To see the other types of publications on this topic, follow the link: Distribution asymptotique.

Dissertations / Theses on the topic 'Distribution asymptotique'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 47 dissertations / theses for your research on the topic 'Distribution asymptotique.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Muller, Aurélie. "Comportement asymptotique de la distribution des pluies extrêmes en France." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2006. http://tel.archives-ouvertes.fr/tel-00122997.

Full text
Abstract:
Le comportement des valeurs extrêmes de pluie en France a été analysé au travers de variables locales telles que les maxima annuels ou saisonniers de pluies mesurées sur différents pas de temps entre l'heure et la journée, les valeurs supérieures à un seuil élevé, ou la série temporelle de succession d'averses. Différents modèles, issus de la théorie des valeurs extrêmes uni-variée et bi-variée ou de générateurs stochastiques de pluie, ont été présentés pour étudier le comportement asymptotique de ces variables aléatoires. Dans le cas des séries temporelles d'averses, la persistance dans le temps des valeurs fortes a été modélisée à l'aide d'un processus Markovien. Les incertitudes associées aux différents modèles ont également été analysées, avec des méthodes bayésiennes ou fréquentielles. Nous avons pu valider nos modèles avec de longues séries de mesures pluviométriques, avec des chroniques de pluies horaires et avec des chroniques d'événements pluvieux décrits par des averses fournis par Météo-France et le Cemagref. Dans de nombreux cas, nous avons en particulier noté que la distribution des extrêmes est non bornée, et de queue plus lourde qu'une loi Gumbel ou exponentielle.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Zhizhong. "Distribution asymptotique fine des points de hauteur bornée sur les variétés algébriques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM036/document.

Full text
Abstract:
L'étude de la distribution des points rationnels sur les variétés algébriques est un sujet classique de la géométrie diophantienne. Le programme proposé par V. Batyrev et Y. Manin dans des années 90 donne une prédiction sur l'ordre de croissance tandis que sa version ultérieure dûe à E. Peyre conjecture l'existence d'une distribution globale. Dans cette thèse nous nous proposons une étude de la distribution locale des points rationnels de hauteur bornée sur les variétés algébriques. Ceci envisage une description plus fine que celle globale en dénombrant les points le plus proche d'un point fixé. Nous nous plaçons sur le cadre récent du travail de D. McKinnon et M. Roth qui met en évidence que la géométrie de la variété gouverne l'approximation diophantienne sur elle et nous reprenons les résultats de S. Pagelot. L'ordre de croissance espéré et l'existence d'une mesure asymptotique sur certaines surfaces toriques sont démontrés, alors que démontrons-nous un résultat totalement différent pour une autre surface sur laquelle il n'y pas de mesure asymptotique et les meilleurs approximants génériques s'obtiennent sur des courbes rationnelles nodales. Ces deux phénomènes sont de nature radicalement différente au point de vu de l'approximation diophantienne
The study of the distribution of rational points on algebraic varieties is a classic subject of Diophantine geometry. The program proposed by V. Batyrev and Y. Manin in the 1990s gives a prediction on the order of growth whereas its later version due to E. Peyre conjectures the existence of a global distribution. In this thesis we propose a study of the local distribution of rational points of bounded height on algebraic manifolds. This aims at giving a description finer than the global one by counting the points closest to a fixed point. We set ourselves on the recent framework of the work of D. McKinnon and M. Roth who prefers that the geometry of the variety governs the Diophantine approximation on it and we take up the results of S. Pagelot. The expected order of growth and the existence of an asymptotic measure on some toric surfaces are demonstrated, while we demonstrate a totally different result for another surface on which there is no asymptotic measure and the best generic approximates are obtained on nodal rational curves. These two phenomena are of a radically different nature from the point of view of the Diophantine approximation
APA, Harvard, Vancouver, ISO, and other styles
3

Rittaud, Benoît. "Convergence ponctuelle de moyennes ergodiques non conventionnelles et distribution asymptotique de suites oscillantes." Tours, 1999. http://www.theses.fr/1999TOUR4001.

Full text
Abstract:
Nous nous intéressons au problème de la convergence ponctuelle de suites de moyennes ergodiques du type 1/N "sigma"n1, k > 0, F de RD dans R ZD-périodique suffisamment régulière, "theta" [appartient à] RD. Nous considérons également les combinaisons linéaires de telles suites. Ce problème se rattache à l'étude des moyennes (*) lorsque T et S sont des endomorphismes algébriques d'un tore de dimension finie. Nous le résolvons en toute généralité pour "lambda" > 1, et avec une condition diophantienne sur "theta" pour "lambda" = 1.
APA, Harvard, Vancouver, ISO, and other styles
4

Zohoorianazad, Elahe. "Comportement asymptotique des mots aléatoires et des arbres aléatoires, et applications." Nancy 1, 2007. http://www.theses.fr/2007NAN10034.

Full text
Abstract:
Cette thèse est divisée en deux parties. La première partie s’intéresse à l’analyse probabiliste des mots, particulièrement les mots de Lyndon. Nous trouvons la loi limite de la longueur du facteur droit standard d’un mot aléatoire de Lyndon, en considérant d’abord le cas simple des mots aléatoires finis à deux lettres équiprobables, puis le cas des mots aléatoires finis avec des lettres indépendantes tirées d’un alphabet fini ou infini totalement ordonné selon une loi de probabilité générale. Par ailleurs dans ce cas général, nous trouverons la loi jointe asymptotique des longueurs normalisées des facteurs de Lyndon d’un mot aléatoire fini. Nous donnons finalement un coup d’oeil sur la structure des arbres de Lyndon. La deuxième partie étudie, en première place, la distribution limite d’une fonctionnelle additive définie sur les arbres de Cayley. Ensuite, on étudie un nouveau type de modèle de percolation de dimension 1, le modèle de parking avec stratégie de marches aléatoires pour les déplacements des voitures
This thesis is divided in two parts. The first part is interested in the probabilistic analysis on words, especially in what concerns Lyndon words. We find in this part the limit law of the length of the standard right factor of random Lyndon words, first in the simple case of the alphabet of two equiprobable letters, then in the case of the finite random words with independent letters pulled of a totally ordered finite or infinite alphabet, according to a general probability distribution. Moreover in this general case, we shall find the asymptotic joint law of the normalized lengths of the Lyndon factors of a finite word. We finally give in this part, a look on the structure of Lyndon trees. The second part studies first the limit distribution of an additive functional on Cayley trees, then a new type of a one dimensional percolation model that can be seen as the study of cars parking after a random walk
APA, Harvard, Vancouver, ISO, and other styles
5

GUGLIELMO, FRANCOIS. "Etude de la distribution spatiale des etoiles de la branche asymptotique des geantes de notre galaxie." Paris 7, 1993. http://www.theses.fr/1993PA077261.

Full text
Abstract:
Pour etudier les proprietes des etoiles de la branche asymptotique des geantes (agb) et leur distribution spatiale dans notre galaxie, je montre l'interet de combiner les donnees photometriques dans l'infrarouge proche et moyen: reconnaissance des etoiles carbonees entourees d'une enveloppe epaisse de gaz et de poussieres (etoiles carbonees infrarouges, ecir), estimation precise de leur distance. Nous mesurons alors le flux dans le proche infrarouge de plus de 2000 etoiles qui avaient ete observees prealablement en photometrie dans l'infrarouge moyen. Plus de 100 nouvelles ecir (environ 20 pour cent des ecir connues) sont ainsi mis en evidence. En moyenne, elles sont plus faibles, donc a de plus grandes distances que les etoiles de ce type deja connues. J'obtiens des valeurs d'echelle de hauteur de 190 parsecs, densite de 12 etoiles par kiloparsec carre (environ 25 pour cent de toutes les etoiles carbonees), taux global de restitution en elements lourds dans le milieu interstellaire de 0. 0001 masse solaire par an et par kiloparsec carre du principalement aux ecir, et je montre que leur densite est independante de la distance galactocentrique dans l'intervalle 5-14 kiloparsec. J'utilise ces nouvelles determinations pour introduire les etoiles de l'agb dans le modele de synthese de populations stellaires de besancon que j'etends a l'infrarouge. La comparaison avec les comptages de sources dans l'infrarouge proche et moyen permet de contraindre les ages de ces etoiles et la densite des etoiles oxygenees a enveloppe epaisse. Finalement, je montre l'interet du releve complet du ciel austral dans le proche infrarouge (denis) pour etudier les etoiles de l'agb
APA, Harvard, Vancouver, ISO, and other styles
6

Sahnoun, Réda. "Composition asymptotique de processus d'urne de Pólya et applications à l'algorithmique." Versailles-St Quentin en Yvelines, 2010. http://www.theses.fr/2010VERS0051.

Full text
Abstract:
Les processus de Pólya sont des marches aléatoires à temps discret dans R^d, généralisations naturelles des urnes de Pólya-Eggenberger. Dans ce dernier modèle, une urne peut contenir des boules de d couleurs différentes, et une matrice (déterministe) à coefficients entiers relatifs décrit les règles de remplacement après chaque tirage. De nombreuses situations issues de l'informatique (structures arborescentes) ou de la physique théorique (percolation, fragmentation) se modélisent par ces objets. Le comportement asymptotique de ces processus fait apparaître une famille de nouvelles lois de probabilité, certaines d'entre elles sont déterminées par leurs moments; tandis que pour d'autre, la série génératrice des moments diverge. Ceci témoigne de la richesse de ce modèle, cependant, les cas étudiés permettent de dégager la combinatoire complexe du cas général
Polya processes are discrete-time random walks in R^d, natural generalizations of Pólya-Eggenberger urns. In this latter model, a urn may contain balls of different colors and a matrix (deterministic) with integer coefficients describes the rules for replacement after each draw. Many situations from the computer sciences (tree structures) or theoretical physics (percolation fragmentation) are modeled by these objects. The asymptotic behavior of these processes reveals a new family of probability laws, some of them are determined by their moments, while for the other, the exponential generating function of moments diverges. This attests to the richness of this model, however, the cases reviewed permit to identify the complex combinatorics of the general case
APA, Harvard, Vancouver, ISO, and other styles
7

Reinhold, Küstner. "Asymptotic zero distribution of orthogonal polynomials with respect to complex measures having argument of bounded variation." Nice, 2003. http://www.theses.fr/2003NICE4054.

Full text
Abstract:
On détermine la distribution asymptotique des pôles pour trois types de meilleurs approximants (Padé à l’infini, rationnel en L2 sur le cercle unité, méromorphe dans le disque unité en Lp sur le cercle unité, p>2) de la transformée de Cauchy d’une mesure complexe sous l’hypothèse que le support S de la mesure soit de capacité positive et inclus dans (-1, 1), que la mesure satisfasse une condition de densité et que l’argument de la mesure soit la restriction d’une fonction à variation bornée. Les polynômes dénominateurs des approximants satisfont des relations d’orthogonalité. Au moyen d’un théorème de Kestelman, on obtient des contraintes géométriques pour les zéros qui impliquent que chaque mesure limite faible des mesures de comptage associées à son support inclus dans S. Puis, à l’aide de résultats de la théorie du potentiel dans le plan, on montre que les mesures de comptage convergent faiblement vers la distribution d’équilibre logarithmique respectivement hyperbolique de S
We determine the asymptotic pole distribution for three types of best approximants (Padé at infinity, rational in L2 on the unit circle, meromorphic in the unit disk in Lp on the unit circle, p>2) of the Cauchy transform of a complex measure under the hypothesis that the support S of the measure is of positive capacity and included in (-1 1), that the measure satisfies a density condition and that the argument of the measure is the restriction of a function of bounded variation ? The denominator polynomials of the approximants satisfay orthogonality relations ? By means of a theorem of Kestelman we obtain geometric constraints for the zeros which imply that every weak limit measure of the associated counting measures has support included in S. Then, with the help of results from potential theory in the plane, we show that the counting measures converge weakly to the logarithmic respectively hyperbolic equilibrium distribution of S
APA, Harvard, Vancouver, ISO, and other styles
8

Lhote, Loïck. "Algorithmes du PGCD et Fouille de Données : le point de vue de l’analyse dynamique." Caen, 2006. http://www.theses.fr/2006CAEN2021.

Full text
Abstract:
Cette thèse aborde deux domaines de l'algorithmique: la fouille de données et l'arithmétique. Le point de vue adopté est celui de l'analyse en moyenne et, plus précisément, celui de l'analyse dynamique, qui combine des méthodes d'analyse d'algorithmes et des systèmes dynamiques. Les algorithmes de type Euclide calculent le pgcd de deux nombres ;ce sont donc des briques de base du calcul formel, mais leur comportement probabiliste fin reste encore mal connu. Tout récemment, les méthodes dynamiques ont permis des avancées significatives dans ce domaine. Nous étendons cette approche à l'analyse fine d'autres paramètres, comme la complexité binaire et la taille des restes. Ces paramètres s'avèrent essentiels pour l'analyse de l'algorithme de type diviser pour régner introduit par Knuth et Schönhage. Nous utilisons également l'analyse dynamique dans le calcul prouvé de grandeurs spectrales. L'approche dynamique s'adapte aussi à l'algorithme d'Euclide sur les polynômes, même si, dans ce cas, les méthodes de la combinatoire analytique classique s'appliquent déjà. Nous abordons également la fouille de données. Nous nous limitons à des bases de données binaires où la connaissance se représente sous forme de 'motifs fréquents'. Le nombre de ces motifs est un paramètre essentiel pour les algorithmes. D'après les expérimentations, il varieconsidérablement selon les paramètres de la base, et l'analyse dans le pire des cas n'est donc pas significative en pratique. Dans cette thèse, nous élucidons le comportement moyen du nombre de motifs fréquents dans un modèle très général, où les bases sont construites à partir de sources possiblement corrélées
This thesis deals with two main algorithmical domains : Data Mining and Arithmetical computations. In both, we are interested in the average-case analysis of algorithms, and, we adopt more precisely the dynamical analysis point of vue which is a mixed method between Analysis of Algorithms and Dynamical Systems. The Euclid algorithms compute the gcd of two numbers ; these are fundamental blocks in computer algebra, but their fine probabilistic behavior is always unknown. Thanks to Dynamical Analysis methods, recent important results have been obtained. In this thesis, we extend this approach to a precise analysis of parameters, as the binary complexity or the size of remainders. These parameters are essential for the Divide and Conquer gcd algorithm due to Knuth-Schönhage. Dynamical Analysis is also used for proven computations of spectral constants. The dynamical approach is then adapted to on polynomial Euclid algorithms even if, in this case, classical Analytic Combinatorics already applies. We also deal with Data Mining. We restrict ourselves to binary databases where the knowledge is represented by 'frequent patterns'. The number of frequent patterns is essential for analysing algorithms but experiments show that it significantly changes with the parameters of the database. Then, the worst case analysis is not meaningful in practice. In this thesis, we elucidate the average beahvior of the number of frequent patterns under a large model of databases built with eventually correlated sources
APA, Harvard, Vancouver, ISO, and other styles
9

Rabenoro, Dimbihery. "Distribution asymptotique de vecteurs aléatoires indépendants non identiquement distribués conditionnés par leur somme. Lois limites fonctionnelles pour les incréments d’un processus de Lévy." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS572.

Full text
Abstract:
Dans la première partie de cette thèse, nous développons des théorèmes limites conditionnels pour des vecteurs aléatoires indépendants, non nécessairement identiquement distribués. Nous étendons ainsi des théorèmes classiques du type principe de Gibbs conditionnels, obtenu dans le cas i.i.d. Nous utilisons notamment des développements de type point-selle. Dans la seconde partie, nous obtenons des théorèmes d’Erdös-Renyi pour les incréments d’un processus de Lévy, dans une version fonctionnelle. L’outil clé est ici celui de grandes déviations fonctionnelles
In the first part of this work, we develop conditional limit theorems for independent not necessarily identically distributed random vectors. We extend thus classical theorems, as the Gibbs conditioning principle, obtained in the i.i.d. case. We use, among other tools, some saddlepoint approximations. In the second part, we obtain a functional form of Erdös-Renyi theorems for the increments of Lévy processes. The main tools are here functional large deviations principles
APA, Harvard, Vancouver, ISO, and other styles
10

Markeviciute, Jurgita. "Résultats asymptotiques sur des processus quasi non stationnaires." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10066/document.

Full text
Abstract:
Nous étudions certains théorèmes limite centraux fonctionnels hölderiens pour des processus autorégressifs d’ordre un quasi non stationnaires yn,k = φn yn,k−1 +εk et leurs résidus au sens des moindres carrés avec φn tendant vers 1 et des innovations i.i.d. centrées, de carré intégrable. Dans le cas φn = exp(γ/n) avec γ < 0, la limite en loi est une fonction d’un processus d’Ornstein-Uhlenbeck intégré. Dans le cas φn = 1 − γn /n avec γn tendant vers l'infini plus lentement que n, la convergence vers le mouvement brownien est établie dans l’espace de Hölder en termes de vitesse de divergence γn et d’intégrabilité des innovations εk. Comme application statistique de ces résultats, nous considérons une rupture épidémique dans les innovations de processus autorégressifs d’ordre un quasi non stationnaires AR(1). Deux types de modèles sont considérés. Pour 0 ≤ α < 1 nous construisons une statistique α-hölderienne basée sur les accroissements uniformes des observations ou des résidus pour détecter une courte rupture épidémique dans les processus considérés. Sous certaines hypothèses pour les innovations, nous trouvons la loi limite de la statistique sous l’hypothèse nulle, les conditions de consistance et nous effectuons une analyse de la puissance du test statistique. Nous discutons également l’interaction entre les différents paramètres pour la détectabilité des plus courtes épidémies
We study some Hölderian functional central limit theorems for the polygonal partial sum processes built on a first order nearly nonstationary autoregressive process yn,k = φn yn,k−1 + εk and its least squares residuals εk with φn converging to 1 and i.i.d. centered square-integrable innovations. In the case where φn = exp( γn /n) with a negative constant γ, we prove that the limiting process depends on Ornstein-Uhlenbeck one. In the case where φn = 1 − γn /n, with γn tending to infinity slower than n, the convergence to Brownian motion is established in Hölder space in terms of the rate of γn and the integrability of the εk’s. As a statistical application of these results, we investigate some epidemic change in the innovations of the first order nearly nonstationary autoregressive process AR(1). Two types of models are considered. For 0 ≤ α < 1, we build the α-Hölderian uniform increments statistics based on the observations and on the least squares residuals to detect the short epidemic change in the process under consideration. Under the assumptions for innovations we find the limit of the statistics under null hypothesis, some conditions of consistency and we perform a test power analysis. We also discuss the interplay between the various parameters to detect the shortest epidemics
APA, Harvard, Vancouver, ISO, and other styles
11

Genitrini, Antoine. "Expressions booléennes aléatoires : probabilité, complexité et comparaison quantitative de logiques propositionnelles." Versailles-St Quentin en Yvelines, 2009. http://www.theses.fr/2009VERS0010.

Full text
Abstract:
A travers ma thèse, j'étudie des systèmes propositionnels d'un point de vue probabilité/complexité. Je commence par deux distributions de probabilité sur les fonctions Booléennes, induites par des expressions Booléennes construites avec le connecteur Implication. On donne la structure de la plupart des expressions représentant une fonction donnée, quand le nombre de variables tend vers l'infini. On obtient ainsi l'équivalent asymptotique de la probabilité de la fonction, dépendant de sa complexité. Via la fonction Vrai, on compare quantitativement les logiques classique et intuitionniste de l'implication. Cette comparaison met en évidence certaines propriétés d'une classe d'expressions, qui se retrouvent dans le système propositionnel complet : on compare alors les deux logiques dans ce système. Enfin on étudie les expressions équilibrées des deux systèmes, de l'implication et des deux connecteurs Et et Ou. Dans les deux cas, on exhibe la distribution de probabilité sur les fonctions
In this thesis, I am interested in propositional systems from a probability/complexity point of view. I begin with two probability distributions on Boolean functions, induced by the Boolean expressions built with the Implication connective. I obtain the structure of most of the expressions representing a given function, when the number of variables tends to infinity. This gives the asymptotic equivalent of the probability of the function, depending on its complexity. Via the function True, we compare quantitatively the intuitionistic and classical logics of implication. This comparison highlights some properties of a class of expressions, that are found also in the full propositional system, and we can compare the two logics in this system. Finally we study balanced expressions in the two systems built on implication, or on the two connectors And and Or. In both cases, we exhibit the probability distribution of the functions
APA, Harvard, Vancouver, ISO, and other styles
12

Maynadier, Jérôme. "Approches statistiques et fiabilités en dynamique des structures." Toulouse, INSA, 2003. http://www.theses.fr/2003ISAT0017.

Full text
Abstract:
L'amélioration de la fiabilité des structures à symétrie cyclique des turbomachines nécessite une estimation précise des vibrations extrêmes qu'atteignent ces composants. Les amplitudes de réponse des structures à symétrie cyclique varient significativement en fonction de petites perturbations structurales nommées désaccords. En général, les désaccords sont des paramètres aléatoires. Leur effet sur les amplitudes de vibrations est encore estimé à partir de l'expérience de chaque motoriste. Pour faire face aux évolutions technologiques les approches numériques sont cependant nécessaires. En dynamique des structures, la méthode classique pour estimer la probabilité d'atteindre une amplitude vibratoire est la méthode de Monte-Carlo, efficace pour les probabilités les plus grandes, mais extrêmement coûteuse en temps de calcul pour les probabilités faibles. Les amplitudes de vibrations critiques correspondant précisément aux petites probabilités, les approches probabilistes FORM et SORM sont d'abord envisagées. Nous développons ensuite une méthode originale dite " méthode à variables séparées ". Enfin, une approche statistique fondée sur les modèles de valeurs extrêmes, pour estimer la distribution des amplitudes les plus grandes à partir d'un nombre restreint de simulations est retenue : la distribution généralisée de Pareto,modélisant la probabilité de dépassement d'un seuil. Après avoir validé ces différentes approches sur des exemples académiques, les plus performantes sont appliquées à une structure à symétrie cyclique modélisée par un système réduit. Ce type de modélisation simplifiée permet de représenter la plupart des configurations rencontrées en fonctionnement
The improvement of the cyclic symmetry structures in turboshaft engines requires an accurate valuation of extreme vibrations which are reaching by these components. The amplitudes of the response of cyclic symmetry structures vary significantly in function of small perturbations named "mistuning". In general, mistunings are random parameters. Usually their effects on the vibration amplitudes are estimated from the experience of each motorist. Hence, at the present time, they are verified with the help of experiences by installation of strain gauges on pieces. To anticipate the evolutions of technologies the numerical approaches are necessary. In structure dynamics, the classical approach used to estimate the probability to reach a vibratory amplitude is the Monte Carlo method, efficient to the biggest probabilities, but extremely expensive when probabilities decrease. The most critical vibration amplitudes corresponding to the lowest probabilities, the probabilistic methods FORM and SORM are first considered. We develop then an original method named "separated variables method". Finally, a statistical approach by extreme values distribution on threshold overstepping with a Pareto law is kept to predict the queue of the distribution of the maximal amplitude of the forced responses. This law bases on a minimum quantities of simulations. After the validation of these different approaches on academic examples, the most efficient one are applied on industrial cases. We consider a cyclic symmetric structure modelled by a reduced model. This type of simplified modelization is able to represent the greatest part of configurations met when running
APA, Harvard, Vancouver, ISO, and other styles
13

Saldana, Amandine. "Séries de Dirichlet à deux variables et distribution des valeurs de fonctions arithmétiques." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10026/document.

Full text
Abstract:
Nous traitons deux problèmes liés aux séries de Dirichlet. Nous étudions d'abord le prolongement analytique d'une certaine classe de séries de Dirichlet à deux variables: g(s_1,s_2,a,r) = somme_d=1 r(d) / a(d)s1ds2, où a(d) est une fonction multiplicative strictement positive et r(d) est une fonction multiplicative. Nous démontrons, sous certaines hypothèses, un théorème général qui permet d'approcher cette série de Dirichlet par une série connue, modulo une autre série pour laquelle nous obtenons des majorations très précises. Nous utilisons ensuite cet outil pour obtenir des résultats quantitatifs sur la distribution des valeurs de fonctions arithmétiques. Sous certaines hypothèses sur les fonctions a(d) et r(d), nous déterminons lim_x?8 1/X somme_d
We deal with two problems related to Dirichlet series. First we study the analytic continuation of a class of Dirichlet series with two variables: g(s_1,s_2,a,r) = sum_d=1 r(d) / a(d)s1ds2, where a(d) is a positive multiplicative function and r(d) is a multiplicative function. We prove, under suitable hypotheses, a general Theorem which allows us to approach this Dirichlet series by a known series, up to another series for which we get very precise upper bounds. Then we use this tool to get quantitative results on the distribution of values of arithmetical functions. Under suitable hypotheses on the functions a(d) and r(d), we determine lim_x?8 1/X sum_d
APA, Harvard, Vancouver, ISO, and other styles
14

Li, Xiaoxi. "Contributions à l'étude des propriétés asymptotiques en contrôle optimal et en jeux répétés." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066231/document.

Full text
Abstract:
Cette thèse étudie des propriétés limites de problèmes de contrôle optimal (un joueur, en temps continu) et de jeux répétés à somme nulle (à deux joueurs, en temps discret) avec horizon tendant vers l'infini. Plus précisément, nous étudions la convergence de la fonction valeur lorsque la durée du problème de contrôle ou la répétition du jeu tend vers l'infini (analyse asymptotique), et l'existence de stratégies robustes, i.e. des stratégies ԑ-optimales pour guarantir la valeur limite dans tous les problèmes de contrôle de durée suffisamment longue ou dans tous les jeux répétés de répétition suffisamment large (analyse uniforme). La partie sur le contrôle optimal est composée de trois chapitres. Le chapitre 2 est un article de présentation de la littérature récente sur les propriétés à long terme dans divers modèles d'optimisation dynamique. Dans les deux chapitres suivants, nous nous concentrons sur les problèmes de contrôle optimal où le coȗt de la trajectoire est évalué par une mesure de probabilité générale sur R_+, au lieu de la moyenne de T-horizon (moyenne de Cesàro) ou de la λ-escompté (moyenne d'Abel). Dans le chapitre 3, nous introduisons une condition de régularité asymptotique pour une suite de mesures de probabilité sur R_+ induisant un horizon tendant vers l'infini (en particulier, T tendant vers l'infini ou λ tendant vers zéro). Nous montrons que pour toute suite d'évaluations satisfaisant cette condition, la suite associée des valeurs du problème de contrôle converge uniformément si et seulement si cette suite est totalement bornée pour la norme uniforme. On en déduit que pour des problèmes de contrôle définis sur un domaine invariant compact et vérifiant une certaine condition de non-expansivité, la fonction valeur définie par une mesure de probabilité générale converge quand l'évaluation devient suffisamment régulière. En outre, nous prouvons dans le chapitre 4 que sous les mȇmes conditions de compacité et de non-expansivité, il existe des contrôles ԑ-optimaux pour tous les problèmes où le coȗt de la trajectoire est évalués par une mesure de probailité suffisamment régulières. La partie sur les jeux répétés se compose de deux chapitres. Le chapitre 5 est consacré à l'étude d'une sous-classe de jeux absorbants à information incomplète d'un côté. Le modèle que nous considérons est une généralisation du Big match à information incomplète d'un côté introduit par Sorin (1984). Nous démontrons l'existence de la valeur limite, du Maxmin, du Minmax, et l'égalité du Maxmin et de la valeur limite. Dans le chapitre 6, nous établissons plusieurs résultats concernant des jeux récursifs. Nous considérons d'abord les jeux récursifs avec un espace dénombrable d'états et prouvons que si la famille des fonctions valeur des jeux à n étapes est totalement bornée pour la norme uniforme, alors la valeur uniforme existe. En particulier, la convergence uniforme des valeurs des jeux à n étapes implique la convergence uniforme des valeurs des jeux escomptés. à l'aide d'un résultat dans Rosenberg et Vieille (2000), on en déduit un théorème taubérien uniforme pour les jeux récursifs. Deuxièmement, nous appliquons le résultat d'existence de la valeur uniforme à une classe des modèles général de jeux répétés et nous prouvons que la valeur limite et le Maxmin existent et sont égaux. Ces jeux répétés sont des jeux récursifs avec signaux où le joueur 1 peut toujours déduire le signal du joueur 2 de son propre signal
This dissertation studies limit properties in optimal control problems (one-player, in continuous time) and in zero-sum repeated games (two-player, in discrete time) with large horizons. More precisely, we investigate the convergence of the value function when the duration of the control problem or the repetition of the game tends to infinity (the asymptotic analysis), and the existence of robust strategies, i.e. ԑ-optimal strategies to guarantee the limit value in all control problems with sufficiently long durations or in all repeated games with sufficiently large repetitions (the uniform analysis). The part on optimal control is composed of three chapters. Chapter 2 is a survey article on recent literature of long-term properties in various models of dynamic optimization. In the following two chapters, we focus on optimal control problems where the running cost is evaluated by a general probability measure, instead of the usual T-horizon average (Cesàro mean) or the λ-discount (Abel mean). In Chapter 3, we introduce an asymptotic regularity condition for a sequence of probability measures on positive real numbers which induces a horizon tending to infinity (in particular T tending to infinity or λ tending to zero) for the control problem. We prove that for any sequence of evaluations satisfying this condition, the associated sequence of value function of the control problem converges uniformly if and only if this sequence is totally bounded for the uniform norm. We deduce that for control problems defined on a compact invariant domain and satisfying some non expansive condition, the value function defined by a general probability measure converges as the evaluation becomes sufficiently regular. Further, we prove in Chapter 4 that under the same compact and non expansive conditions, there exist ԑ-optimal controls for all problems where the running cost is evaluated by a sufficiently regular probability measure. The part on repeated games consists of two chapters. Chapter 5 is devoted to the study of a subclass of absorbing games with one-sided incomplete information. The model we consider is a generalization of Big match with one-sided incomplete information introduced by Sorin (1984). We prove the existence of the limit value, Maxmin, Minmax, and that Maxmin is equal to the limit value. In Chapter 6, we establish several results for recursive games. We first consider recursive games with a countable state space and prove that if the family of n-stage value functions is totally bounded for the uniform norm, then the uniform value exists. In particular, the uniform convergence of n-stage values implies the uniform convergence of λ-discounted values. Combined with a result in Rosenberg and Vieille (2000), we deduce a uniform Tauberian theorem for recursive games. Second, we use the existence result of uniform value to a class of the generalized models of repeated games and prove that both the limit value and Maxmin exist and are equal. This class of repeated games are recursive games with signals where player 1 can always deduce the signal of player 2 from his own along the play
APA, Harvard, Vancouver, ISO, and other styles
15

Seghier, Abdellatif. "Matrices de Toeplitz dans le cas d-dimensionnel : développement asymptotique à l'ordre d.Extension de fonctions de type positif dans le cas d-dimensionnel et maximum d'entropie : application à la reconstruction de densités." Paris 11, 1988. http://www.theses.fr/1988PA112038.

Full text
Abstract:
Les deux premiers articles traitent de la prédiction d'un processus stationnaire du 2°ordre. La prédiction s'effectue relativement à une information provenant d'une partie du passé. L'aspect le plus important de ce travail est l'introduction d'opérateurs (de Tœplitz et de Hankel) qui permettent d'appliquer des techniques de géométrie hilbertienne. II. Les trois articles qui suivent reprennent un problème de Szëgo lié à la prédiction linéaire de processus dépendant d'un paramètre discret. Nous considérons le problème dans le cas d-dimensionnel. Nous donnons un développement asymptotique de la trace de l'inverse de matrice de Tœplitz correspondante jusqu'à l'ordre d. Les cœfficients du développement dépendent alors du symbole (densité spectrale) et de mesures positives à support, selon l'ordre, le domaine de troncature de l'opérateur de Tœplitz (volume, les faces d'ordre d-1 (arêtes) et les sommets. III. Les deux derniers articles sont consacrés à la reconstruction de densités de probabilité et de densités spectrales à l'aide d'extension de fonction de type positif et du principe du maximum d'entropie. Ce problème provient de la cristallographie dont l'un des objectifs est la reconstruction de la densité électronique de molécules. Nous montrons dans le cas d'informations partielles (nombre fini de coefficients de Fourier) et de phases connues que cas multidimensionnel la reconstruction est possible dans le (implantable dans les ordinateurs)
In the two first chapters we are concerned with the prediction of the second order stationnary process. Here the information depends on a part of past. The main aspect of these papers is the use of hilbertian technics based on Tœplitz and Hankel operators. In the following three papers, we deal with an old Szegö's problem on the expansion of the determinant of Tœplitz matrix. We give in the multidimensionnal case a more precise expansion of the trace of the inverse with order d). Moreover the knew cœfficients which appear are strongly related with geometrical invariants of the domain on which the the Tœplitz operators are truncated. In the last two papers knew results about reconstruction of the spectral densities in the multidimentional case are given. The methods are based on extensions of positive defined function and maximum entropy principle. This work is motivated by the problem of the determination of the phases of the electron density function in crystal analysis. Nevertheless, there is still a great amount of work to be done in order to solve this problem
APA, Harvard, Vancouver, ISO, and other styles
16

Tran, Viet Chí. "Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques." Paris 10, 2006. http://www.theses.fr/2006PA100129.

Full text
Abstract:
Cette thèse se divise en deux parties indépendantes. Dans la première, nous considérons un modèle microscopique individu-centré pour décrire une population structurée par traits et âges. Nous étudions l'écologie de ce système (problèmes de dynamique de populations) dans une asymptotique de grandes populations. Sous certaines renormalisations, le processus microscopique converge par la solution à valeurs mesures d'une équation d'évolution déterministe. Un théorème central limite et les déviations exponentielles associées à cette convergence sont étudiés. Nous appliquons ensuite ces résultats pour établir des généralisations aux populations structurées par âge de modèles d'évolution tirés de la récente théorie des dynamiques adaptatives. Ces derniers modélisent l'évolution de la structure en traits sur des grandes échelles de temps et sous les hypothèses de mutations rares (éventuellement petites) et de grande populations. Dans la seconde partie de la thèse, nous considérons des équations aux dérivées partielles de McKean-Vlasov et de Navier-Stokes 2D avec conditions initiales aléatoires. La loi des solutions, qui sont alors des variables aléatoires, est appelée solution statistique. En nous basant sur une approche probabiliste de ces équations aux dérivées partielles, nous proposons de nouvelles approximations particulaires stochastiques avec ondelettes pour les moments d'ordre 1 des solutions statistiques, et nous étudions leurs vitesses de convergence
This thesis is divided into two independent parts. In the first one, we are interested in a microscopic individual-based model for the description of a population structured by traits and ages. We study the ecology of the system (population dynamics problems) in a large population asymptotics. Under appropriate renormalizations, the microscopic process converges to the measure solution of a deterministic evolution equation. A Central Limit Theorem and the exponential deviations of this convergence are studied. These results are used to generalize some evolution models from the recent theory of adaptive dynamics to age-structured populations. These models describe the evolution of the trait structure of the population on large time scales and under the assumptions of rare (and possibly small) mutations and large populations. In the second part of this thesis, we consider McKean-Vlasov and 2D Navier-Stokes partial differential equations with random initial conditions. The law of the solutions, which are then random variables, is called statistical solution. Using a probabilistic approach for these equations, we propose original stochastic wavelet particle approximations for the moments of order 1 of the statistical solutions, and study the convergence rates of the proposed procedures
APA, Harvard, Vancouver, ISO, and other styles
17

Bräutigam, Marcel. "Pro-cyclicality of risk measurements. Empirical quantification and theoretical confirmation." Thesis, Sorbonne université, 2020. http://www.theses.fr/2020SORUS100.

Full text
Abstract:
Cette thèse analyse, d’un point de vue empirique et théorique, la procyclicité des mesures de risque sur les données historiques, i.e. l'effet de surestimation du risque futur en temps de crise, et sa sous-estimation en temps normal. Nous développons une méthodologie pour évaluer empiriquement le degré de procyclicité, en introduisant un processus de quantiles (« Value-at-Risk ») historiques pour mesurer le risque. En appliquant cette procédure à 11 indices boursiers, nous identifions deux facteurs expliquant la procyclicité : le « clustering » et le retour à la moyenne de la volatilité (tel que modélisée par un GARCH(1,1)), mais aussi la façon intrinsèque d'estimer le risque sur des données historiques (même en l'absence de dynamique de la volatilité). Pour confirmer théoriquement ces arguments, nous procédons en deux étapes. Premièrement, nous démontrons des théorèmes bivariés (fonctionnels) de limite centrale pour les estimateurs de quantiles avec différents estimateurs de dispersion. Comme modèles de base, nous considérons les suites de variables aléatoires iid, ainsi que la classe des processus GARCH(p,q) augmentés. Enfin, ces résultats asymptotiques permettent de valider théoriquement la procyclicité observée empiriquement. Généralisant cette étude à d’autres mesures de risque et de dispersion, nous concluons que la procyclicité persistera quel que soit le choix de ces mesures
This thesis examines, empirically and theoretically, the pro-cyclicality of risk measurements made on historical data. Namely, the effect that risk measurements overestimate the future risk in times of crisis, while underestimating it in quiet times. As starting point, we lay down a methodology to empirically evaluate the amount of pro-cyclicality when using a sample quantile (Value-at-Risk) process to measure risk. Applying this procedure to 11 stock indices, we identify two factors explaining the pro-cyclical behavior: The clustering and return-to-the-mean of volatility (as modeled by a GARCH(1,1)) and the very way of estimating risk on historical data (even when no volatility dynamics are present). To confirm these claims theoretically, we proceed in two steps. First, we derive bivariate (functional) central limit theorems for quantile estimators with different measure of dispersion estimators. We establish them for sequences of iid random variables as well as for the class of augmented GARCH(p,q) processes. Then, we use these asymptotics to theoretically prove the pro-cyclicality observed empirically. Extending the setting of the empirical study, we show that no matter the choice of risk measure (estimator), measure of dispersion estimator or underlying model considered, pro-cyclicality will always exist
APA, Harvard, Vancouver, ISO, and other styles
18

Cassart, Delphine. "Optimal tests for symmetry." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210693.

Full text
Abstract:
Dans ce travail, nous proposons des procédures de test paramétriques et nonparamétrique localement et asymptotiquement optimales au sens de Hajek et Le Cam, pour trois modèles d'asymétrie.

La construction de modèles d'asymétrie est un sujet de recherche qui a connu un grand développement ces dernières années, et l'obtention des tests optimaux (pour trois modèles différents) est une étape essentielle en vue de leur mise en application.

Notre approche est fondée sur la théorie de Le Cam d'une part, pour obtenir les propriétés de normalité asymptotique, bases de la construction des tests paramétriques optimaux, et la théorie de Hajek d'autre part, qui, via un principe d'invariance permet d'obtenir les procédures non-paramétriques.

Nous considérons dans ce travail deux classes de distributions univariées asymétriques, l'une fondée sur un développement d'Edgeworth (décrit dans le Chapitre 1), et l'autre construite en utilisant un paramètre d'échelle différent pour les valeurs positives et négatives (le modèle de Fechner, décrit dans le Chapitre 2).

Le modèle d'asymétrie elliptique étudié dans le dernier chapitre est une généralisation multivariée du modèle du Chapitre 2.

Pour chacun de ces modèles, nous proposons de tester l'hypothèse de symétrie par rapport à un centre fixé, puis par rapport à un centre non spécifié.

Après avoir décrit le modèle pour lequel nous construisons les procédures optimales, nous obtenons la propriété de normalité locale asymptotique. A partir de ce résultat, nous sommes capable de construire les tests paramétriques localement et asymptotiquement optimaux. Ces tests ne sont toutefois valides que si la densité sous-jacente f est correctement spécifiée. Ils ont donc le mérite de déterminer les bornes d'efficacité paramétrique, mais sont difficilement applicables.

Nous adaptons donc ces tests afin de pouvoir tester les hypothèses de symétrie par rapport à un centre fixé ou non, lorsque la densité sous-jacente est considérée comme un paramètre de nuisance.

Les tests que nous obtenons restent localement et asymptotiquement optimaux sous f, mais restent valides sous une large classe de densités.

A partir des propriétés d'invariance du sous-modèle identifié par l'hypothèse nulle, nous obtenons les tests de rangs signés localement et asymptotiquement optimaux sous f, et valide sous une vaste classe de densité. Nous présentons en particulier, les tests fondés sur les scores normaux (ou tests de van der Waerden), qui sont optimaux sous des hypothèses Gaussiennes, tout en étant valides si cette hypothèse n'est pas vérifiée.

Afin de comparer les performances des tests paramétriques et non paramétriques présentés, nous calculons les efficacités asymptotiques relatives des tests non paramétriques par rapport aux tests pseudo-Gaussiens, sous une vaste classe de densités non-Gaussiennes, et nous proposons quelques simulations.
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
19

Bouquiaux, Christel. "Semiparametric estimation for extreme values." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210910.

Full text
Abstract:
Nous appliquons la théorie asymptotique des expériences statistiques à des problèmes liés aux valeurs extrêmes. Quatre modèles semi-paramétriques sont envisagés. Tout d'abord le modèle d'échantillonnage de fonction de répartition de type Pareto. L'index de Pareto est le paramètre d'intérêt tandis que la fonction à variation lente, qui intervient dans la décomposition de la fonction de survie, joue le rôle de nuisance. Nous considérons ensuite des observations i.i.d. de fonction de répartition de type Weibull. Le troisième modèle étudié est un modèle de régression. On considère des couples d'observations $(Y_i,X_i)$ indépendants, les v.a. $X_i$ sont i.i.d. de loi connue et on suppose que la fonction de répartition de la loi de $Y$ conditionnellement à $X$ est de type Pareto, avec une fonction à variation lente et un index $gamma$ qui dépendent de $X$. On fait l'hypothèse que la fonction $gamma$ a une forme quelconque mais connue, qui dépend d'un paramètre $\
Doctorat en sciences, Orientation statistique
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
20

Kefi, Jihène. "Analyse mathématique et numérique de modèles quantiques pour les semiconducteurs." Toulouse 3, 2003. http://www.theses.fr/2003TOU30186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cartailler, Jérôme. "Asymptotic of Poisson-Nernst-Planck equations and application to the voltage distribution in cellular micro-domains." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066297/document.

Full text
Abstract:
Dans cette thèse j’étudie l’impact de la géométrie de micro et nano-domaines biologiques sur les propriétés d'électrodiffusion, ceci à l'aide des équations aux dérivées partielles de Poisson-Nernst-Planck. Je considère des domaines non-triviaux ayant une forme cuspide ou elliptique. Mon objectif est de développer des modèles ainsi que des méthodes mathématiques afin d'étudier les caractéristiques électriques de ces nano/micro-domaines, et ainsi mieux comprendre comment les signaux électriques sont modulés à ces échelles. Dans la première partie j’étudie le voltage à l'équilibre pour un électrolyte dans un domaine borné, et ayant un fort excès de charges positives. Je montre que le premier temps de sortie dans une boule chargée dépend de la surface et non du volume. J’étudie ensuite la géométrie composées d'une boule à laquelle est attachée un domaine cuspide. Je construis ensuite une solution asymptotique pour le voltage dans les cas 2D et 3D et je montre qu’ils sont donnés au premier ordre par la même expression. Enfin, j’obtiens la même conclusion en considérant une géométrie formée d'une ellipse, dont je construis une solution asymptotique du voltage en 2D et 3D. La seconde partie porte sur la modélisation de la compartimentalisation électrique des épines dendritiques. A partir de simulations numériques, je mets en évidence le lien entre la polarisation de concentration dans l'épine et sa géométrie. Je compare ensuite mon modèle à des données de microscopie. Je développe une méthode de déconvolution pour extraire la dynamique rapide du voltage à partir des données de microscopie. Enfin j’estime la résistance du cou et montre que celle-ci ne suit pas la loi d'Ohm
In this PhD I study how electro-diffusion within biological micro and nano-domains is affected by their shapes using the Poisson-Nernst-Planck (PNP) partial differential equations. I consider non-trivial shapes such as domains with cusp and ellipses. Our goal is to develop models, as well as mathematical tools, to study the electrical properties of micro and nano-domains, to understand better how electrical neuronal signaling is regulated at those scales. In the first part I estimate the steady-state voltage inside an electrolyte confined in a bounded domain, within which we assume an excess of positive charge. I show the mean first passage time in a charged ball depends on the surface and not on the volume. I further study a geometry composed of a ball with an attached cusp-shaped domain. I construct an asymptotic solution for the voltage in 2D and 3D and I show that to leading order expressions for the voltage in 2D and 3D are identical. Finally, I obtain similar conclusion considering an elliptical-shaped domain for which I construct an asymptotic solution for the voltage in 2D and 3D. In the second part, I model the electrical compartmentalization in dendritic spines. Based on numerical simulations, I show how spines non-cylindrical geometry leads to concentration polarization effects. I then compare my model to experimental data of microscopy imaging. I develop a deconvolution method to recover the fast voltage dynamic from the data. I estimate the neck resistance, and we found that, contrary to Ohm's law, the spine neck resistance can be inversely proportional to its radius
APA, Harvard, Vancouver, ISO, and other styles
22

SADEFO, KAMDEM Jules. "Méthodes analytiques pour le Risque des Portefeuilles Financiers." Phd thesis, Université de Reims - Champagne Ardenne, 2004. http://tel.archives-ouvertes.fr/tel-00009187.

