Academic literature on the topic 'Distribution de probabilité'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distribution de probabilité.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Distribution de probabilité"
Benjoudi, H., and P. Hubert. "À propos de la distribution statistique des cumuls pluviométriques annuels. Faut-il en finir avec la normalité?" Revue des sciences de l'eau 11, no. 4 (April 12, 2005): 617–30. http://dx.doi.org/10.7202/705324ar.
Full textDufresne, Par François. "Distributions stationnaires d'un système bonus–malus et probabilité de ruine." ASTIN Bulletin 18, no. 1 (April 1988): 31–46. http://dx.doi.org/10.2143/ast.18.1.2014958.
Full textLang, M., P. Rasmussen, G. Oberlin, and B. Bobée. "Échantillonnage par valeurs supérieures à un seuil : modélisation des occurrences par la méthode du renouvellement." Revue des sciences de l'eau 10, no. 3 (April 12, 2005): 279–320. http://dx.doi.org/10.7202/705281ar.
Full textBattail, Gérard. "Le décodage pondere en tant que procédé de réévaluation d’une distribution de probabilité." Annales des Télécommunications 42, no. 9-10 (September 1987): 499–509. http://dx.doi.org/10.1007/bf02994981.
Full textRosbjerc, D., J. Corréa, and P. F. Rasmussen. "Justification des formules de probabilité empirique basées sur la médiane de la statistique d'ordre." Revue des sciences de l'eau 5, no. 4 (April 12, 2005): 529–40. http://dx.doi.org/10.7202/705145ar.
Full textEvans, Tom A. "The Impact of Representation Per Capita on the Distribution of Federal Spending and Income Taxes." Canadian Journal of Political Science 38, no. 2 (June 2005): 263–85. http://dx.doi.org/10.1017/s0008423905040631.
Full textHansen, C., and P. Fourcade. "La densité radiale de probabilité de présence : une description probabiliste de la distribution du centre des pressions lors du maintien de l’équilibre postural." Neurophysiologie Clinique/Clinical Neurophysiology 42, no. 6 (December 2012): 391. http://dx.doi.org/10.1016/j.neucli.2012.09.020.
Full textPicard, Philippe, and Claude Lefèvre. "Probabilité de ruine éventuelle dans un modèle de risque à temps discret." Journal of Applied Probability 40, no. 3 (September 2003): 543–56. http://dx.doi.org/10.1239/jap/1059060887.
Full textPicard, Philippe, and Claude Lefèvre. "Probabilité de ruine éventuelle dans un modèle de risque à temps discret." Journal of Applied Probability 40, no. 03 (September 2003): 543–56. http://dx.doi.org/10.1017/s0021900200019550.
Full textFerris, J. Stephen, and Marcel-Cristian Voia. "What Determines the Length of a Typical Canadian Parliamentary Government?" Canadian Journal of Political Science 42, no. 4 (December 2009): 881–910. http://dx.doi.org/10.1017/s0008423909990680.
Full textDissertations / Theses on the topic "Distribution de probabilité"
Diop, Cheikh Abdoulahat. "La structure multimodale de la distribution de probabilité de la réflectivité radar des précipitations." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/3089/.
Full textA set of radar data gathered over various sites of the US Nexrad (Next Generation Weather Radar) S band radar network is used to analyse the probability distribution function (pdf) of the radar reflectivity factor (Z) of precipitation, P(Z). Various storm types are studied and a comparison between them is made: 1) hailstorms at the continental site of Little Rock (Arkansas), 2) peninsular and coastal convection at Miami (Florida), 3) coastal convection and land/sea transition at Brownsville (Texas), 4) tropical maritime convection at Hawaii, 5) midlatitude maritime convection at Eureka (California), 6) snowstorms from winter frontal continental systems at New York City (New York), and 7) high latitude maritime snowstorms at Middleton Island (Alaska). Each storm type has a specific P(Z) signature with a complex shape. It is shown that P(Z) is a mixture of Gaussian components, each of them being attribuable to a precipitation type. Using the EM (Expectation Maximisation) algorithm of Dempster et al. 1977, based on the maximum likelihood method, four main components are categorized in hailstorms: 1) cloud and precipitation of very low intensity or drizzle, 2) stratiform precipitation, 3) convective precipitation, and 4) hail. Each component is described by the fraction of area occupied inside P(Z) and by the two Gaussian parameters, mean and variance. The absence of hail component in maritime and coastal storms is highlighted. For snowstorms, P(Z) has a more regular shape. The presence of several components in P(Z) is linked to some differences in the dynamics and microphysics of each precipitation type. The retrieval of the mixed distribution by a linear combination of the Gaussian components gives a very stisfactory P(Z) fitting. An application of the results of the split-up of P(Z) is then presented. Cloud, rain, and hail components have been isolated and each corresponding P(Z) is converted into a probability distribution of rain rate P(R) which parameters are µR and sR2 , respectively mean and variance. It is shown on the graph (µR ,sR2) that each precipitation type occupies a specific area. This suggests that the identified components are distinct. For example, the location of snowstorms representative points indicates that snow is statistically different from rain. The P(R) variation coefficient, CVR = sR/µR is constant for each precipitation type. This result implies that knowing CVR and measuring only one of the P(R) parameters enable to determine the other one and to define the rain rate probability distribution. The influence of the coefficients a and b of the relation Z = aRb on P(R) is also discussed
Genitrini, Antoine. "Expressions booléennes aléatoires : probabilité, complexité et comparaison quantitative de logiques propositionnelles." Versailles-St Quentin en Yvelines, 2009. http://www.theses.fr/2009VERS0010.
Full textIn this thesis, I am interested in propositional systems from a probability/complexity point of view. I begin with two probability distributions on Boolean functions, induced by the Boolean expressions built with the Implication connective. I obtain the structure of most of the expressions representing a given function, when the number of variables tends to infinity. This gives the asymptotic equivalent of the probability of the function, depending on its complexity. Via the function True, we compare quantitatively the intuitionistic and classical logics of implication. This comparison highlights some properties of a class of expressions, that are found also in the full propositional system, and we can compare the two logics in this system. Finally we study balanced expressions in the two systems built on implication, or on the two connectors And and Or. In both cases, we exhibit the probability distribution of the functions
Nehme, Bilal. "Techniques non-additives d'estimation de la densité de probabilité." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00576957.
Full textNouir, Zakaria. "Amélioration de la prédiction d'un simulateur des réseaux mobiles par apprentissage de distributions de probabilité." Paris 6, 2008. http://www.theses.fr/2008PA066081.
Full textPhilippe, Anne. "Contribution à la théorie des lois de référence et aux méthodes de Monte Carlo." Rouen, 1997. http://www.theses.fr/1997ROUES005.
Full textMalki, Noureddine. "Contribution au diagnostic des Systèmes à Evénements Discrets par modèles temporels et distributions de probabilité." Thesis, Reims, 2013. http://www.theses.fr/2013REIMS016/document.
Full textThe work presented in this thesis represents a contribution to the problem of diagnosis in discrete event systems (DES). The objective of our work consists in a proposition for a diagnostic approach by exploiting the temporal aspect which characterizing the occurrence of events. For this, the system is modeled by temporal graphs belonging to the timed automata formwork. The approach is designed according to the decentralized architecture to avoid any combinatorial explosion in the construction of the models. It has allowed the detection and isolation of abrupt faults occurring on equipment by combining the enablement conditions of events and the Boolean functions for the non-occurrence of events.Secondly, gradual faults coming from the process its self are considerate. For this, time constraints expressing the dates of occurrence of events in the Templates and Chronicles are modeled by probability distributions (PDs). These are used to characterize normal, degraded or failed functioning of each subsystem with a degree of certainty. Identification of this functioning mode is represented by the value of a degradation indicator
Baraquin, Isabelle. "Analyse et probabilité sur les groupes quantiques (localement) compacts et les groupes duaux." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCD009.
Full textIn the first part, we introduce the tools of noncommutative mathematics that we will use in our study of finite quantum groups and dual groups. In particular, we present these "groups" and some of their properties.The second part is dedicated to the study of some finite quantum groups: the Kac-Paljutkin one and the family of Sekine. For each of these examples, we study (asymptotic) properties of the *-distribution of irreducible characters and convergence of random walks arising from linear combinations of irreducible characters. We first examine the representation theory to determine irreducible representations and their powers. Then we study the *-distribution of their trace with respect to the Haar state, by looking at the mixed *-moments. For the Sekine family we determine the asymptotic distribution (as the dimension of the algebra goes to infinity), by considering convergence of moments. For study of random walks, we bound the distance to the Haar state and determine the asymptotic behavior, i.e. the limit state if it exists. We note that the possible limits are any central idempotent state. We also look at cut-off phenomenon in the Sekine finite quantum groups.In the third part, we study dual groups in the sense of Voiculescu. In particular, we are interested in asymptotic properties of the *-distribution of traces of some matrices, with respect to the free Haar trace on the unitary dual group. The considered matrices are powers of the unitary matrix generating the Brown algebra. We proceed in two steps, first computing the mixed *-moments, then characterizing the distribution thanks to the free cumulants. We obtain that these traces are asymptotically *-free circular variables. We also explore the orthogonal dual group, which has a similar behavior
Goffard, Pierre-Olivier. "Approximations polynomiales de densités de probabilité et applications en assurance." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4026/document.
Full textThis PhD thesis studies numerical methods to approximate the probability density function of random variables governed by compound distributions. These random variables are useful in actuarial science to model the risk of a portfolio of contracts. In ruin theory, the probability of ultimate ruin within the compound Poisson ruin model is the survival function of a geometric compound distribution. The proposed method consists in a projection of the probability density function onto an orthogonal polynomial system. These polynomials are orthogonal with respect to a probability measure that belongs to Natural Exponential Families with Quadratic Variance Function. The polynomiam approximation is compared to other numerical methods that recover the probability density function from the knowledge of the moments or the Laplace transform of the distribution. The polynomial method is then extended in a multidimensional setting, along with the probability density estimator derived from the approximation formula. An aggregation procedure adapted to life insurance portfolios is also described. The method aims at building a portfolio of model points in order to compute the best estimate liabilities in a timely manner and in a way that is compliant with the European directive Solvency II
Et, Tabii Mohamed. "Contributions aux descriptions optimales par modèles statistiques exponentiels." Rouen, 1997. http://www.theses.fr/1997ROUES028.
Full textPetit, Jean-Claude. "Contribution à l'étude des statistiques non paramétriques : Existence et caractérisation d'évènements libres relativement à une famille de lois de probabilité et applications." Nancy 1, 1988. http://www.theses.fr/1988NAN10054.
Full textBooks on the topic "Distribution de probabilité"
Johnson, Norman Lloyd. Univariate discrete distributions. 2nd ed. New York: Wiley, 1992.
Find full textW, Kemp Adrienne, and Kotz Samuel, eds. Univariate discrete distributions. 3rd ed. Hoboken, N.J: Wiley, 2005.
Find full textPoisson, Siméon-Denis. Researches into the probabilities of judgements in criminal and civil cases: Recherches sur la probabilité des jugements en matière criminelle et en matière civile. Berlin: NG-Verlag (Viatcheslav Demidov Inhaber), 2013.
Find full textJohnson, Norman Lloyd. Univariate discrete distributions: Norman L. Johnson, Adrienne W. Kemp, Samuel Kotz. 3rd ed. Hoboken, NJ: Wiley, 2005.
Find full textThomopoulos, Nick T. Probability Distributions. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1.
Full textCentre canadien de la technologie des minéraux et de l'énergie. Nouvelle Méthode de Déconvolution Pour L'analyse des Spectres de Distribution de la Densité de Probabilité Obtenus Lors de Mesures D'interrogation Aux Rayons Gamma D'écoulements Multiphases. S.l: s.n, 1985.
Find full textJ, Dudewicz Edward, ed. Fitting statistical distributions: The Generalized Lambda Distribution and Generalized Bootstrap methods. Boca Raton: CRC Press, 2000.
Find full textPatel, Jagdish K. Handbook of statistical distributions. Ann Arbor, Mich: University Microfilms International, 1992.
Find full textBook chapters on the topic "Distribution de probabilité"
Russo, Riccardo. "Probability distributions and the binomial distribution." In Statistics for the Behavioural Sciences, 93–123. Second edition. | Abingdon, Oxon; New York, NY : Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.4324/9781315200415-ch05.
Full textBryc, Wlodzimierz. "Probability tools." In The Normal Distribution, 5–21. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-2560-7_2.
Full textO’Hagan, Anthony. "Distribution theory." In Probability, 132–56. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1211-3_6.
Full textThomopoulos, Nick T. "Continuous Distributions." In Probability Distributions, 1–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_1.
Full textThomopoulos, Nick T. "Bivariate Lognormal." In Probability Distributions, 149–58. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_10.
Full textThomopoulos, Nick T. "Discrete Distributions." In Probability Distributions, 27–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_2.
Full textThomopoulos, Nick T. "Standard Normal." In Probability Distributions, 45–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_3.
Full textThomopoulos, Nick T. "Partial Expectation." In Probability Distributions, 57–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_4.
Full textThomopoulos, Nick T. "Left Truncated Normal." In Probability Distributions, 67–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_5.
Full textThomopoulos, Nick T. "Right Truncated Normal." In Probability Distributions, 85–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76042-1_6.
Full textConference papers on the topic "Distribution de probabilité"
Nolan, John P. "Metrics for multivariate stable distributions." In Stability in Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc90-0-6.
Full textŚniady, Piotr. "Limit distributions of many-particle spectra and q-deformed Gaussian variables." In Quantum Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc73-0-32.
Full textLéandre, R. "Infinite Lebesgue Distribution on a Current Group as an Invariant Distribution." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713476.
Full textSzynal, Dominik. "Goodness-of-fit tests derived from characterizations of continuous distributions." In Stability in Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc90-0-14.
Full textKorolev, Roman A., and Vladimir E. Bening. "On the power of an asymptotically optimal test for the case of Laplace distribution." In Stability in Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc90-0-2.
Full textKrahl, S., S. Ohrem, and H. J. Haubrich. "Probability distributions of reliability indices of electrical distribution networks." In 20th International Conference and Exhibition on Electricity Distribution (CIRED 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.0714.
Full textMazurkiewicz, G. "On the infinite divisibility of scale mixtures of symmetric α-stable distributions, α∈(0,1]." In Stability in Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc90-0-5.
Full textRieder, Sebastian, and Karl Svozil. "Probability Distributions and Gleason’s Theorem." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713462.
Full textShimada, Yoshihito. "White noise distribution theory and its application." In Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-21.
Full textAdenier, Guillaume, Masanori Ohya, Noboru Watanabe, Irina Basieva, and Andrei Yu Khrennikov. "Double blinding-attack on entanglement-based quantum key distribution protocols." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688946.
Full textReports on the topic "Distribution de probabilité"
Maitland, Robert E. As Demand Probability Distribution Study. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada171921.
Full textBacchus, Fahiem. On Probability Distribution Over Possible Worlds. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada250617.
Full textS. Kuzio. Probability Distribution for Flowing Interval Spacing. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/837138.
Full textS. Kuzio. Probability Distribution for Flowing Interval Spacing. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/838653.
Full textAguilar-Arevalo, A., and et al. Using L/E Oscillation Probability Distributions. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1156532.
Full textHandler, F. Probability distributions for weapon system effectiveness. Office of Scientific and Technical Information (OSTI), March 1989. http://dx.doi.org/10.2172/6041629.
Full textKhoussi, Siham, Alan Heckert, Abdella Battou, and Saddek Bensalem. Neural Networks for Classifying Probability Distributions. National Institute of Standards and Technology, April 2021. http://dx.doi.org/10.6028/nist.tn.2152.
Full textGlaser, R. Monte Carlo simulation of scenario probability distributions. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/632934.
Full textShanbhag, D. N., and S. Kotz. Some New Approaches to Multivariate Probability Distributions. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada186038.
Full textJ. L. V. Lewandowski. Numerical Loading of a Maxwellian Probability Distribution Function. US: Princeton Plasma Physics Lab., NJ (US), March 2003. http://dx.doi.org/10.2172/813603.
Full text