorems for the polygonal partial sum processes built on a first order nearly nonstationary autoregressive process yn,k = φn yn,k−1 + εk and its least squares residuals εk with φn converging to 1 and i.i.d. centered square-integrable innovations. In the case where φn = exp( γn /n) with a negative constant γ, we prove that the limiting process depends on Ornstein-Uhlenbeck one. In the case where φn = 1 − γn /n, with γn tending to infinity slower than n, the convergence to Brownian motion is established in Hölder space in terms of the rate of γn and the integrability of the εk’s. As a statistical application of these results, we investigate some epidemic change in the innovations of the first order nearly nonstationary autoregressive process AR(1). Two types of models are considered. For 0 ≤ α < 1, we build the α-Hölderian uniform increments statistics based on the observations and on the least squares residuals to detect the short epidemic change in the process under consideration. Under the assumptions for innovations we find the limit of the statistics under null hypothesis, some conditions of consistency and we perform a test power analysis. We also discuss the interplay between the various parameters to detect the shortest epidemics
Genitrini, Antoine. "Expressions booléennes aléatoires : probabilité, complexité et comparaison quantitative de logiques propositionnelles." Versailles-St Quentin en Yvelines, 2009. http://www.theses.fr/2009VERS0010.
Full textIn this thesis, I am interested in propositional systems from a probability/complexity point of view. I begin with two probability distributions on Boolean functions, induced by the Boolean expressions built with the Implication connective. I obtain the structure of most of the expressions representing a given function, when the number of variables tends to infinity. This gives the asymptotic equivalent of the probability of the function, depending on its complexity. Via the function True, we compare quantitatively the intuitionistic and classical logics of implication. This comparison highlights some properties of a class of expressions, that are found also in the full propositional system, and we can compare the two logics in this system. Finally we study balanced expressions in the two systems built on implication, or on the two connectors And and Or. In both cases, we exhibit the probability distribution of the functions
Maynadier, Jérôme. "Approches statistiques et fiabilités en dynamique des structures." Toulouse, INSA, 2003. http://www.theses.fr/2003ISAT0017.
Full textThe improvement of the cyclic symmetry structures in turboshaft engines requires an accurate valuation of extreme vibrations which are reaching by these components. The amplitudes of the response of cyclic symmetry structures vary significantly in function of small perturbations named "mistuning". In general, mistunings are random parameters. Usually their effects on the vibration amplitudes are estimated from the experience of each motorist. Hence, at the present time, they are verified with the help of experiences by installation of strain gauges on pieces. To anticipate the evolutions of technologies the numerical approaches are necessary. In structure dynamics, the classical approach used to estimate the probability to reach a vibratory amplitude is the Monte Carlo method, efficient to the biggest probabilities, but extremely expensive when probabilities decrease. The most critical vibration amplitudes corresponding to the lowest probabilities, the probabilistic methods FORM and SORM are first considered. We develop then an original method named "separated variables method". Finally, a statistical approach by extreme values distribution on threshold overstepping with a Pareto law is kept to predict the queue of the distribution of the maximal amplitude of the forced responses. This law bases on a minimum quantities of simulations. After the validation of these different approaches on academic examples, the most efficient one are applied on industrial cases. We consider a cyclic symmetric structure modelled by a reduced model. This type of simplified modelization is able to represent the greatest part of configurations met when running
Saldana, Amandine. "Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10026/document.
Full textWe deal with two problems related to Dirichlet series. First we study the analytic continuation of a class of Dirichlet series with two variables: g(s_1,s_2,a,r) = sum_d=1 r(d) / a(d)s1ds2, where a(d) is a positive multiplicative function and r(d) is a multiplicative function. We prove, under suitable hypotheses, a general Theorem which allows us to approach this Dirichlet series by a known series, up to another series for which we get very precise upper bounds. Then we use this tool to get quantitative results on the distribution of values of arithmetical functions. Under suitable hypotheses on the functions a(d) and r(d), we determine lim_x?8 1/X sum_d
Li, Xiaoxi. "Contributions à l'étude des propriétés asymptotiques en contrôle optimal et en jeux répétés." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066231/document.
Full textThis dissertation studies limit properties in optimal control problems (one-player, in continuous time) and in zero-sum repeated games (two-player, in discrete time) with large horizons. More precisely, we investigate the convergence of the value function when the duration of the control problem or the repetition of the game tends to infinity (the asymptotic analysis), and the existence of robust strategies, i.e. ԑ-optimal strategies to guarantee the limit value in all control problems with sufficiently long durations or in all repeated games with sufficiently large repetitions (the uniform analysis). The part on optimal control is composed of three chapters. Chapter 2 is a survey article on recent literature of long-term properties in various models of dynamic optimization. In the following two chapters, we focus on optimal control problems where the running cost is evaluated by a general probability measure, instead of the usual T-horizon average (Cesàro mean) or the λ-discount (Abel mean). In Chapter 3, we introduce an asymptotic regularity condition for a sequence of probability measures on positive real numbers which induces a horizon tending to infinity (in particular T tending to infinity or λ tending to zero) for the control problem. We prove that for any sequence of evaluations satisfying this condition, the associated sequence of value function of the control problem converges uniformly if and only if this sequence is totally bounded for the uniform norm. We deduce that for control problems defined on a compact invariant domain and satisfying some non expansive condition, the value function defined by a general probability measure converges as the evaluation becomes sufficiently regular. Further, we prove in Chapter 4 that under the same compact and non expansive conditions, there exist ԑ-optimal controls for all problems where the running cost is evaluated by a sufficiently regular probability measure. The part on repeated games consists of two chapters. Chapter 5 is devoted to the study of a subclass of absorbing games with one-sided incomplete information. The model we consider is a generalization of Big match with one-sided incomplete information introduced by Sorin (1984). We prove the existence of the limit value, Maxmin, Minmax, and that Maxmin is equal to the limit value. In Chapter 6, we establish several results for recursive games. We first consider recursive games with a countable state space and prove that if the family of n-stage value functions is totally bounded for the uniform norm, then the uniform value exists. In particular, the uniform convergence of n-stage values implies the uniform convergence of λ-discounted values. Combined with a result in Rosenberg and Vieille (2000), we deduce a uniform Tauberian theorem for recursive games. Second, we use the existence result of uniform value to a class of the generalized models of repeated games and prove that both the limit value and Maxmin exist and are equal. This class of repeated games are recursive games with signals where player 1 can always deduce the signal of player 2 from his own along the play
Seghier, Abdellatif. "Matrices de Toeplitz dans le cas d-dimensionnel : développement asymptotique à l'ordre d.Extension de fonctions de type positif dans le cas d-dimensionnel et maximum d'entropie : application à la reconstruction de densités." Paris 11, 1988. http://www.theses.fr/1988PA112038.
Full textIn the two first chapters we are concerned with the prediction of the second order stationnary process. Here the information depends on a part of past. The main aspect of these papers is the use of hilbertian technics based on Tœplitz and Hankel operators. In the following three papers, we deal with an old Szegö's problem on the expansion of the determinant of Tœplitz matrix. We give in the multidimensionnal case a more precise expansion of the trace of the inverse with order d). Moreover the knew cœfficients which appear are strongly related with geometrical invariants of the domain on which the the Tœplitz operators are truncated. In the last two papers knew results about reconstruction of the spectral densities in the multidimentional case are given. The methods are based on extensions of positive defined function and maximum entropy principle. This work is motivated by the problem of the determination of the phases of the electron density function in crystal analysis. Nevertheless, there is still a great amount of work to be done in order to solve this problem
Tran, Viet Chí. "Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques." Paris 10, 2006. http://www.theses.fr/2006PA100129.
Full textThis thesis is divided into two independent parts. In the first one, we are interested in a microscopic individual-based model for the description of a population structured by traits and ages. We study the ecology of the system (population dynamics problems) in a large population asymptotics. Under appropriate renormalizations, the microscopic process converges to the measure solution of a deterministic evolution equation. A Central Limit Theorem and the exponential deviations of this convergence are studied. These results are used to generalize some evolution models from the recent theory of adaptive dynamics to age-structured populations. These models describe the evolution of the trait structure of the population on large time scales and under the assumptions of rare (and possibly small) mutations and large populations. In the second part of this thesis, we consider McKean-Vlasov and 2D Navier-Stokes partial differential equations with random initial conditions. The law of the solutions, which are then random variables, is called statistical solution. Using a probabilistic approach for these equations, we propose original stochastic wavelet particle approximations for the moments of order 1 of the statistical solutions, and study the convergence rates of the proposed procedures
Bräutigam, Marcel. "Pro-cyclicality of risk measurements. Empirical quantification and theoretical confirmation." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS100.
Full textThis thesis examines, empirically and theoretically, the pro-cyclicality of risk measurements made on historical data. Namely, the effect that risk measurements overestimate the future risk in times of crisis, while underestimating it in quiet times. As starting point, we lay down a methodology to empirically evaluate the amount of pro-cyclicality when using a sample quantile (Value-at-Risk) process to measure risk. Applying this procedure to 11 stock indices, we identify two factors explaining the pro-cyclical behavior: The clustering and return-to-the-mean of volatility (as modeled by a GARCH(1,1)) and the very way of estimating risk on historical data (even when no volatility dynamics are present). To confirm these claims theoretically, we proceed in two steps. First, we derive bivariate (functional) central limit theorems for quantile estimators with different measure of dispersion estimators. We establish them for sequences of iid random variables as well as for the class of augmented GARCH(p,q) processes. Then, we use these asymptotics to theoretically prove the pro-cyclicality observed empirically. Extending the setting of the empirical study, we show that no matter the choice of risk measure (estimator), measure of dispersion estimator or underlying model considered, pro-cyclicality will always exist
Cassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.
Full textLa construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.
Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.
Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).
Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.
Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.
Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.
Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.
Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.
A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.
Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Bouquiaux, Christel. "Semiparametric estimation for extreme values." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210910.
Full textDoctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
Kefi, Jihène. "Analyse mathématique et numérique de modèles quantiques pour les semiconducteurs." Toulouse 3, 2003. http://www.theses.fr/2003TOU30186.
Full textCartailler, Jérôme. "Asymptotic of Poisson-Nernst-Planck equations and application to the voltage distribution in cellular micro-domains." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066297/document.
Full textIn this PhD I study how electro-diffusion within biological micro and nano-domains is affected by their shapes using the Poisson-Nernst-Planck (PNP) partial differential equations. I consider non-trivial shapes such as domains with cusp and ellipses. Our goal is to develop models, as well as mathematical tools, to study the electrical properties of micro and nano-domains, to understand better how electrical neuronal signaling is regulated at those scales. In the first part I estimate the steady-state voltage inside an electrolyte confined in a bounded domain, within which we assume an excess of positive charge. I show the mean first passage time in a charged ball depends on the surface and not on the volume. I further study a geometry composed of a ball with an attached cusp-shaped domain. I construct an asymptotic solution for the voltage in 2D and 3D and I show that to leading order expressions for the voltage in 2D and 3D are identical. Finally, I obtain similar conclusion considering an elliptical-shaped domain for which I construct an asymptotic solution for the voltage in 2D and 3D. In the second part, I model the electrical compartmentalization in dendritic spines. Based on numerical simulations, I show how spines non-cylindrical geometry leads to concentration polarization effects. I then compare my model to experimental data of microscopy imaging. I develop a deconvolution method to recover the fast voltage dynamic from the data. I estimate the neck resistance, and we found that, contrary to Ohm's law, the spine neck resistance can be inversely proportional to its radius
SADEFO, KAMDEM Jules. "Méthodes analytiques pour le Risque des Portefeuilles Financiers." Phd thesis, Université de Reims - Champagne Ardenne, 2004. http://tel.archives-ouvertes.fr/tel-00009187.
Full textFranceschi, Sandro. "Approche analytique pour le mouvement brownien réfléchi dans des cônes." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4046/document.
Full textObliquely reflected Brownian motion in the quadrant, introduced by Harrison, Reiman, Varadhan and Williams in the eighties, has been studied a lot in the probabilistic literature. This thesis, which presents the complete study of the invariant measure of this process in all the cones of the plan, has for overall aim to extend to the continuous framework an analytic method initially developped for random walks in the quarter plane by Fayolle, Iasnogorodski and Malyshev in the seventies. This approach is based on functional equations which link generating functions in the discrete case and Laplace transform in the continuous case. These equations allow to determine and to solve boundary value problems satisfied by these generating functions. In the recurrent case, it permits to compute explicitly the invariant measure of the process with orthogonal reflexions, in the chapter 2, and with any reflexions, in the chapter 3. The Laplace transform of the invariant measure is analytically extended to a Riemann surface induced by the kernel of the functional equation. The study of singularities and the use of saddle point methods on this surface allows to determine the full asymptotics of the invariant measure along every directions in the chapter 4
Attouch, Mohammed Kadi. "Estimation robuste de la fonction de régression pour des variables fonctionnelles." Littoral, 2009. http://www.theses.fr/2009DUNK0227.
Full textThe robust regression is an analysis of regression with capacity to be relatively insensitive to the large deviations due to some outliers observations. Within this framework, one proposes in this thesis studied the robust estimate of the function of regression, if the observations are at the same time independent, strongly mixing and the covariate is functional. Initially, on considers a succession of identically distributed independent observations. In this context, we establish the asymptotic normality of a robust family of estimators based on the kernel method. With title illustrative, our result is applied to the discrimination of the curves, the forecast time series, and to the construction of a confidence interval. In the second time, we suppose that the observations are strongly mixing, and we establish the rate of specific almost complete convergence and uniform of this family of estimators as well as asymptotic normality. Let us note, that the axes structural of the subject, namely “dimensionality” and the correlation of the observations, “dimensionality” and the robustness of the model, are well exploited in this study. Moreover, the property of the concentration of the measure of probability of the functional variable in small balls is used, this measure of concentration allows under some assumptions to propose an original solution to the problem of the curse of dimensionality and thus to generalize the results already obtaines in the multivariate framework. To illustrate the extension and the contribution of our work, we show in some examples how our results can be applied to the nonstandard problems of the non-parametric statistics such as the forecast of functional time series. Our methods are applied to real data such as the economy and astronomy
Monavon, Arnault. "Etude d'une couche limite instationnaire sur une paroi déformable." Paris 6, 1986. http://www.theses.fr/1986PA066369.
Full textBonnéry, Daniel. "Propriétés asymptotiques de la distribution d'un échantillon dans le cas d'un plan de sondage informatif." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00658990.
Full textLopez, Olivier. "Réduction de dimension en présence de données censurées." Phd thesis, Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00195261.
Full textvariable explicative. Nous développons une nouvelle approche de réduction de la dimension afin de résoudre ce problème.
Zhou, Li. "Problèmes Statistiques pour les EDS et les EDS Rétrogrades." Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-00808623.
Full textBen, Abdeddaiem Maroua. "Tests d'ajustement pour des processus stochastiques dans le cas de l'hypothèse nulle paramétrique." Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1016/document.
Full textThis work is devoted to the problem of the construction of several goodness of-fit (GoF) tests in the case of somestochastic processes observed in continuous time. As models of observations, we take "small noise" and ergodic diffusionprocesses and an inhomogeneous Poisson process. Under the null hypothesis, we treat the case where each model depends on an unknown one-dimensional parameter and we consider the minimum distance estimator for this parameter. Our goal is to propose "asymptotically distribution free" (ADF) GoF tests of asymptotic size α ϵ (0,1) in the case of the parametric null hypotheses for the considered models. Indeed, we show that the limit of each studied statistic does not depend on the model and the unknown parameter. Therefore, the tests based on these statistics are ADF.The main purpose of this work is to construct a special linear transformation. In particular, we solve Fredholm equation ofthe second kind with degenerated kernel. Its solution gives us the desired linear transformation. Next, we show that theapplication of this transformation to the basic statistics allows us to introduce statistics with the same limit (the integral of the square of the Wiener process). The latter is "distribution free" because it does not depend on the models and the unknown parameter. Therefore, we construct the ADF GoF tests which are based on this linear transformation for the diffusion ("small noise" and ergodic) and inhomogeneous Poisson processes
Abbes, Samy. "Modèle probabiliste de systèmes distribués et concurrents. Théorèmes limite et application à l'estimation statistique de paramètres." Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00007150.
Full texttélécommunications par exemple) il est utile d'étudier des
modèles de concurrence sous la sémantique de traces. Dans
cette optique, on propose une extension probabiliste des
structures d'événements et des réseaux de Petri 1-bornés
(réseaux markoviens).
On prouve un propriété de Markov forte pour ces modèles,
et on donne des applications à la récurrence des réseaux.
On montre une Loi forte des grands nombres pour
les réseaux récurrents et suffisement synchrones,
avec applications a l'estimation statistique de
paramètres locaux.
Wang, Min. "Generalized stable distributions and free stable distributions." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I032/document.
Full textThis thesis deals with real stable laws in the broad sense and consists of two independent parts. The first part concerns the generalized stable laws introduced by Schneider in a physical context and then studied by Pakes. They are defined by a fractional differential equation, whose existence and uniqueness of the density solutions is here characterized via two positive parameters, a stability parameter and a bias parameter. We then show various identities in law for the underlying random variables. The precise asymptotic behaviour of the density at both ends of the support is investigated. In some cases, exact representations as Fox functions of these densities are given. Finally, we solve entirely the open questions on the infinite divisibility of the generalized stable laws. The second and longer part deals with the classical analysis of the free alpha-stable laws. Introduced by Bercovici and Pata, these laws were then studied by Biane, Demni and Hasebe-Kuznetsov, from various points of view. We show that they are classically infinitely divisible for alpha less than or equal to 1 and that they belong to the extended Thorin class extended for alpha less than or equal to 3/4. The Lévy measure is explicitly computed for alpha = 1, showing that free 1-stable distributions are not in the Thorin class except in the drifted Cauchy case. In the symmetric case we show that the free alpha-stable densities are not infinitely divisible when alpha larger than 1. In the one-sided case we prove, refining unimodality, that the densities are whale-shaped, that is their successive derivatives vanish exactly once on their support. This echoes the bell shape property of the classical stable densities recently rigorously shown. We also derive several fine properties of spectrally one-sided free stable densities, including a detailed analysis of the Kanter random variable, complete asymptotic expansions at zero, and several intrinsic features of whale-shaped functions. Finally, we display a new identity in law for the Beta-Gamma algebra, various stochastic order properties, and we study the classical Van Danzig problem for the generalized semi-circular law
Godinho, Pereira David. "Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00975091.
Full textDurieu, Olivier. "Comportements Asymptotiques des Processus Stationnaires et des Processus Empiriques dans des Systèmes Dynamiques." Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00346539.
Full textDans le cadre du principe d'invariance faible de Donsker, plusieurs résultats s'obtiennent au travers d'approximations par des martingales et plus généralement par des critères projectifs. Nous comparons quatre de ces critères et montrons leur indépendance mutuelle. Les critères étudiés sont la décomposition martingale-cobord (Gordin, 1969), la condition de Hannan (1979), le critère de Dedecker et Rio (2000) et
la condition de Maxwell et Woodroofe (2000).
En ce qui concerne le comportement asymptotique des processus empiriques, nous établissons un principe d'invariance dans le cas des automorphismes du tore. Cela permet de sortir du cadre hyperbolique connu et d'obtenir un premier résultat pour une transformation partiellement hyperbolique.
Nous proposons également une nouvelle approche, basée sur des méthodes d'opérateurs, permettant d'établir un principe d'invariance empirique. Cette méthode s'applique en particulier aux cas où l'on a de bonnes propriétés pour une classe de fonctions ne contenant pas les fonctions indicatrices. C'est en particulier le cas de certains systèmes dynamiques dont l'opérateur de transfert admet un trou spectral.
En dernier lieu, suivant une question de Burton et Denker (1987), nous nous intéressons à la classe des processus pour lesquels le théorème limite central a lieu. En référence au cadre des processus empiriques, nous étudions en particulier les suites de sommes partielles des itérées d'une fonction indicatrice.
Berdah, Cathy. "Analyse theorique et experimentale du comportement mecanique fin d'assemblages colles : application a l'etude de leur vieillissement humide." Paris 6, 1988. http://www.theses.fr/1988PA066072.
Full textServien, Rémi. "Estimation de régularité locale." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00730491.
Full textSadek, Amr Fouad. "Estimation des processus markoviens avec application en fiabilité." Compiègne, 2003. http://www.theses.fr/2003COMP1466.
Full textMarkov processes are very relevant to study the reliability as an application to real world problems. Ln this thesis, two types of processes, Markov chains and Markov pro cesses are considered. We concern with the non-parametric estimation ofthe reliability and its measurements. We define estimators of reliability, availability, etc. The asymptotic properties of the proposed estimators are studied: strong uniform consistent and normality. Using the asymptotic properties results we construct the confidence intervals for reliability and its measurements. Illustrative examples are presented to explain the obtained results and to compare with the standard empirical estimators. The extension to the semi-Markovian processes relates to a point not Jet specifically discussed in the literature, the estimation of the stationary distribution of semi- Mar kovian processes. We propose a new index for quality of life and discuss it through discrete and continuous time Markov process mode
Ahmad, Ali. "Contribution à l'économétrie des séries temporelles à valeurs entières." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30059/document.
Full textThe framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models
Sbai, Youssef. "Analyse semi-classique des opérateurs périodiques perturbés." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0270/document.
Full textThis Ph.D thesis deals with some spectral properties of two specific classes of two periodic operators. We are firstly interested in the model periodic perturbed by operator depending on a small semi-classical constant. We obtain an asymptotic behavior of the eigenvalue counting function in the spectral gaps with scharp remainder estimate. The second model studied in this thesis is a two-dimensional periodic elliptic second order opera-tor perturbed by operator depending on a large coupling constant. We also give the description of the counting function of eigenvalues when the coupling constant tends to infinity. The last part of this thesis highlights the study the spectrum of a Schrödinger operator perturbed by a fast oscillatingdecaying potential depending on a small parameter
Riou-Durand, Lionel. "Theoretical contributions to Monte Carlo methods, and applications to Statistics." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLG006/document.
Full textThe first part of this thesis concerns the inference of un-normalized statistical models. We study two methods of inference based on sampling, known as Monte-Carlo MLE (Geyer, 1994), and Noise Contrastive Estimation (Gutmann and Hyvarinen, 2010). The latter method was supported by numerical evidence of improved stability, but no theoretical results had yet been proven. We prove that Noise Contrastive Estimation is more robust to the choice of the sampling distribution. We assess the gain of accuracy depending on the computational budget. The second part of this thesis concerns approximate sampling for high dimensional distributions. The performance of most samplers deteriorates fast when the dimension increases, but several methods have proven their effectiveness (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). In the continuity of some recent works (Eberle et al., 2017; Cheng et al., 2018), we study some discretizations of the kinetic Langevin diffusion process and establish explicit rates of convergence towards the sampling distribution, that scales polynomially fast when the dimension increases. Our work improves and extends the results established by Cheng et al. for log-concave densities
Leroy, Fanny. "Etude des délais de survenue des effets indésirables médicamenteux à partir des cas notifiés en pharmacovigilance : Problème de l'estimation d'une distribution en présence de données tronquées à droite." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01011262.
Full textVerdoit-Jarraya, Marion. "Caractérisation et modélisation de la dynamique spatiale et saisonnière de populations démersales et benthiques exploitées de la Mer Celtique." Paris 6, 2003. http://www.theses.fr/2003PA066596.
Full textBabykina, Evgénia. "Modélisation statistique d'événements récurrents. Exploration empirique des estimateurs, prise en compte d'une covariable temporelle et application aux défaillances des réseaux d'eau." Thesis, Bordeaux 2, 2010. http://www.theses.fr/2010BOR21750/document.
Full textIn the context of stochastic modeling of recurrent events, a particular model is explored. This model is based on the counting process theory and is built to analyze failures in water distribution networks. In this domain the data on a large number of systems observed during a certain time period are available. Since the systems are installed at different dates, their age is used as a time scale in modeling. The model accounts for incomplete event history, aging of systems, negative impact of previous failures on the state of systems and for covariates.The model is situated among other approaches to analyze the recurrent events, used in biostatistics and in reliability. The model parameters are estimated by the Maximum Likelihood method (ML). A method to integrate a time-dependent covariate into the model is developed. The time-dependent covariate is assumed to be external to the failure process and to be piecewise constant. Heuristic methods are proposed to account for influence of this covariate when it is not observed. Methods for data simulation and for estimations in presence of the time-dependent covariate are proposed. A Monte Carlo study is carried out to empirically assess the ML estimator's properties (normality, bias, variance). The study is focused on the doubly-asymptotic nature of data: asymptotic in terms of the number of systems n and in terms of the duration of observation T. The asymptotic behavior of the ML estimator, assessed empirically agrees with the classical theoretical results for n-asymptotic behavior. The T-asymptotics appears to be less typical. It is also revealed that the two asymptotic directions, n and T can be combined into one unique direction: the number of observed events. This concerns the classical model parameters (the coefficients associated to fixed covariates, the parameter characterizing aging of systems). The presence of one unique asymptotic direction is not obvious for the time-dependent covariate coefficient and for a parameter characterizing the negative impact of previous events on the future behavior of a system.The developed methodology is applied to the analysis of failures of water networks. The influence of climatic variations on failure intensity is assessed by a time-dependent covariate. The results show a global improvement in predictions of future behavior of the process when the time-dependent covariate is included into the model
Lapierre, Élisabeth. "Distribution asymptotique des valeurs propres du laplacien sur le triangle équilatéral." Thèse, 2008. http://hdl.handle.net/1866/7882.
Full textBalabdaoui, Fadoua. "Estimation non-paramétrique d'une densité k-monotone: Une nouvelle théorie de distribution asymptotique." Phd thesis, 2004. http://tel.archives-ouvertes.fr/tel-00011980.
Full textDans l'introduction, nous présentons tout d'abord la motivation principale derrière ce problème et nous faisons l'effort d'inclure dans le cadre général de notre travail les résultats asymptotiques qui étaient déjà établis pour les cas spéciaux k=1 et k=2.
Ensuite, nous nous penchons sur l'étude des propriétés des MLE et LSE d'une densité k-monotone g_0 dans le cas où on dispose de n observations indépendantes générées de g_0. Notre étude asymptotique est locale, c'est-à-dire que nous nous intéressons uniquement aux propriétés asymptotiques des estimateurs et de leur dérivées à un point fixe, x_0. Sous certaines hypothèses que nous précisons, nous établissons d'abord les bornes inférieures minimax pour l'estimation des dérivées g^{(j)}_0(x_0), j=0,...,k-1. Les bornes obtenues indiquent que n^{-(k-j)/(2k+1)} est la vitesse de convergence optimale de n'importe quel estimateur non-paramétrique de g^{(j)}_0(x_0). Sous les mêmes hypothèses et si une certaine conjecture est vraie, nous démontrons que cette vitesse optimale est atteinte dans le cas des MLE et LSE.
Pour compléter la théorie asymptotique des estimateurs et de leur dérivées au point x_0, nous passons à la dérivation de leurs distributions limites lorsque la taille de l'échantillon n tend vers l'infini. Il s'avère que ces distributions dépendent d'un processus stochastique bien particulier défini sur l'ensemble des réels R. On note ce processus par H_k Le 3ème chapitre est consacré essentiellement à l'existence et à l'unicité de H_k, ainsi qu'à sa caractérisation. Nous démontrons que si Y_k est la primitive (k-1)-ème d'un mouvement Brownien + k!/(2k)! t^{2k}, alors H_k reste au-dessus (au-dessous) de Y_k lorsque k est pair (impair). Un simple changement de variable suffit pour reconnaître que nos résultats comprennent les cas spéciaux k=1 et k=2 où le problème se réduit à l'estimation d'une densité décroissante et d'une densité décroissante et convexe respectivement. Pour ces cas-là, la théorie asymptotique des MLE et LES a été déjà établie.
L'aspect algorithmique fait l'objet du 4ème chapitre. Les algorithmes de Splines itératifs (Iterative Spline algorithms) sont développés et implémentés afin de calculer les estimateurs et aussi pour obtenir une approximation du processus limite sur n'importe quel compact dans R. Ces algorithmes exploitent essentiellement la structure 'splineuse' des MLE, LSE et H_k, et se basent ainsi sur la suppression et l'addition itératives des noeuds de certains Splines aléatoires.
Persechino, Roberto. "Distribution asymptotique du nombre de diviseurs premiers distincts inférieurs ou égaux à m." Thèse, 2011. http://hdl.handle.net/1866/5263.
Full textThe main topic of this masters thesis is the study of the asymptotic distribution of the fonction f_m which counts the number of distinct prime divisors among the first $m$ prime numbers, i.e. $p_1,...,p_m$. The first chapter provides the seven main results which will later on be proved in chapter 4. Among these we find the analogue of the Erdos-Kac central limit theorem and a result on large deviations. In the following chapter, we define several probability spaces on which we will calculate asymptotic probabilities of specific events. These will become necessary for calculating their corresponding densities. The third chapter is the main part of this masters thesis. In it, we introduce a random walk which, when suitably normalized, will converge to the Brownian motion. We will then obtain results which will form the basis of the proofs of those of chapiter 1.
Najem, El-Halla. "Processus de Poisson généralisé autorégressif d'ordre 1." Thèse, 2004. http://hdl.handle.net/1866/14619.
Full textOuimet, Frédéric. "Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics." Thèse, 2019. http://hdl.handle.net/1866/22667.
Full text