Full text
Abstract:
Dans cette thèse, on propose des méthodes analytiques ou numériques pour l'estimation de la VaR ou l'Expected Shortfall des portefeuilles linéaires, quadratiques, lorsque le vecteur des facteurs de risques suit un mélange convexe de distributions elliptiques. Aussi, on introduit pour la prémière fois la notion de "portefeuille quadratique" d'actifs de bases (ie. actions).
APA, Harvard, Vancouver, ISO, and other styles
23

Franceschi, Sandro. "Approche analytique pour le mouvement brownien réfléchi dans des cônes." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4046/document.

Full text
Abstract:
Le mouvement Brownien réfléchi de manière oblique dans le quadrant, introduit par Harrison, Reiman, Varadhan et Williams dans les années 80, est un objet largement analysé dans la littérature probabiliste. Cette thèse, qui présente l’étude complète de la mesure invariante de ce processus dans tous les cônes du plan, a pour objectif plus global d’étendre au cadre continu une méthode analytique développée initialement pour les marches aléatoires dans le quart de plan par Fayolle, Iasnogorodski et Malyshev dans les années 70. Cette approche est basée sur des équations fonctionnelles, reliant des fonctions génératrices dans le cas discret et des transformées de Laplace dans le cas continu. Ces équations permettent de déterminer et de résoudre des problèmes frontière satisfaits par ces fonctions génératrices. Dans le cas récurrent, cela permet de calculer explicitement la mesure invariante du processus avec rebonds orthogonaux, dans le chapitre 2, et avec rebonds quelconques, dans le chapitre 3. Les transformées de Laplace des mesures invariantes sont prolongées analytiquement sur une surface de Riemann induite par le noyau de l’équation fonctionnelle. L’étude des singularités et l’application de méthodes du point col sur cette surface permettent de déterminer l’asymptotique complète de la mesure invariante selon toutes les directions dans le chapitre 4
Obliquely reflected Brownian motion in the quadrant, introduced by Harrison, Reiman, Varadhan and Williams in the eighties, has been studied a lot in the probabilistic literature. This thesis, which presents the complete study of the invariant measure of this process in all the cones of the plan, has for overall aim to extend to the continuous framework an analytic method initially developped for random walks in the quarter plane by Fayolle, Iasnogorodski and Malyshev in the seventies. This approach is based on functional equations which link generating functions in the discrete case and Laplace transform in the continuous case. These equations allow to determine and to solve boundary value problems satisfied by these generating functions. In the recurrent case, it permits to compute explicitly the invariant measure of the process with orthogonal reflexions, in the chapter 2, and with any reflexions, in the chapter 3. The Laplace transform of the invariant measure is analytically extended to a Riemann surface induced by the kernel of the functional equation. The study of singularities and the use of saddle point methods on this surface allows to determine the full asymptotics of the invariant measure along every directions in the chapter 4
APA, Harvard, Vancouver, ISO, and other styles
24

Attouch, Mohammed Kadi. "Estimation robuste de la fonction de régression pour des variables fonctionnelles." Littoral, 2009. http://www.theses.fr/2009DUNK0227.

Full text
Abstract:
La régression robuste est une analyse de régression possédant la capacité d'être relativement insensible aux larges déviations dues à certaines observations aberrantes. Dans ce cadre, on se propose dans cette thèse d'étudier l'estimation robuste de la fonction de régression, dans le cas où les observations sont à la fois indépendantes, fortement mélangeantes et la co-variable est fonctionnelle. Dans un premier temps, on considère une suite d'observations indépendantes identiquement distribuées. Dans ce contexte, nous établissons la normalité asymptotique d'une famille d'estimateurs robuste de pondération basée sur la méthode du noyau. A titre illustratif, notre résultat est appliqué à la discrimination des courbes, à la prévision des séries temporelles, et à la construction d'un intervalle de confiance. Dans un second temps, nous supposons que les observations sont fortement mélangeantes, et nous établissons la vitesse de convergence presque complète ponctuelle et uniforme de cette famille d'estimateurs ainsi que la normalité asymptotique. Notons, que les axes structurels du sujet, à savoir la "dimensionnalité" et la corrélation des observations, la "dimensionnalité" et la robustesse du modèle, sont bien exploités dans cette étude. De plus, la propriété de la concentration de la mesure de probabilité de la variable fonctionnelle dans des petites boules est utilisée, cette mesure de concentration permet sous certaines hypothèses de proposer une solution originale au problème du fléau de la dimension et ainsi généraliser les résultats déjà obtenus dans le cadre multi varié. Pour illustrer l'extension et l'apport de notre travail, nous explicitons dans des exemples comment nos résultats peuvent être appliqués aux problèmes non standard de la statistique non-paramétrique tel que la prévision de série temporelles fonctionnelles. Nos méthodes sont appliquées à des données réelles telles que l'économie et l'astronomie
The robust regression is an analysis of regression with capacity to be relatively insensitive to the large deviations due to some outliers observations. Within this framework, one proposes in this thesis studied the robust estimate of the function of regression, if the observations are at the same time independent, strongly mixing and the covariate is functional. Initially, on considers a succession of identically distributed independent observations. In this context, we establish the asymptotic normality of a robust family of estimators based on the kernel method. With title illustrative, our result is applied to the discrimination of the curves, the forecast time series, and to the construction of a confidence interval. In the second time, we suppose that the observations are strongly mixing, and we establish the rate of specific almost complete convergence and uniform of this family of estimators as well as asymptotic normality. Let us note, that the axes structural of the subject, namely “dimensionality” and the correlation of the observations, “dimensionality” and the robustness of the model, are well exploited in this study. Moreover, the property of the concentration of the measure of probability of the functional variable in small balls is used, this measure of concentration allows under some assumptions to propose an original solution to the problem of the curse of dimensionality and thus to generalize the results already obtaines in the multivariate framework. To illustrate the extension and the contribution of our work, we show in some examples how our results can be applied to the nonstandard problems of the non-parametric statistics such as the forecast of functional time series. Our methods are applied to real data such as the economy and astronomy
APA, Harvard, Vancouver, ISO, and other styles
25

Monavon, Arnault. "Etude d'une couche limite instationnaire sur une paroi déformable." Paris 6, 1986. http://www.theses.fr/1986PA066369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bonnéry, Daniel. "Propriétés asymptotiques de la distribution d'un échantillon dans le cas d'un plan de sondage informatif." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00658990.

Full text
Abstract:
Étant donné un modèle de super-population (des variables aléatoires sont générées indépendamment et selon une même loi initiale sur une population) et un plan de sondage informatif, une loi de probabilité limite et une densité de probabilité limite des observations sur l'échantillon sont définies correspondant à des tailles de population et d'échantillon tendant vers l'infini. Le processus aléatoire de sélection peut induire une dépendance entre les observations sélectionnés. Un cadre asymptotique et des conditions faibles sur le processus de sélection sont donnés, sous lesquels les propriétés asymptotiques classiques sont conservées malgré la dépendance des données : la convergence uniforme de la fonction de répartition empirique. Par ailleurs, nous donnons la vitesse de convergence de l'estimateur à noyau de la densité vers la densité limite de l'échantillon. Ces résultats constituent des indications selon lesquelles il est parfois possible de considérer que les réalisations sur l'échantillon sont id et suivent approximativement la densité limite définie, notamment dans une perspective d'inférence sur le modèle de super-population. Par exemple, étant donné un modèle paramétrique on peut définir la vraisemblance approchée de l'échantillon comme produit de densités limites et un estimateur de maximum de vraisemblance approchée, dont on établit la normalité asymptotique . La dernière partie traite de tirage équilibré : des algorithmes de calcul de probabilités d'inclusion minimisant une approximation de la variance de l'estimateur de Horvitz-Thompson d'un total sont proposés.
APA, Harvard, Vancouver, ISO, and other styles
27

Lopez, Olivier. "Réduction de dimension en présence de données censurées." Phd thesis, Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00195261.

Full text
Abstract:
Nous considérons des modèles de régression où la variable expliquée est censurée à droite aléatoirement. Nous proposons de nouveaux estimateurs de la fonction de régression dans des modèles paramétriques, et nous proposons une procédure de test non paramétrique d'adéquation à ces modèles. Nous prolongeons ces méthodes à l'étude du modèle semi-paramétrique "single-index", généralisant ainsi des techniques de réduction de dimension utilisées en l'absence de censure. Nous nous penchons tout d'abord sur le cas d'un modèle où la variable de censure est indépendante de la variable expliquée ainsi que des variables explicatives. Nous travaillons dans un second temps dans un cadre moins restrictif où la variable expliquée et la censure sont indépendantes conditionnellement aux variables explicatives. Une difficulté spécifique à ce dernier type de modèle tient en l'impossibilité des techniques actuelles à estimer une espérance conditionnelle (de façon paramétrique ou non) en présence de plus d'une
variable explicative. Nous développons une nouvelle approche de réduction de la dimension afin de résoudre ce problème.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Li. "Problèmes Statistiques pour les EDS et les EDS Rétrogrades." Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-00808623.

Full text
Abstract:
Nous considérons deux problèmes. Le premier est la construction des tests d'ajustement (goodness-of-fit) pour les modèles de processus de diffusion ergodique. Nous considérons d'abord le cas où le processus sous l'hypothèse nulle appartient à une famille paramétrique. Nous étudions les tests de type Cramer-von Mises et Kolmogorov- Smirnov. Le paramètre inconnu est estimé par l'estimateur de maximum de vraisemblance ou l'estimateur de distance minimale. Nous construisons alors les tests basés sur l'estimateur du temps local de la densité invariante, et sur la fonction de répartition empirique. Nous montrons alors que les statistiques de ces deux types de test convergent tous vers des limites qui ne dépendent pas du paramètre inconnu. Par conséquent, ces tests sont appelés asymptotically parameter free. Ensuite, nous considérons l'hypothèse simple. Nous étudions donc le test du khi-deux. Nous montrons que la limite de la statistique ne dépend pas de la dérive, ainsi on dit que le test est asymptotically distribution free. Par ailleurs, nous étudions également la puissance du test du khi-deux. En outre, ces tests sont consistants. Nous traitons ensuite le deuxième problème : l'approximation des équations différentielles stochastiques rétrogrades. Supposons que l'on observe un processus de diffusion satisfaisant à une équation différentielle stochastique, où la dérive dépend du paramètre inconnu. Nous estimons premièrement le paramètre inconnu et après nous construisons un couple de processus tel que la valeur finale de l'un est une fonction de la valeur finale du processus de diffusion donné. Par la suite, nous montrons que, lorsque le coefficient de diffusion est petit, le couple de processus se rapproche de la solution d'une équations différentielles stochastiques rétrograde. A la fin, nous prouvons que cette approximation est asymptotiquement efficace.
APA, Harvard, Vancouver, ISO, and other styles
29

Ben, Abdeddaiem Maroua. "Tests d'ajustement pour des processus stochastiques dans le cas de l'hypothèse nulle paramétrique." Thesis, Le Mans, 2016. http://www.theses.fr/2016LEMA1016/document.

Full text
Abstract:
Ce travail est consacré au problème de construction des tests d'ajustement dans le cas des processus stochastiques observés en temps continu. Comme modèles d'observations, nous considérons les processus de diffusion avec « petit bruit » et ergodique et le processus de Poisson non homogène. Sous l'hypothèse nulle, nous traitons le cas où chaque modèle dépend d'un paramètre inconnu unidimensionnel et nous proposons l'estimateur de distance minimale pour ce paramètre. Notre but est la construction des tests d'ajustement « asymptotically distribution free » (ADF) de niveau asymtotique α ϵ (0,1) dans le cas de cette hypothèse paramétrique pour les modèles traités. Nous montrons alors que la limite de chaque statistique étudiée ne dépend ni du modèle ni du paramètre inconnu. Les tests d'ajustement basés sur ces statistiques sont donc ADF. L'objectif principal de ce travail est la construction d'une transformation linéaire spéciale. En particulier, nous résolvons l'équation de Fredholm du second type avec le noyau dégénéré. Sa solution nous permet de construire la transformation linéaire désirée. Ensuite, nous montrons que l'application de cette transformation aux statistiques de base étudiées dans chaque modèle nous aide à introduire des statistiques ayant la même limite (l'intégrale du carrée du processus de Wiener). Cette dernière est « distribution free » vu qu'elle ne dépend ni du modèle ni du paramètre inconnu. Par conséquent, nous proposons des tests d'ajustement ADF en se basant sur cette transformation linéaire pour les processus de diffusion avec « petit bruit » et ergodique et le processus de Poisson non homogène
This work is devoted to the problem of the construction of several goodness of-fit (GoF) tests in the case of somestochastic processes observed in continuous time. As models of observations, we take "small noise" and ergodic diffusionprocesses and an inhomogeneous Poisson process. Under the null hypothesis, we treat the case where each model depends on an unknown one-dimensional parameter and we consider the minimum distance estimator for this parameter. Our goal is to propose "asymptotically distribution free" (ADF) GoF tests of asymptotic size α ϵ (0,1) in the case of the parametric null hypotheses for the considered models. Indeed, we show that the limit of each studied statistic does not depend on the model and the unknown parameter. Therefore, the tests based on these statistics are ADF.The main purpose of this work is to construct a special linear transformation. In particular, we solve Fredholm equation ofthe second kind with degenerated kernel. Its solution gives us the desired linear transformation. Next, we show that theapplication of this transformation to the basic statistics allows us to introduce statistics with the same limit (the integral of the square of the Wiener process). The latter is "distribution free" because it does not depend on the models and the unknown parameter. Therefore, we construct the ADF GoF tests which are based on this linear transformation for the diffusion ("small noise" and ergodic) and inhomogeneous Poisson processes
APA, Harvard, Vancouver, ISO, and other styles
30

Abbes, Samy. "Modèle probabiliste de systèmes distribués et concurrents. Théorèmes limite et application à l'estimation statistique de paramètres." Phd thesis, Université Rennes 1, 2004. http://tel.archives-ouvertes.fr/tel-00007150.

Full text
Abstract:
Pour la gestion de grands systèmes distribués (réseaux de
télécommunications par exemple) il est utile d'étudier des
modèles de concurrence sous la sémantique de traces. Dans
cette optique, on propose une extension probabiliste des
structures d'événements et des réseaux de Petri 1-bornés
(réseaux markoviens).
On prouve un propriété de Markov forte pour ces modèles,
et on donne des applications à la récurrence des réseaux.
On montre une Loi forte des grands nombres pour
les réseaux récurrents et suffisement synchrones,
avec applications a l'estimation statistique de
paramètres locaux.
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Min. "Generalized stable distributions and free stable distributions." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I032/document.

Full text
Abstract:
Cette thèse porte sur les lois stables réelles au sens large et comprend deux parties indépendantes. La première partie concerne les lois stables généralisées introduites par Schneider dans un contexte physique et étudiées ensuite par Pakes. Elles sont définies par une équation différentielle fractionnaire dont on caractérise ici l'existence et l'unicité des solutions densité à l'aide de deux paramètres positifs, l'un de stabilité et l'autre de biais. On montre ensuite diverses identités en loi pour les variables aléatoires sous-jacentes. On étudie le comportement asymptotique précis de la densité aux deux extrémités du support. Dans certains cas, on donne des représentations exactes de ces densités comme fonctions de Fox. Enfin, on résout entièrement les questions ouvertes autour de l'infinie divisibilité des lois stables généralisées. La seconde partie, plus longue, porte sur l'analyse classique des lois alpha-stables libres réelles. Introduites par Bercovici et Pata, ces lois ont ensuite étudiées par Biane, Demni et Hasebe-Kuznetsov sous divers points de vue. Nous montrons qu'elles sont classiquement infiniment divisibles pour alpha inférieur ou égal à 1 et qu'elles appartiennent à la classe de Thorin étendue pour alpha inférieur ou égal à 3/4. La mesure de Lévy est calculée explicitement pour alpha = 1 et ce calcul entraîne que les lois 1-stables libres n'appartiennent pas à la classe de Thorin, sauf dans le cas de la loi de Cauchy avec dérive. Dans le cas symétrique, nous montrons que les densités alpha-stables libres ne sont pas infiniment divisibles quand alpha supérieur à 1. Dans le cas de signe constant nous montrons que les densités stables libres ont une courbe en baleine, autrement dit que leurs dérivées successives ne s'annulent qu'une seule fois sur leurs supports, ce qui constitue un raffinement de l'unimodalité et fait écho à la courbe en cloche des densités stables classiques récemment montrée rigoureusement. Nous établissons enfin plusieurs propriétés précises des densités stables libres spectralement de signe constant, parmi lesquelles une analyse détaillée de la variable aléatoire de Kanter, des expansions asymptotiques complètes en zéro, ainsi que plusieurs propriétés intrinsèques des courbes en baleine. Nous montrons enfin une nouvelle identité en loi pour l'algèbre Beta-Gamma, diverses propriétés d'ordre stochastique et nous étudions le problème classique de Van Dantzig pour la loi semi-circulaire généralisée
This thesis deals with real stable laws in the broad sense and consists of two independent parts. The first part concerns the generalized stable laws introduced by Schneider in a physical context and then studied by Pakes. They are defined by a fractional differential equation, whose existence and uniqueness of the density solutions is here characterized via two positive parameters, a stability parameter and a bias parameter. We then show various identities in law for the underlying random variables. The precise asymptotic behaviour of the density at both ends of the support is investigated. In some cases, exact representations as Fox functions of these densities are given. Finally, we solve entirely the open questions on the infinite divisibility of the generalized stable laws. The second and longer part deals with the classical analysis of the free alpha-stable laws. Introduced by Bercovici and Pata, these laws were then studied by Biane, Demni and Hasebe-Kuznetsov, from various points of view. We show that they are classically infinitely divisible for alpha less than or equal to 1 and that they belong to the extended Thorin class extended for alpha less than or equal to 3/4. The Lévy measure is explicitly computed for alpha = 1, showing that free 1-stable distributions are not in the Thorin class except in the drifted Cauchy case. In the symmetric case we show that the free alpha-stable densities are not infinitely divisible when alpha larger than 1. In the one-sided case we prove, refining unimodality, that the densities are whale-shaped, that is their successive derivatives vanish exactly once on their support. This echoes the bell shape property of the classical stable densities recently rigorously shown. We also derive several fine properties of spectrally one-sided free stable densities, including a detailed analysis of the Kanter random variable, complete asymptotic expansions at zero, and several intrinsic features of whale-shaped functions. Finally, we display a new identity in law for the Beta-Gamma algebra, various stochastic order properties, and we study the classical Van Danzig problem for the generalized semi-circular law
APA, Harvard, Vancouver, ISO, and other styles
32

Godinho, Pereira David. "Contribution à l'étude des équations de Boltzmann, Kac et Keller-Segel à l'aide d'équations différentielles stochastiques non linéaires." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00975091.

Full text
Abstract:
L'objet de cette thèse est l'étude de l'asymptotique des collisions rasantes pour les équations de Kac et de Boltzmann ainsi que l'étude de la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique à l'aide d'équations différentielles stochastiques non linéaires. Le premier chapitre est consacré 'a l'équation de Kac avec un potentiel Maxwellien. Nous commençons par donner une vitesse de convergence explicite (que l'on pense être optimale) dans le cadre de l'asymptotique des collisions rasantes. Puis nous approchons la solution de l'équation de Kac dans le cadre général, ce qui nous permet de montrer la propagation du chaos pour un système de particules vers cette dernière de manière quantitative. Dans le deuxième chapitre, nous étudions l'asymptotique des collisions rasantes pour l'équation de Boltzmann avec des potentiels mous et de Coulomb. Nous donnons là encore des vitesses de convergence explicites (mais non optimales).Enfin dans le troisième et dernier chapitre, nous montrons la propagation du chaos pour l'équation de Keller-Segel dans un cadre sous-critique. Pour cela, nous utilisons des arguments de compacité (tension du système de particules)
APA, Harvard, Vancouver, ISO, and other styles
33

Durieu, Olivier. "Comportements Asymptotiques des Processus Stationnaires et des Processus Empiriques dans des Systèmes Dynamiques." Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00346539.

Full text
Abstract:
Cette thèse se consacre à l'étude de théorèmes limites pour des suites de variables aléatoires stationnaires (en particulier issues d'un système dynamique). Nous nous concentrons sur deux résultats importants, notamment par leurs applications en statistiques. Nous étudions tout d'abord le comportement limite des sommes de variables aléatoires, plus précisément le théorème limite central et son principe d'invariance. Ensuite nous considérons le principe d'invariance pour les processus empiriques.
Dans le cadre du principe d'invariance faible de Donsker, plusieurs résultats s'obtiennent au travers d'approximations par des martingales et plus généralement par des critères projectifs. Nous comparons quatre de ces critères et montrons leur indépendance mutuelle. Les critères étudiés sont la décomposition martingale-cobord (Gordin, 1969), la condition de Hannan (1979), le critère de Dedecker et Rio (2000) et
la condition de Maxwell et Woodroofe (2000).
En ce qui concerne le comportement asymptotique des processus empiriques, nous établissons un principe d'invariance dans le cas des automorphismes du tore. Cela permet de sortir du cadre hyperbolique connu et d'obtenir un premier résultat pour une transformation partiellement hyperbolique.
Nous proposons également une nouvelle approche, basée sur des méthodes d'opérateurs, permettant d'établir un principe d'invariance empirique. Cette méthode s'applique en particulier aux cas où l'on a de bonnes propriétés pour une classe de fonctions ne contenant pas les fonctions indicatrices. C'est en particulier le cas de certains systèmes dynamiques dont l'opérateur de transfert admet un trou spectral.
En dernier lieu, suivant une question de Burton et Denker (1987), nous nous intéressons à la classe des processus pour lesquels le théorème limite central a lieu. En référence au cadre des processus empiriques, nous étudions en particulier les suites de sommes partielles des itérées d'une fonction indicatrice.
APA, Harvard, Vancouver, ISO, and other styles
34

Berdah, Cathy. "Analyse theorique et experimentale du comportement mecanique fin d'assemblages colles : application a l'etude de leur vieillissement humide." Paris 6, 1988. http://www.theses.fr/1988PA066072.

Full text
Abstract:
Etude des proprietes mecaniques (champ de contraintes, etc. . . ) d'un assemblage colle a simple recouvrement sollicite a la traction. Determination des seuils d'amorcage et de propagation des microfissures par emission acoustique et etude du vieillissement humide sur le comportement mecanique de l'assemblage colle
APA, Harvard, Vancouver, ISO, and other styles
35

Servien, Rémi. "Estimation de régularité locale." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00730491.

Full text
Abstract:
L'objectif de cette thèse est d'étudier le comportement local d'une mesure de probabilité, notamment au travers d'un indice de régularité locale. Dans la première partie, nous établissons la normalité asymptotique de l'estimateur des kn plus proches voisins de la densité et de l'histogramme. Dans la deuxième, nous définissons un estimateur du mode sous des hypothèses affaiblies. Nous montrons que l'indice de régularité intervient dans ces deux problèmes. Enfin, nous construisons dans une troisième partie différents estimateurs pour l'indice de régularité à partir d'estimateurs de la fonction de répartition, dont nous réalisons une revue bibliographique.
APA, Harvard, Vancouver, ISO, and other styles
36

Sadek, Amr Fouad. "Estimation des processus markoviens avec application en fiabilité." Compiègne, 2003. http://www.theses.fr/2003COMP1466.

Full text
Abstract:
Les processus de Markov sont des outils puissants pour étudier la fiabilité des systèmes réparables. Le présent travail porte sur l'estimation non-paramétrique des grandeurs de la fiabilité dans des modèles markoviens en temps discret et continu. Nous définissons des estimateurs de la fiabilité, disponibilité, etc. Les propriétés asymptotiques des différents estimateurs sont étudiées: convergence uniforme forte et normalité. La construction des intervalles de confiance de ces grandeurs est également donnée. Des simulations numériques confirment les avantages de ces résultats par rapport aux estimateurs empiriques, particulièrement pour les échantillons de petite taille. Nous proposons également un estimateur de la loi stationnaire des processus semi-markoviens finis et étudions ses propriétés asymptotiques. Une autre application de ces résultats est présenté. Il s'agit d'un nouvel indice de qualité de vie et de son estimateur via les modèles markoviens en temps discret et continu
Markov processes are very relevant to study the reliability as an application to real world problems. Ln this thesis, two types of processes, Markov chains and Markov pro cesses are considered. We concern with the non-parametric estimation ofthe reliability and its measurements. We define estimators of reliability, availability, etc. The asymptotic properties of the proposed estimators are studied: strong uniform consistent and normality. Using the asymptotic properties results we construct the confidence intervals for reliability and its measurements. Illustrative examples are presented to explain the obtained results and to compare with the standard empirical estimators. The extension to the semi-Markovian processes relates to a point not Jet specifically discussed in the literature, the estimation of the stationary distribution of semi- Mar kovian processes. We propose a new index for quality of life and discuss it through discrete and continuous time Markov process mode
APA, Harvard, Vancouver, ISO, and other styles
37

Ahmad, Ali. "Contribution à l'économétrie des séries temporelles à valeurs entières." Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30059/document.

Full text
Abstract:
Dans cette thèse, nous étudions des modèles de moyennes conditionnelles de séries temporelles à valeurs entières. Tout d’abord, nous proposons l’estimateur de quasi maximum de vraisemblance de Poisson (EQMVP) pour les paramètres de la moyenne conditionnelle. Nous montrons que, sous des conditions générales de régularité, cet estimateur est consistant et asymptotiquement normal pour une grande classe de modèles. Étant donné que les paramètres de la moyenne conditionnelle de certains modèles sont positivement contraints, comme par exemple dans les modèles INAR (INteger-valued AutoRegressive) et les modèles INGARCH (INteger-valued Generalized AutoRegressive Conditional Heteroscedastic), nous étudions la distribution asymptotique de l’EQMVP lorsque le paramètre est sur le bord de l’espace des paramètres. En tenant compte de cette dernière situation, nous déduisons deux versions modifiées du test de Wald pour la significativité des paramètres et pour la moyenne conditionnelle constante. Par la suite, nous accordons une attention particulière au problème de validation des modèles des séries temporelles à valeurs entières en proposant un test portmanteau pour l’adéquation de l’ajustement. Nous dérivons la distribution jointe de l’EQMVP et des autocovariances résiduelles empiriques. Puis, nous déduisons la distribution asymptotique des autocovariances résiduelles estimées, et aussi la statistique du test. Enfin, nous proposons l’EQMVP pour estimer équation-par-équation (EpE) les paramètres de la moyenne conditionnelle des séries temporelles multivariées à valeurs entières. Nous présentons les hypothèses de régularité sous lesquelles l’EQMVP-EpE est consistant et asymptotiquement normal, et appliquons les résultats obtenus à plusieurs modèles des séries temporelles multivariées à valeurs entières
The framework of this PhD dissertation is the conditional mean count time seriesmodels. We propose the Poisson quasi-maximum likelihood estimator (PQMLE) for the conditional mean parameters. We show that, under quite general regularityconditions, this estimator is consistent and asymptotically normal for a wide classeof count time series models. Since the conditional mean parameters of some modelsare positively constrained, as, for example, in the integer-valued autoregressive (INAR) and in the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH), we study the asymptotic distribution of this estimator when the parameter lies at the boundary of the parameter space. We deduce a Waldtype test for the significance of the parameters and another Wald-type test for the constance of the conditional mean. Subsequently, we propose a robust and general goodness-of-fit test for the count time series models. We derive the joint distribution of the PQMLE and of the empirical residual autocovariances. Then, we deduce the asymptotic distribution of the estimated residual autocovariances and also of a portmanteau test. Finally, we propose the PQMLE for estimating, equation-by-equation (EbE), the conditional mean parameters of a multivariate time series of counts. By using slightly different assumptions from those given for PQMLE, we show the consistency and the asymptotic normality of this estimator for a considerable variety of multivariate count time series models
APA, Harvard, Vancouver, ISO, and other styles
38

Sbai, Youssef. "Analyse semi-classique des opérateurs périodiques perturbés." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0270/document.

Full text
Abstract:
Cette thèse traite de certaines propriétés spectrales de deux classes spécifiques des opérateurs périodiques. Nous nous intéressons tout d’abord à un modèle périodique perturbée par un opérateur dépendant d’un petit paramètre semi-classique. Nous obtenons alors le comportement asymptotique de la fonction du comptage des valeurs propres dans les gaps spectrales avec une estimation optimale du reste. Le second modèle étudié dans cette thèse est un modèle elliptique périodique d’ordre deux perturbée par un opérateur dépendant d’une grande constante de couplage. Nous donnons également la description de la fonction de compactage des valeurs propres lorsque la constante de couplage tend vers l’infini. La dernière partie de cette thèse discute l’étude du spectre discret de l’opérateur de Schrödinger avec un potentiel très oscillent dépendant d’un petit paramètre semi-classique
This Ph.D thesis deals with some spectral properties of two specific classes of two periodic operators. We are firstly interested in the model periodic perturbed by operator depending on a small semi-classical constant. We obtain an asymptotic behavior of the eigenvalue counting function in the spectral gaps with scharp remainder estimate. The second model studied in this thesis is a two-dimensional periodic elliptic second order opera-tor perturbed by operator depending on a large coupling constant. We also give the description of the counting function of eigenvalues when the coupling constant tends to infinity. The last part of this thesis highlights the study the spectrum of a Schrödinger operator perturbed by a fast oscillatingdecaying potential depending on a small parameter
APA, Harvard, Vancouver, ISO, and other styles
39

Riou-Durand, Lionel. "Theoretical contributions to Monte Carlo methods, and applications to Statistics." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLG006/document.

Full text
Abstract:
La première partie de cette thèse concerne l'inférence de modèles statistiques non normalisés. Nous étudions deux méthodes d'inférence basées sur de l'échantillonnage aléatoire : Monte-Carlo MLE (Geyer, 1994), et Noise Contrastive Estimation (Gutmann et Hyvarinen, 2010). Cette dernière méthode fut soutenue par une justification numérique d'une meilleure stabilité, mais aucun résultat théorique n'avait encore été prouvé. Nous prouvons que Noise Contrastive Estimation est plus robuste au choix de la distribution d'échantillonnage. Nous évaluons le gain de précision en fonction du budget computationnel. La deuxième partie de cette thèse concerne l'échantillonnage aléatoire approché pour les distributions de grande dimension. La performance de la plupart des méthodes d’échantillonnage se détériore rapidement lorsque la dimension augmente, mais plusieurs méthodes ont prouvé leur efficacité (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). Dans la continuité de certains travaux récents (Eberle et al., 2017 ; Cheng et al., 2018), nous étudions certaines discrétisations d’un processus connu sous le nom de kinetic Langevin diffusion. Nous établissons des vitesses de convergence explicites vers la distribution d'échantillonnage, qui ont une dépendance polynomiale en la dimension. Notre travail améliore et étend les résultats de Cheng et al. pour les densités log-concaves
The first part of this thesis concerns the inference of un-normalized statistical models. We study two methods of inference based on sampling, known as Monte-Carlo MLE (Geyer, 1994), and Noise Contrastive Estimation (Gutmann and Hyvarinen, 2010). The latter method was supported by numerical evidence of improved stability, but no theoretical results had yet been proven. We prove that Noise Contrastive Estimation is more robust to the choice of the sampling distribution. We assess the gain of accuracy depending on the computational budget. The second part of this thesis concerns approximate sampling for high dimensional distributions. The performance of most samplers deteriorates fast when the dimension increases, but several methods have proven their effectiveness (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). In the continuity of some recent works (Eberle et al., 2017; Cheng et al., 2018), we study some discretizations of the kinetic Langevin diffusion process and establish explicit rates of convergence towards the sampling distribution, that scales polynomially fast when the dimension increases. Our work improves and extends the results established by Cheng et al. for log-concave densities
APA, Harvard, Vancouver, ISO, and other styles
40

Leroy, Fanny. "Etude des délais de survenue des effets indésirables médicamenteux à partir des cas notifiés en pharmacovigilance : Problème de l'estimation d'une distribution en présence de données tronquées à droite." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01011262.

Full text
Abstract:
Ce travail de thèse porte sur l'estimation paramétrique du maximum de vraisemblance pour des données de survie tronquées à droite, lorsque les délais de troncature sont considérés déterministes. Il a été motivé par le problème de la modélisation des délais de survenue des effets indésirables médicamenteux à partir des bases de données de pharmacovigilance, constituées des cas notifiés. Les distributions exponentielle, de Weibull et log-logistique ont été explorées.Parfois le caractère tronqué à droite des données est ignoré et un estimateur naïf est utilisé à la place de l'estimateur pertinent. Une première étude de simulations a montré que, bien que ces deux estimateurs - naïf et basé sur la troncature à droite - puissent être positivement biaisés, le biais de l'estimateur basé sur la troncature est bien moindre que celui de l'estimateur naïf et il en va de même pour l'erreur quadratique moyenne. De plus, le biais et l'erreur quadratique moyenne de l'estimateur basé sur la troncature à droite diminuent nettement avec l'augmentation de la taille d'échantillon, ce qui n'est pas le cas de l'estimateur naïf. Les propriétés asymptotiques de l'estimateur paramétrique du maximum de vraisemblance ont été étudiées. Sous certaines conditions, suffisantes, cet estimateur est consistant et asymptotiquement normal. La matrice de covariance asymptotique a été détaillée. Quand le délai de survenue est modélisé par la loi exponentielle, une condition d'existence de l'estimation du maximum de vraisemblance, assurant ces conditions suffisantes, a été obtenue. Pour les deux autres lois, une condition d'existence de l'estimation du maximum de vraisemblance a été conjecturée.A partir des propriétés asymptotiques de cet estimateur paramétrique, les intervalles de confiance de type Wald et de la vraisemblance profilée ont été calculés. Une seconde étude de simulations a montré que la couverture des intervalles de confiance de type Wald pouvait être bien moindre que le niveau attendu en raison du biais de l'estimateur du paramètre de la distribution, d'un écart à la normalité et d'un biais de l'estimateur de la variance asymptotique. Dans ces cas-là, la couverture des intervalles de la vraisemblance profilée est meilleure.Quelques procédures d'adéquation adaptées aux données tronquées à droite ont été présentées. On distingue des procédures graphiques et des tests d'adéquation. Ces procédures permettent de vérifier l'adéquation des données aux différents modèles envisagés.Enfin, un jeu de données réelles constitué de 64 cas de lymphomes consécutifs à un traitement anti TNF-α issus de la base de pharmacovigilance française a été analysé, illustrant ainsi l'intérêt des méthodes développées. Bien que ces travaux aient été menés dans le cadre de la pharmacovigilance, les développements théoriques et les résultats des simulations peuvent être utilisés pour toute analyse rétrospective réalisée à partir d'un registre de cas, où les données sur un délai de survenue sont aussi tronquées à droite.
APA, Harvard, Vancouver, ISO, and other styles
41

Verdoit-Jarraya, Marion. "Caractérisation et modélisation de la dynamique spatiale et saisonnière de populations démersales et benthiques exploitées de la Mer Celtique." Paris 6, 2003. http://www.theses.fr/2003PA066596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Babykina, Evgénia. "Modélisation statistique d'événements récurrents. Exploration empirique des estimateurs, prise en compte d'une covariable temporelle et application aux défaillances des réseaux d'eau." Thesis, Bordeaux 2, 2010. http://www.theses.fr/2010BOR21750/document.

Full text
Abstract:
Dans le contexte de la modélisation aléatoire des événements récurrents, un modèle statistique particulier est exploré. Ce modèle est fondé sur la théorie des processus de comptage et est construit dans le cadre d'analyse de défaillances dans les réseaux d'eau. Dans ce domaine nous disposons de données sur de nombreux systèmes observés durant une certaine période de temps. Les systèmes étant posés à des instants différents, leur âge est utilisé en tant qu'échelle temporelle dans la modélisation. Le modèle tient compte de l'historique incomplet d'événements, du vieillissement des systèmes, de l'impact négatif des défaillances précédentes sur l'état des systèmes et des covariables. Le modèle est positionné parmi d'autres approches visant à l'analyse d'événements récurrents utilisées en biostatistique et en fiabilité. Les paramètres du modèle sont estimés par la méthode du Maximum de Vraisemblance (MV). Une covariable dépendante du temps est intégrée au modèle. Il est supposé qu'elle est extérieure au processus de défaillance et constante par morceaux. Des méthodes heuristiques sont proposées afin de tenir compte de cette covariable lorsqu'elle n'est pas observée. Des méthodes de simulation de données artificielles et des estimations en présence de la covariable temporelle sont proposées. Les propriétés de l'estimateur (la normalité, le biais, la variance) sont étudiées empiriquement par la méthode de Monte Carlo. L'accent est mis sur la présence de deux directions asymptotiques : asymptotique en nombre de systèmes n et asymptotique en durée d'observation T. Le comportement asymptotique de l'estimateur MV constaté empiriquement est conforme aux résultats théoriques classiques. Il s'agit de l'asymptotique en n. Le comportement T-asymptotique constaté empiriquement n'est pas classique. L'analyse montre également que les deux directions asymptotiques n et T peuvent être combinées en une unique direction : le nombre d'événements observés. Cela concerne les paramètres classiques du modèle (les coefficients associés aux covariables fixes et le paramètre caractérisant le vieillissement des systèmes). Ce n'est en revanche pas le cas pour le coefficient associé à la covariable temporelle et pour le paramètre caractérisant l'impact négatif des défaillances précédentes sur le comportement futur du système. La méthodologie développée est appliquée à l'analyse des défaillances des réseaux d'eau. L'influence des variations climatiques sur l'intensité de défaillance est prise en compte par une covariable dépendante du temps. Les résultats montrent globalement une amélioration des prédictions du comportement futur du processus lorsque la covariable temporelle est incluse dans le modèle
In the context of stochastic modeling of recurrent events, a particular model is explored. This model is based on the counting process theory and is built to analyze failures in water distribution networks. In this domain the data on a large number of systems observed during a certain time period are available. Since the systems are installed at different dates, their age is used as a time scale in modeling. The model accounts for incomplete event history, aging of systems, negative impact of previous failures on the state of systems and for covariates.The model is situated among other approaches to analyze the recurrent events, used in biostatistics and in reliability. The model parameters are estimated by the Maximum Likelihood method (ML). A method to integrate a time-dependent covariate into the model is developed. The time-dependent covariate is assumed to be external to the failure process and to be piecewise constant. Heuristic methods are proposed to account for influence of this covariate when it is not observed. Methods for data simulation and for estimations in presence of the time-dependent covariate are proposed. A Monte Carlo study is carried out to empirically assess the ML estimator's properties (normality, bias, variance). The study is focused on the doubly-asymptotic nature of data: asymptotic in terms of the number of systems n and in terms of the duration of observation T. The asymptotic behavior of the ML estimator, assessed empirically agrees with the classical theoretical results for n-asymptotic behavior. The T-asymptotics appears to be less typical. It is also revealed that the two asymptotic directions, n and T can be combined into one unique direction: the number of observed events. This concerns the classical model parameters (the coefficients associated to fixed covariates, the parameter characterizing aging of systems). The presence of one unique asymptotic direction is not obvious for the time-dependent covariate coefficient and for a parameter characterizing the negative impact of previous events on the future behavior of a system.The developed methodology is applied to the analysis of failures of water networks. The influence of climatic variations on failure intensity is assessed by a time-dependent covariate. The results show a global improvement in predictions of future behavior of the process when the time-dependent covariate is included into the model
APA, Harvard, Vancouver, ISO, and other styles
43

Lapierre, Élisabeth. "Distribution asymptotique des valeurs propres du laplacien sur le triangle équilatéral." Thèse, 2008. http://hdl.handle.net/1866/7882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Balabdaoui, Fadoua. "Estimation non-paramétrique d'une densité k-monotone: Une nouvelle théorie de distribution asymptotique." Phd thesis, 2004. http://tel.archives-ouvertes.fr/tel-00011980.

Full text
Abstract:
Nous considérons l'estimation non-paramétrique d'une densité k-monotone définie sur (0,∞), pour un entier k > 0 donné, via les méthodes de maximum de vraisemblance et des moindres carrés qu'on note respectivement par MLE et LSE.

Dans l'introduction, nous présentons tout d'abord la motivation principale derrière ce problème et nous faisons l'effort d'inclure dans le cadre général de notre travail les résultats asymptotiques qui étaient déjà établis pour les cas spéciaux k=1 et k=2.

Ensuite, nous nous penchons sur l'étude des propriétés des MLE et LSE d'une densité k-monotone g_0 dans le cas où on dispose de n observations indépendantes générées de g_0. Notre étude asymptotique est locale, c'est-à-dire que nous nous intéressons uniquement aux propriétés asymptotiques des estimateurs et de leur dérivées à un point fixe, x_0. Sous certaines hypothèses que nous précisons, nous établissons d'abord les bornes inférieures minimax pour l'estimation des dérivées g^{(j)}_0(x_0), j=0,...,k-1. Les bornes obtenues indiquent que n^{-(k-j)/(2k+1)} est la vitesse de convergence optimale de n'importe quel estimateur non-paramétrique de g^{(j)}_0(x_0). Sous les mêmes hypothèses et si une certaine conjecture est vraie, nous démontrons que cette vitesse optimale est atteinte dans le cas des MLE et LSE.

Pour compléter la théorie asymptotique des estimateurs et de leur dérivées au point x_0, nous passons à la dérivation de leurs distributions limites lorsque la taille de l'échantillon n tend vers l'infini. Il s'avère que ces distributions dépendent d'un processus stochastique bien particulier défini sur l'ensemble des réels R. On note ce processus par H_k Le 3ème chapitre est consacré essentiellement à l'existence et à l'unicité de H_k, ainsi qu'à sa caractérisation. Nous démontrons que si Y_k est la primitive (k-1)-ème d'un mouvement Brownien + k!/(2k)! t^{2k}, alors H_k reste au-dessus (au-dessous) de Y_k lorsque k est pair (impair). Un simple changement de variable suffit pour reconnaître que nos résultats comprennent les cas spéciaux k=1 et k=2 où le problème se réduit à l'estimation d'une densité décroissante et d'une densité décroissante et convexe respectivement. Pour ces cas-là, la théorie asymptotique des MLE et LES a été déjà établie.

L'aspect algorithmique fait l'objet du 4ème chapitre. Les algorithmes de Splines itératifs (Iterative Spline algorithms) sont développés et implémentés afin de calculer les estimateurs et aussi pour obtenir une approximation du processus limite sur n'importe quel compact dans R. Ces algorithmes exploitent essentiellement la structure 'splineuse' des MLE, LSE et H_k, et se basent ainsi sur la suppression et l'addition itératives des noeuds de certains Splines aléatoires.
APA, Harvard, Vancouver, ISO, and other styles
45

Persechino, Roberto. "Distribution asymptotique du nombre de diviseurs premiers distincts inférieurs ou égaux à m." Thèse, 2011. http://hdl.handle.net/1866/5263.

Full text
Abstract:
Le sujet principal de ce mémoire est l'étude de la distribution asymptotique de la fonction f_m qui compte le nombre de diviseurs premiers distincts parmi les nombres premiers $p_1,...,p_m$. Au premier chapitre, nous présentons les sept résultats qui seront démontrés au chapitre 4. Parmi ceux-ci figurent l'analogue du théorème d'Erdos-Kac et un résultat sur les grandes déviations. Au second chapitre, nous définissons les espaces de probabilités qui serviront à calculer les probabilités asymptotiques des événements considérés, et éventuellement à calculer les densités qui leur correspondent. Le troisième chapitre est la partie centrale du mémoire. On y définit la promenade aléatoire qui, une fois normalisée, convergera vers le mouvement brownien. De là, découleront les résultats qui formeront la base des démonstrations de ceux chapitre 1.
The main topic of this masters thesis is the study of the asymptotic distribution of the fonction f_m which counts the number of distinct prime divisors among the first $m$ prime numbers, i.e. $p_1,...,p_m$. The first chapter provides the seven main results which will later on be proved in chapter 4. Among these we find the analogue of the Erdos-Kac central limit theorem and a result on large deviations. In the following chapter, we define several probability spaces on which we will calculate asymptotic probabilities of specific events. These will become necessary for calculating their corresponding densities. The third chapter is the main part of this masters thesis. In it, we introduce a random walk which, when suitably normalized, will converge to the Brownian motion. We will then obtain results which will form the basis of the proofs of those of chapiter 1.
APA, Harvard, Vancouver, ISO, and other styles
46

Najem, El-Halla. "Processus de Poisson généralisé autorégressif d'ordre 1." Thèse, 2004. http://hdl.handle.net/1866/14619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ouimet, Frédéric. "Extremes of log-correlated random fields and the Riemann zeta function, and some asymptotic results for various estimators in statistics." Thèse, 2019. http://hdl.handle.net/1866/22667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography