Academic literature on the topic 'Distributions à queues épaisses'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Distributions à queues épaisses.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Distributions à queues épaisses"

1

Taylor, Nicholas B., and Benjamin G. Heydecker. "Estimating probability distributions of dynamic queues." Transportation Planning and Technology 38, no. 1 (November 20, 2014): 3–27. http://dx.doi.org/10.1080/03081060.2014.976987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, P. Patrick, and Vicky F. Locker. "Steady-State Distributions Of Parallel Queues." INFOR: Information Systems and Operational Research 39, no. 1 (February 2001): 89–106. http://dx.doi.org/10.1080/03155986.2001.11732428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karpelevitch, F. I., and A. Ya Kreinin. "Joint distributions in Poissonian tandem queues." Queueing Systems 12, no. 3-4 (September 1992): 273–86. http://dx.doi.org/10.1007/bf01158803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Szczotka, Władysław. "Stationary representation of queues. I." Advances in Applied Probability 18, no. 3 (September 1986): 815–48. http://dx.doi.org/10.2307/1427189.

Full text
Abstract:
The paper deals with the asymptotic behaviour of queues for which the generic sequence is not necessarily stationary but is asymptotically stationary in some sense. The latter property is defined by an appropriate type of convergence of probability distributions of the sequences to the distribution of a stationary sequence We consider six types of convergence of to The main result is as follows: if the sequence of the distributions converges in one of six ways then the sequence of distributions of the sequences converges in the same way, independently of initial conditions. Furthermore the limiting distribution is the same as the limiting distribution obtained by the weak convergence of the distributions Here wk and w∗k denote the waiting time of the kth unit in the queue generated by (v, u) and (v0, u0) respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Szczotka, Władysław. "Stationary representation of queues. I." Advances in Applied Probability 18, no. 03 (September 1986): 815–48. http://dx.doi.org/10.1017/s0001867800016086.

Full text
Abstract:
The paper deals with the asymptotic behaviour of queues for which the generic sequence is not necessarily stationary but is asymptotically stationary in some sense. The latter property is defined by an appropriate type of convergence of probability distributions of the sequences to the distribution of a stationary sequence We consider six types of convergence of to The main result is as follows: if the sequence of the distributions converges in one of six ways then the sequence of distributions of the sequences converges in the same way, independently of initial conditions. Furthermore the limiting distribution is the same as the limiting distribution obtained by the weak convergence of the distributions Here wk and w∗ k denote the waiting time of the kth unit in the queue generated by ( v, u ) and ( v 0, u 0) respectively.
APA, Harvard, Vancouver, ISO, and other styles
6

Tarasov, V. N. "Analysis of queues with hyperexponential arrival distributions." Problems of Information Transmission 52, no. 1 (January 2016): 14–23. http://dx.doi.org/10.1134/s0032946016010038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chaudhry, Mohan L., Indra, and Vijay Rajan. "Analytically Simple and Computationally Efficient Solution to Geo/G/1 and Geo/G/1/N Queues Involving Heavy-tailed Distributions for Service Times." Calcutta Statistical Association Bulletin 70, no. 1 (May 2018): 74–85. http://dx.doi.org/10.1177/0008068318770566.

Full text
Abstract:
The previous studies pertaining to the queues Geo/G/1 and Geo/G/1/N involve light-tailed distributions for service time. However, due to applications of heavy-tailed distributions in computer science and financial engineering, these distributions are used for service time. This article provides a simple and computationally efficient solution to the queues Geo/G/1 and Geo/G/1/N involving heavy-tailed distributions for service times.
APA, Harvard, Vancouver, ISO, and other styles
8

Hunter, Jeffrey J. "Filtering of Markov renewal queues, IV: Flow processes in feedback queues." Advances in Applied Probability 17, no. 02 (June 1985): 386–407. http://dx.doi.org/10.1017/s0001867800015032.

Full text
Abstract:
This paper is a continuation of the study of a class of queueing systems where the queue-length process embedded at basic transition points, which consist of ‘arrivals’, ‘departures’ and ‘feedbacks’, is a Markov renewal process (MRP). The filtering procedure of Çinlar (1969) was used in [12] to show that the queue length process embedded separately at ‘arrivals’, ‘departures’, ‘feedbacks’, ‘inputs’ (arrivals and feedbacks), ‘outputs’ (departures and feedbacks) and ‘external’ transitions (arrivals and departures) are also MRP. In this paper expressions for the elements of each Markov renewal kernel are derived, and thence expressions for the distribution of the times between transitions, under stationary conditions, are found for each of the above flow processes. In particular, it is shown that the inter-event distributions for the arrival process and the departure process are the same, with an equivalent result holding for inputs and outputs. Further, expressions for the stationary joint distributions of successive intervals between events in each flow process are derived and interconnections, using the concept of reversed Markov renewal processes, are explored. Conditions under which any of the flow processes are renewal processes or, more particularly, Poisson processes are also investigated. Special cases including, in particular, the M/M/1/N and M/M/1 model with instantaneous Bernoulli feedback, are examined.
APA, Harvard, Vancouver, ISO, and other styles
9

Hunter, Jeffrey J. "Filtering of Markov renewal queues, IV: Flow processes in feedback queues." Advances in Applied Probability 17, no. 2 (June 1985): 386–407. http://dx.doi.org/10.2307/1427147.

Full text
Abstract:
This paper is a continuation of the study of a class of queueing systems where the queue-length process embedded at basic transition points, which consist of ‘arrivals’, ‘departures’ and ‘feedbacks’, is a Markov renewal process (MRP). The filtering procedure of Çinlar (1969) was used in [12] to show that the queue length process embedded separately at ‘arrivals’, ‘departures’, ‘feedbacks’, ‘inputs’ (arrivals and feedbacks), ‘outputs’ (departures and feedbacks) and ‘external’ transitions (arrivals and departures) are also MRP. In this paper expressions for the elements of each Markov renewal kernel are derived, and thence expressions for the distribution of the times between transitions, under stationary conditions, are found for each of the above flow processes. In particular, it is shown that the inter-event distributions for the arrival process and the departure process are the same, with an equivalent result holding for inputs and outputs. Further, expressions for the stationary joint distributions of successive intervals between events in each flow process are derived and interconnections, using the concept of reversed Markov renewal processes, are explored. Conditions under which any of the flow processes are renewal processes or, more particularly, Poisson processes are also investigated. Special cases including, in particular, the M/M/1/N and M/M/1 model with instantaneous Bernoulli feedback, are examined.
APA, Harvard, Vancouver, ISO, and other styles
10

Boxma, O. J., and V. Dumas. "Fluid queues with long-tailed activity period distributions." Computer Communications 21, no. 17 (November 1998): 1509–29. http://dx.doi.org/10.1016/s0140-3664(98)00219-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Distributions à queues épaisses"

1

Robert, Christian Yann. "Analyse des queues de distribution et des valeurs extrêmes en finance : applications aux séries financières haute fréquence." Paris 7, 2002. http://www.theses.fr/2002PA077164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aleiyouka, Mohalilou. "Sur la dépendance des queues de distributions." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMLH28/document.

Full text
Abstract:
Pour modéliser de la dépendance entre plusieurs variables peut s'appuyer soit sur la corrélation entre les variables, soit sur d'autres mesures, qui déterminent la dépendance des queues de distributions.Dans cette thèse, nous nous intéressons à la dépendance des queues de distributions, en présentant quelques propriétés et résultats.Dans un premier temps, nous obtenons le coefficient de dépendance de queue pour la loi hyperbolique généralisée selon les différentes valeurs de paramètres de cette loi.Ensuite, nous exposons des propriétés et résultats du coefficient de dépendance extrémale dans le cas où les variables aléatoires suivent une loi de Fréchet unitaire.Finalement, nous présentons un des systèmes de gestion de bases de données temps réel (SGBDTR). Le but étant de proposer des modèles probabilistes pour étudier le comportement des transactions temps réel, afin d'optimiser ses performances
The modeling of the dependence between several variables can focus either on the positive or negative correlation between the variables, or on other more effective ways, which determine the tails dependence of distributions.In this thesis, we are interested in the tail dependence of distributions, by presenting some properties and results. Firstly, we obtain the limit tail dependence coefficient for the generalized hyperbolic law according to different parameter values of this law. Then, we exhibit some properties and results of die extremal dependence coefficient in the case where the random variables follow a unitary Fréchet law.Finally, we present a Real Time Database ManagementSystems (RDBMS). The goal is to propose probabilistic models to study thebehavior of real-time transactions, in order to optimize its performance
APA, Harvard, Vancouver, ISO, and other styles
3

Worms, Rym. "Vitesses de convergence pour l'approximation des queues de distributions." Université de Marne-la-Vallée, 2000. http://www.theses.fr/2000MARN0091.

Full text
Abstract:
L'objet de cette thèse est l'obtention de vitesses de convergence pour l'approximation de Pareto Généralisée de la loi des excès. Dans le premier chapitre, nous déterminons la vitesse de convergence uniforme de la loi des excès, convenablement normalisée, vers sa loi de Pareto Généralisée limite sous des hypothèses dites de premier et de second ordre impliquant en particulier que la loi dont on considère les excès appartient à l'un des trois domaines d'attractions pour la loi du maximum. Dans le second chapitre, nous étudions la vitesse de convergence vers 0 de l'erreur relative d'approximation d'un quantile extrême par le quantile de la loi de Pareto Généralisée limite, pour des lois appartenant au domaine d'attraction de Fréchet ou de Gumbel et dont le support est non-borne supérieurement. Nous donnons des conditions suffisantes sur le rapport entre l'ordre du quantile considéré et le seuil au-delà duquel sont pris les excès permettant une convergence vers 0 de cette erreur relative. Dans le troisième chapitre, nous donnons des conditions qui assurent l'existence d'une approximation pénultième pour la loi des excès, c'est-à-dire une suite de lois de Pareto Généralisées qui approxime mieux la loi des excès que la loi limite évoquée dans le premier chapitre. Nous étudions alors la vitesse de convergence uniforme de la loi des excès normalisée vers sa limite pénultième
The aim of this thesis is to provide some rates of convergence for the Generalized Pareto approximation of the excesses. In the first chapter, we determine the rate of uniform convergence of the distribution of the excesses, suitably normalized, towards its Generalized Pareto limit, using first and second order conditions that ensure that the distribution we consider lies in one of the three maximum domains of attraction. The second chapter is devoted to the study of the relative approximation error of a high quatile by the quantile of the Generalized Pareto limit, for distributions in the Fréchet or the Gumbel maximum domain of attraction, with infinite end-point. We provide sufficient conditions on the order of the considered quantile and the threshold that we use to define the excesses, in order to ensure that this relative error tends to 0. In the third chapter, we provide conditions for a penultimate approximation of the excesses to exist. In other words, we look for a sequence of Generalised Pareto Distributions that approximate the excesses better than the ultimate one. We study the uniform rate of convergence of the distribution of the excesses towards its penultimate approximation
APA, Harvard, Vancouver, ISO, and other styles
4

Brahimi, Mammar. "Approximating multi-server queues with inhomgeneous arrival rates and continuous service time distributions." Thesis, Lancaster University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Biard, Romain. "Dépendance et événements extrêmes en théorie de la ruine : étude univariée et multivariée, problèmes d'allocation optimale." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00539886.

Full text
Abstract:
Cette thèse présente de nouveaux modèles et de nouveaux résultats en théorie de la ruine, lorsque les distributions des montants de sinistres sont à queue épaisse. Les hypothèses classiques d'indépendance et de stationnarité, ainsi que l'analyse univariée sont parfois jugées trop restrictives pour décrire l'évolution complexe des réserves d'une compagnie d'assurance. Dans un contexte de dépendance entre les montants de sinistres, des équivalents de la probabilité deruine univariée en temps fini sont obtenus. Cette dépendance, ainsi que les autres paramètres du modèle sont modulés par un processus Markovien d'environnement pour prendre en compte des possibles crises de corrélation. Nous introduisons ensuite des modèles de dépendance entre les montants de sinistres et les temps inter-sinistres pour des risques de type tremblements de terre et inondations. Dans un cadre multivarié, nous présentons divers critères de risques tels que la probabilité de ruine multivariée ou l'espérance de l'intégrale temporelle de la partie négative du processus de risque. Nous résolvons des problèmes d'allocation optimale pour ces différentes mesures de risque. Nous étudions alors l'impact de la dangerosité des risques et de la dépendance entre les branches sur cette allocation optimale
APA, Harvard, Vancouver, ISO, and other styles
6

Golder, Jacques. "Modélisation d'un phénomène pluvieux local et analyse de son transfert vers la nappe phréatique." Phd thesis, Université d'Avignon, 2013. http://tel.archives-ouvertes.fr/tel-01057725.

Full text
Abstract:
Dans le cadre des recherches de la qualité des ressources en eau, l'étude du processus de transfert de masse du sol vers la nappe phréatique constitue un élément primordial pour la compréhension de la pollution de cette dernière. En effet, les éléments polluants solubles à la surface (produits liés aux activités humaines tels engrais, pesticides...) peuvent transiter vers la nappe à travers le milieu poreux qu'est le sol. Ce scénario de transfert de pollution repose sur deux phénomènes : la pluie qui génère la masse d'eau à la surface et la dispersion de celle-ci à travers le milieu poreux. La dispersion de masse dans un milieu poreux naturel comme le sol forme un sujet de recherche vaste et difficile aussi bien au plan expérimental que théorique. Sa modélisation constitue une préoccupation du laboratoire EMMAH, en particulier dans le cadre du projet Sol Virtuel dans lequel un modèle de transfert (modèle PASTIS) a été développé. Le couplage de ce modèle de transfert avec en entrée un modèle décrivant la dynamique aléatoire de la pluie est un des objectifs de la présente thèse. Ce travail de thèse aborde cet objectif en s'appuyant d'une part sur des résultats d'observations expérimentaux et d'autre part sur de la modélisation inspirée par l'analyse des données d'observation. La première partie du travail est consacrée à l'élaboration d'un modèle stochastique de pluie. Le choix et la nature du modèle sont basés sur les caractéristiques obtenus à partir de l'analyse de données de hauteur de pluie recueillies sur 40 ans (1968-2008) sur le Centre de Recherche de l'INRA d'Avignon. Pour cela, la représentation cumulée des précipitations sera assimilée à une marche aléatoire dans laquelle les sauts et les temps d'attente entre les sauts sont respectivement les amplitudes et les durées aléatoires entre deux occurrences d'événements de pluie. Ainsi, la loi de probabilité des sauts (loi log-normale) et celle des temps d'attente entre les sauts (loi alpha-stable) sont obtenus en analysant les lois de probabilité des amplitudes et des occurrences des événements de pluie. Nous montrons alors que ce modèle de marche aléatoire tend vers un mouvement brownien géométrique subordonné en temps (quand les pas d'espace et de temps de la marche tendent simultanément vers zéro tout en gardant un rapport constant) dont la loi de densité de probabilité est régie par une équation de Fokker Planck fractionnaire (FFPE). Deux approches sont ensuite utilisées pour la mise en œuvre du modèle. La première approche est de type stochastique et repose sur le lien existant entre le processus stochastique issu de l'équation différentielle d'Itô et la FFPE. La deuxième approche utilise une résolution numérique directe par discrétisation de la FFPE. Conformément à l'objectif principal de la thèse, la seconde partie du travail est consacrée à l'analyse de la contribution de la pluie aux fluctuations de la nappe phréatique. Cette analyse est faite sur la base de deux relevés simultanées d'observations de hauteurs de pluie et de la nappe phréatique sur 14 mois (février 2005-mars 2006). Une étude statistique des liens entre les signaux de pluie et de fluctuations de la nappe est menée comme suit : Les données de variations de hauteur de nappe sont analysées et traitées pour isoler les fluctuations cohérentes avec les événements de pluie. Par ailleurs, afin de tenir compte de la dispersion de masse dans le sol, le transport de la masse d'eau pluviale dans le sol sera modélisé par un code de calcul de transfert (modèle PASTIS) auquel nous appliquons en entrée les données de hauteurs de pluie mesurées. Les résultats du modèle permettent entre autre d'estimer l'état hydrique du sol à une profondeur donnée (ici fixée à 1.6m). Une étude de la corrélation entre cet état hydrique et les fluctuations de la nappe sera ensuite effectuée en complément à celle décrite ci-dessus pour illustrer la possibilité de modéliser l'impact de la pluie sur les fluctuations de la nappe
APA, Harvard, Vancouver, ISO, and other styles
7

Tsafack, Kemassong Georges Desire. "Asymmetric dependence modeling and implications for international diversification and risk management." Thèse, 2007. http://hdl.handle.net/1866/2157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carreau, Julie. "Modèles Pareto hybrides pour distributions asymétriques et à queues lourdes." Thèse, 2007. http://hdl.handle.net/1866/17889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yunan. "Many-Server Queues with Time-Varying Arrivals, Customer Abandonment, and non-Exponential Distributions." Thesis, 2011. https://doi.org/10.7916/D8XW4RS9.

Full text
Abstract:
This thesis develops deterministic heavy-traffic fluid approximations for many-server stochastic queueing models. The queueing models, with many homogeneous servers working independently in parallel, are intended to model large-scale service systems such as call centers and health care systems. Such models also have been employed to study communication, computing and manufacturing systems. The heavy-traffic approximations yield relatively simple formulas for quantities describing system performance, such as the expected number of customers waiting in the queue. The new performance approximations are valuable because, in the generality considered, these complex systems are not amenable to exact mathematical analysis. Since the approximate performance measures can be computed quite rapidly, they usefully complement more cumbersome computer simulation. Thus these heavy-traffic approximations can be used to improve capacity planning and operational control. More specifically, the heavy-traffic approximations here are for large-scale service systems, having many servers and a high arrival rate. The main focus is on systems that have time-varying arrival rates and staffing functions. The system is considered under the assumption that there are alternating periods of overloading and underloading, which commonly occurs when service providers are unable to adjust the staffing frequently enough to economically meet demand at all times. The models also allow the realistic features of customer abandonment and non-exponential probability distributions for the service times and the times customers are willing to wait before abandoning. These features make the overall stochastic model non-Markovian and thus thus very difficult to analyze directly. This thesis provides effective algorithms to compute approximate performance descriptions for these complex systems. These algorithms are based on ordinary differential equations and fixed point equations associated with contraction operators. Simulation experiments are conducted to verify that the approximations are effective. This thesis consists of four pieces of work, each presented in one chapter. The first chapter (Chapter 2) develops the basic fluid approximation for a non-Markovian many-server queue with time-varying arrival rate and staffing. The second chapter (Chapter 3) extends the fluid approximation to systems with complex network structure and Markovian routing to other queues of customers after completing service from each queue. The extension to open networks of queues has important applications. For one example, in hospitals, patients usually move among different units such as emergency rooms, operating rooms, and intensive care units. For another example, in manufacturing systems, individual products visit different work stations one or more times. The open network fluid model has multiple queues each of which has a time-varying arrival rate and staffing function. The third chapter (Chapter 4) studies the large-time asymptotic dynamics of a single fluid queue. When the model parameters are constant, convergence to the steady state as time evolves is established. When the arrival rates are periodic functions, such as in service systems with daily or seasonal cycles, the existence of a periodic steady state and the convergence to that periodic steady state as time evolves are established. Conditions are provided under which this convergence is exponentially fast. The fourth chapter (Chapter 5) uses a fluid approximation to gain insight into nearly periodic behavior seen in overloaded stationary many-server queues with customer abandonment and nearly deterministic service times. Deterministic service times are of applied interest because computer-generated service times, such as automated messages, may well be deterministic, and computer-generated service is becoming more prevalent. With deterministic service times, if all the servers remain busy for a long interval of time, then the times customers enter service assumes a periodic behavior throughout that interval. In overloaded large-scale systems, these intervals tend to persist for a long time, producing nearly periodic behavior. To gain insight, a heavy-traffic limit theorem is established showing that the fluid model arises as the many-server heavy-traffic limit of a sequence of appropriately scaled queueing models, all having these deterministic service times. Simulation experiments confirm that the transient behavior of the limiting fluid model provides a useful description of the transient performance of the queueing system. However, unlike the asymptotic loss of memory results in the previous chapter for service times with densities, the stationary fluid model with deterministic service times does not approach steady state as time evolves independent of the initial conditions. Since the queueing model with deterministic service times approaches a proper steady state as time evolves, this model with deterministic service times provides an example where the limit interchange (limiting steady state as time evolves and heavy traffic as scale increases) is not valid.
APA, Harvard, Vancouver, ISO, and other styles
10

Barjesteh, Nasser. "Duality relations in finite queueing models." Thesis, 2013. http://hdl.handle.net/10012/7715.

Full text
Abstract:
Motivated by applications in multimedia streaming and in energy systems, we study duality relations in fi nite queues. Dual of a queue is de fined to be a queue in which the arrival and service processes are interchanged. In other words, dual of the G1/G2/1/K queue is the G2/G1/1/K queue, a queue in which the inter-arrival times have the same distribution as the service times of the primal queue and vice versa. Similarly, dual of a fluid flow queue with cumulative input C(t) and available processing S(t) is a fluid queue with cumulative input S(t) and available processing C(t). We are primarily interested in finding relations between the overflow and underflow of the primal and dual queues. Then, using existing results in the literature regarding the probability of loss and the stationary probability of queue being full, we can obtain estimates on the probability of starvation and the probability of the queue being empty. The probability of starvation corresponds to the probability that a queue becomes empty, i.e., the end of a busy period. We study the relations between arrival and departure Palm distributions and their relations to stationary distributions. We consider both the case of point process inputs as well as fluid inputs. We obtain inequalities between the probability of the queue being empty and the probability of the queue being full for both the time stationary and Palm distributions by interchanging arrival and service processes. In the fluid queue case, we show that there is an equality between arrival and departure distributions that leads to an equality between the probability of starvation in the primal queue and the probability of overflow in the dual queue. The techniques are based on monotonicity arguments and coupling. The usefulness of the bounds is illustrated via numerical results.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Distributions à queues épaisses"

1

Probability and Distributions: With Approximation Studies on Queues. New Delhi, India: South Asian Publishers Pvt. Ltd., 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

King, Russell Edward. Sojourn distributions for particular customers in networks of queues. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Distributions à queues épaisses"

1

Grottke, Michael, Varsha Apte, Kishor S. Trivedi, and Steve Woolet. "Response Time Distributions in Networks of Queues." In International Series in Operations Research & Management Science, 587–641. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6472-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shortle, John, Donald Gross, Martin J. Fischer, and Denise M. B. Masi. "Numerical Methods for Analyzing Queues with Heavy-Tailed Distributions." In Operations Research/Computer Science Interfaces Series, 193–206. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3762-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schassberger, R. "Exact Results on Response Time Distributions in Networks of Queues." In Messung, Modellierung und Bewertung von Rechensystemen, 115–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-87472-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Braband, Jens. "Waiting time distributions for processor sharing queues with state-dependent arrival and service rates." In Computer Performance Evaluation Modelling Techniques and Tools, 111–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58021-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braband, Jens, and Rolf Schaßberger. "Random Quantum Allocation: A new approach to waiting time distributions for M/M/N processor sharing queues." In Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen, 130–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78495-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Joint and Conditional Distributions." In Probability, Markov Chains, Queues, and Simulation, 64–86. Princeton University Press, 2009. http://dx.doi.org/10.2307/j.ctvcm4gtc.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"Chapter 4. Joint and Conditional Distributions." In Probability, Markov Chains, Queues, and Simulation, 64–86. Princeton University Press, 2009. http://dx.doi.org/10.1515/9781400832811-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MEDHI, J. "Queues with General Arrival Time and Service-Time Distributions." In Stochastic Models in Queueing Theory, 339–73. Elsevier, 2003. http://dx.doi.org/10.1016/b978-012487462-6/50007-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

D. KOUVATSOS, Demetres, and Ismail A. MAGEED. "Formalismes de maximum d’entropie non extensive et inférence inductive d’une file d’attente M/G/1 stable à queues lourdes." In Théorie des files d’attente 2, 183–213. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9004.ch5.

Full text
Abstract:
Les méthodes d’inférence inductives maximales de Rényi et de Tsallis sont utilisées pour caractériser de nouvelles probabilités d’état pour une file d’attente M/G/1 stable avec des queues lourdes et des interactions à longue portée de l’ordre q (0.5 q < 1). Ces probabilités s’affichent exactement lorsque les temps de service suivent deux nouvelles familles distinctes de distributions exponentielles généralisées (EG). Une exploration plus poussée de cette méthodologie analytique peut avoir un impact significatif sur l’étude des systèmes de file d’attente complexes.
APA, Harvard, Vancouver, ISO, and other styles
10

Laxmi, P. Vijaya, Veena Goswami, and K. Jyothsna. "Performance Analysis of a Markovian Working Vacations Queue with Impatient Customers." In Advances in Business Information Systems and Analytics, 258–80. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5958-2.ch013.

Full text
Abstract:
This chapter analyzes a steady-state finite buffer M/M/1 working vacation queue wherein the customers can balk or renege. Unlike the classical vacation queues, the server can still render service to customers during the working vacations, at a different rate rather than completely terminating the service. The inter-arrival times of customers follow exponential distribution. The arriving customers either decide not to join the queue (that is, balk) with a probability or leave the queue after joining without getting served due to impatience (that is, renege) according to negative exponential distribution. The service times during a regular busy period, service times during a working vacation period, and vacation times are all independent and exponentially distributed random variables. Using Markov process, the steady-state equations are set and the steady-state system length distributions at arbitrary epoch are derived using blocked matrix method. A cost model is formulated to determine the optimum service rate. Sensitivity analysis is carried out to investigate the impact of the system parameters on various performance indices.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Distributions à queues épaisses"

1

Ciucu, Florin, Felix Poloczek, and Amr Rizk. "Queue and Loss Distributions in Finite-Buffer Queues." In SIGMETRICS '19: ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3309697.3331496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harrison, P. G., and H. Zatschler. "Sojourn time distributions in modulated G-queues with batch processing." In First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. IEEE, 2004. http://dx.doi.org/10.1109/qest.2004.1348023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Snyder, Patricia M., and William J. Stewart. "An approximate numerical solution for multiclass preemptive priority queues with general service time distributions." In the 1985 ACM SIGMETRICS conference. New York, New York, USA: ACM Press, 1985. http://dx.doi.org/10.1145/317795.317820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Konovalov, Mikhail, and Rostislav Razumchik. "Minimizing Mean Response Time In Batch-Arrival Non-Observable Systems With Single-Server FIFO Queues Operating In Parallel." In 35th ECMS International Conference on Modelling and Simulation. ECMS, 2021. http://dx.doi.org/10.7148/2021-0272.

Full text
Abstract:
Consideration is given to a dispatching system, where jobs, arriving in batches, cannot be stored and thus must be immediately routed to single-server FIFO queues operating in parallel. The dispatcher can memorize its routing decisions but at any time instant does not have any system's state information. The only information available is the batch/job size and inter-arrival time distributions, and the servers' service rates. Under these conditions, one is interested in the routing policies which minimize the job's long-run mean response time. The single-parameter routing policy is being proposed which, according to the numerical experiments, outperforms best routing rules known by now for non-observable dispatching systems: probabilistic and deterministic. Both the batch-wise and job-wise assignments are studied. Extension to systems with unreliable servers is also addressed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography