Journal articles on the topic 'Distribution learning theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Distribution learning theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Vidyasagar, M., and S. R. Kulkarni. "Some contributions to fixed-distribution learning theory." IEEE Transactions on Automatic Control 45, no. 2 (2000): 217–34. http://dx.doi.org/10.1109/9.839945.
Full textTsutsumi, Emiko, Ryo Kinoshita, and Maomi Ueno. "Deep Item Response Theory as a Novel Test Theory Based on Deep Learning." Electronics 10, no. 9 (2021): 1020. http://dx.doi.org/10.3390/electronics10091020.
Full textNajarian, Kayvan. "A Fixed-Distribution PAC Learning Theory for Neural FIR Models." Journal of Intelligent Information Systems 25, no. 3 (2005): 275–91. http://dx.doi.org/10.1007/s10844-005-0194-y.
Full textWang, Jing, and Xin Geng. "Theoretical Analysis of Label Distribution Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 5256–63. http://dx.doi.org/10.1609/aaai.v33i01.33015256.
Full textCohen, William W. "USING DISTRIBUTION-FREE LEARNING THEORY TO ANALYZE SOLUTION-PATH CACHING MECHANISMS." Computational Intelligence 8, no. 2 (1992): 336–75. http://dx.doi.org/10.1111/j.1467-8640.1992.tb00370.x.
Full textJuba, Brendan. "On learning finite-state quantum sources." Quantum Information and Computation 12, no. 1&2 (2012): 105–18. http://dx.doi.org/10.26421/qic12.1-2-7.
Full textHaghtalab, Nika, Matthew O. Jackson, and Ariel D. Procaccia. "Belief polarization in a complex world: A learning theory perspective." Proceedings of the National Academy of Sciences 118, no. 19 (2021): e2010144118. http://dx.doi.org/10.1073/pnas.2010144118.
Full textCaicedo, Santiago, Robert E. Lucas, and Esteban Rossi-Hansberg. "Learning, Career Paths, and the Distribution of Wages." American Economic Journal: Macroeconomics 11, no. 1 (2019): 49–88. http://dx.doi.org/10.1257/mac.20170390.
Full textGhosh, Himadri, and Prajneshu. "Statistical learning theory for fitting multimodal distribution to rainfall data: an application." Journal of Applied Statistics 38, no. 11 (2011): 2533–45. http://dx.doi.org/10.1080/02664763.2011.559210.
Full textPowell, Nathan, and Andrew J. Kurdila. "Distribution-free learning theory for approximating submanifolds from reptile motion capture data." Computational Mechanics 68, no. 2 (2021): 337–56. http://dx.doi.org/10.1007/s00466-021-02034-0.
Full textFang, Zhiying, Zheng-Chu Guo, and Ding-Xuan Zhou. "Optimal learning rates for distribution regression." Journal of Complexity 56 (February 2020): 101426. http://dx.doi.org/10.1016/j.jco.2019.101426.
Full textZhou, Baohua, David Hofmann, Itai Pinkoviezky, Samuel J. Sober, and Ilya Nemenman. "Chance, long tails, and inference in a non-Gaussian, Bayesian theory of vocal learning in songbirds." Proceedings of the National Academy of Sciences 115, no. 36 (2018): E8538—E8546. http://dx.doi.org/10.1073/pnas.1713020115.
Full textKearns, Michael J., and Robert E. Schapire. "Efficient distribution-free learning of probabilistic concepts." Journal of Computer and System Sciences 48, no. 3 (1994): 464–97. http://dx.doi.org/10.1016/s0022-0000(05)80062-5.
Full textFuhs, Mark C., and David S. Touretzky. "Context Learning in the Rodent Hippocampus." Neural Computation 19, no. 12 (2007): 3173–215. http://dx.doi.org/10.1162/neco.2007.19.12.3173.
Full textGonzález, Carlos R., and Yaser S. Abu-Mostafa. "Mismatched Training and Test Distributions Can Outperform Matched Ones." Neural Computation 27, no. 2 (2015): 365–87. http://dx.doi.org/10.1162/neco_a_00697.
Full textRezek, I., D. S. Leslie, S. Reece, et al. "On Similarities between Inference in Game Theory and Machine Learning." Journal of Artificial Intelligence Research 33 (October 23, 2008): 259–83. http://dx.doi.org/10.1613/jair.2523.
Full textDwiyanto, Dwiyanto, Catra Indra, Ahmad Faisal, Iswandi Idris, and Rizaldy Khair. "Rancang Bangun Media Pembelajaran Avionic - Radio Theory II Berbasis Multimedia Animasi pada ATKP Medan." Jurnal Sistem Komputer dan Informatika (JSON) 1, no. 3 (2020): 247. http://dx.doi.org/10.30865/json.v1i3.2185.
Full textAmari, Shun-ichi, and Noboru Murata. "Statistical Theory of Learning Curves under Entropic Loss Criterion." Neural Computation 5, no. 1 (1993): 140–53. http://dx.doi.org/10.1162/neco.1993.5.1.140.
Full textSakai, Y., and A. Maruoka. "Learning Monotone Log-Term DNF Formulas under the Uniform Distribution." Theory of Computing Systems 33, no. 1 (2000): 17–33. http://dx.doi.org/10.1007/s002249910002.
Full textDanju, İpek, Burak Demir, Birce Birsel Çağlar, Cagla Deniz Özçelik, Elif Karaagac Coruhlu, and Seral Özturan. "Comparative content analysis of studies on new approaches in education." Laplage em Revista 6, Extra-C (2020): 128–42. http://dx.doi.org/10.24115/s2446-622020206extra-c635p.128-142.
Full textLu. "Semantic Information G Theory and Logical Bayesian Inference for Machine Learning." Information 10, no. 8 (2019): 261. http://dx.doi.org/10.3390/info10080261.
Full textCampeau, Anthony G. "Distribution of Learning Styles and Preferences for Learning Environment Characteristics Among Emergency Medical Care Assistants (EMCAs) in Ontario, Canada." Prehospital and Disaster Medicine 13, no. 1 (1998): 47–54. http://dx.doi.org/10.1017/s1049023x00033033.
Full textVos, Hans J. "Applications of Bayesian Decision Theory to Sequential Mastery Testing." Journal of Educational and Behavioral Statistics 24, no. 3 (1999): 271–92. http://dx.doi.org/10.3102/10769986024003271.
Full textNOTSU, Akira, Seiki UBUKATA, and Katsuhiro HONDA. "Beta Distribution Propagating Reinforcement Learning Based on Prospect Theory for the Efficient Exploration and Exploitation." Journal of Japan Society for Fuzzy Theory and Intelligent Informatics 29, no. 1 (2017): 507–16. http://dx.doi.org/10.3156/jsoft.29.1_507.
Full textZhou, Yu-Hang, and Zhi-Hua Zhou. "Large Margin Distribution Learning with Cost Interval and Unlabeled Data." IEEE Transactions on Knowledge and Data Engineering 28, no. 7 (2016): 1749–63. http://dx.doi.org/10.1109/tkde.2016.2535283.
Full textWang, Zengmao, Bo Du, Weiping Tu, Lefei Zhang, and Dacheng Tao. "Incorporating Distribution Matching into Uncertainty for Multiple Kernel Active Learning." IEEE Transactions on Knowledge and Data Engineering 33, no. 1 (2021): 128–42. http://dx.doi.org/10.1109/tkde.2019.2923211.
Full textGalvani, Marta, Chiara Bardelli, Silvia Figini, and Pietro Muliere. "A Bayesian Nonparametric Learning Approach to Ensemble Models Using the Proper Bayesian Bootstrap." Algorithms 14, no. 1 (2021): 11. http://dx.doi.org/10.3390/a14010011.
Full textChen, Fen, Bin Zou, and Na Chen. "The consistency of least-square regularized regression with negative association sequence." International Journal of Wavelets, Multiresolution and Information Processing 16, no. 03 (2018): 1850019. http://dx.doi.org/10.1142/s0219691318500194.
Full textWang, Wei, Hao Wang, Chen Zhang, and Yang Gao. "Cross-Domain Metric and Multiple Kernel Learning Based on Information Theory." Neural Computation 30, no. 3 (2018): 820–55. http://dx.doi.org/10.1162/neco_a_01053.
Full textKRAUSE, PAUL J. "Learning probabilistic networks." Knowledge Engineering Review 13, no. 4 (1999): 321–51. http://dx.doi.org/10.1017/s0269888998004019.
Full textLee, Jonathan N., Michael Laskey, Ajay Kumar Tanwani, Anil Aswani, and Ken Goldberg. "Dynamic regret convergence analysis and an adaptive regularization algorithm for on-policy robot imitation learning." International Journal of Robotics Research 40, no. 10-11 (2021): 1284–305. http://dx.doi.org/10.1177/0278364920985879.
Full textWang, Shangfei, Guozhu Peng, and Zhuangqiang Zheng. "Capturing Joint Label Distribution for Multi-Label Classification Through Adversarial Learning." IEEE Transactions on Knowledge and Data Engineering 32, no. 12 (2020): 2310–21. http://dx.doi.org/10.1109/tkde.2019.2922603.
Full textBEAUCHAMP, GUY. "Learning Rules for Social Foragers: Implications for the Producer–Scrounger Game and Ideal Free Distribution Theory." Journal of Theoretical Biology 207, no. 1 (2000): 21–35. http://dx.doi.org/10.1006/jtbi.2000.2153.
Full textFan, Ying, Shun Kun Wang, Feng Zhou, Zhi Cheng Tian, and Guang Shuai Ding. "Parameter Estimation for Small Sample Censored Data Based on SVM." Advanced Materials Research 145 (October 2010): 31–36. http://dx.doi.org/10.4028/www.scientific.net/amr.145.31.
Full textEt.al, Nurnasran Puteh. "Sentiment Analysis with Deep Learning: A Bibliometric Review." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (2021): 1509–19. http://dx.doi.org/10.17762/turcomat.v12i3.952.
Full textBalasubramanian, Vijay. "Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions." Neural Computation 9, no. 2 (1997): 349–68. http://dx.doi.org/10.1162/neco.1997.9.2.349.
Full textFebrilia, Baiq Rika Ayu. "Pembelajaran Distribusi Poisson dan Penerapannya dalam Kehidupan Sehari-hari." Jurnal Didaktik Matematika 4, no. 1 (2017): 1–14. http://dx.doi.org/10.24815/jdm.v4i1.7610.
Full textWallis, Guy, and Roland Baddeley. "Optimal, Unsupervised Learning in Invariant Object Recognition." Neural Computation 9, no. 4 (1997): 883–94. http://dx.doi.org/10.1162/neco.1997.9.4.883.
Full textQuintián, Héctor, and Emilio Corchado. "Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit." International Journal of Neural Systems 27, no. 06 (2017): 1750024. http://dx.doi.org/10.1142/s0129065717500241.
Full textSampson, Thomas. "Dynamic Selection: An Idea Flows Theory of Entry, Trade, and Growth *." Quarterly Journal of Economics 131, no. 1 (2015): 315–80. http://dx.doi.org/10.1093/qje/qjv032.
Full textZhao, Qianying, and Jingyang Jiang. "Verb valency in interlanguage: An extension to valency theory and new perspective on L2 learning." Poznan Studies in Contemporary Linguistics 56, no. 2 (2020): 339–63. http://dx.doi.org/10.1515/psicl-2020-0010.
Full textSHIN, KYULEE, and JIN SEO CHO. "TESTING FOR NEGLECTED NONLINEARITY USING EXTREME LEARNING MACHINES." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 21, supp02 (2013): 117–29. http://dx.doi.org/10.1142/s0218488513400205.
Full textDE FRANCO, CARMINE, JOHANN NICOLLE, and HUYÊN PHAM. "BAYESIAN LEARNING FOR THE MARKOWITZ PORTFOLIO SELECTION PROBLEM." International Journal of Theoretical and Applied Finance 22, no. 07 (2019): 1950037. http://dx.doi.org/10.1142/s0219024919500377.
Full textUeda, Yoshihiro, Hitoshi Narita, Naotaka Kato, Katsuaki Hayashi, Hidetaka Nambo, and Haruhiko Kimura. "An automatic email distribution by using text mining and reinforcement learning." Systems and Computers in Japan 37, no. 12 (2006): 82–95. http://dx.doi.org/10.1002/scj.20387.
Full textSinaga, Juster Donal, and Kristina Betty Artati. "Experiential learning theory (ELT)-based classical guidance model to improve responsible character." SCHOULID: Indonesian Journal of School Counseling 2, no. 1 (2017): 14. http://dx.doi.org/10.23916/008621833-00-0.
Full textShao, X. Y., Jun Wu, Ya Qiong Lv, and Chao Deng. "Reliability Assessment Methods of Complicated Mechanical Product Based on Statistical Learning Theory." Advanced Materials Research 44-46 (June 2008): 575–80. http://dx.doi.org/10.4028/www.scientific.net/amr.44-46.575.
Full textMishra, Akshansh, and Tarushi Pathak. "Estimation of Grain Size Distribution of Friction Stir Welded Joint by using Machine Learning Approach." ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal 10, no. 1 (2020): 99–110. http://dx.doi.org/10.14201/adcaij202110199110.
Full textBoersma, Paul, and Bruce Hayes. "Empirical Tests of the Gradual Learning Algorithm." Linguistic Inquiry 32, no. 1 (2001): 45–86. http://dx.doi.org/10.1162/002438901554586.
Full textSMALE, STEVE, and DING-XUAN ZHOU. "ONLINE LEARNING WITH MARKOV SAMPLING." Analysis and Applications 07, no. 01 (2009): 87–113. http://dx.doi.org/10.1142/s0219530509001293.
Full textJing, Yun, Si-Ye Guo, Xuan Wang, and Fang-Qiu Chen. "Research on Coordinated Development of a Railway Freight Collection and Distribution System Based on an “Entropy-TOPSIS Coupling Development Degree Model” Integrated with Machine Learning." Journal of Advanced Transportation 2020 (September 15, 2020): 1–14. http://dx.doi.org/10.1155/2020/8885808.
Full text