Academic literature on the topic 'District Cooling System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'District Cooling System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "District Cooling System"
Lo, Anthony CW, Phil Jones, and Francis WH Yik. "Effects of pumping station configuration on the energy performance of district cooling systems." Building Services Engineering Research and Technology 38, no. 3 (December 5, 2016): 287–308. http://dx.doi.org/10.1177/0143624416680019.
Full textDuh Čož, Tjaša, Andrej Kitanovski, and Alojz Poredoš. "Primary Energy Factor of a District Cooling System." Strojniški vestnik - Journal of Mechanical Engineering 62, no. 12 (December 15, 2016): 717–29. http://dx.doi.org/10.5545/sv-jme.2016.3777.
Full textChow, T. T., Apple L. S. Chan, and C. L. Song. "Building-mix optimization in district cooling system implementation." Applied Energy 77, no. 1 (January 2004): 1–13. http://dx.doi.org/10.1016/s0306-2619(03)00102-8.
Full textKAWADA, Yoshitaka, and Masaru HATTORI. "District cooling system utilzing latent heat of ice." Journal of the Japanese Society of Snow and Ice 56, no. 2 (1994): 169–79. http://dx.doi.org/10.5331/seppyo.56.169.
Full textSun, Yu Ying, Yao Hua Zhao, Ying Jie Wang, Yan Ting Hu, and Yong Feng Ni. "Control Strategies on Yalong Bay Ice Storage District Cooling System." Advanced Materials Research 433-440 (January 2012): 7083–88. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.7083.
Full textCharani Shandiz, Saeid, Alice Denarie, Gabriele Cassetti, Marco Calderoni, Antoine Frein, and Mario Motta. "A Simplified Methodology for Existing Tertiary Buildings’ Cooling Energy Need Estimation at District Level: A Feasibility Study of a District Cooling System in Marrakech." Energies 12, no. 5 (March 12, 2019): 944. http://dx.doi.org/10.3390/en12050944.
Full textJangsten, Maria, Peter Filipsson, Torbjörn Lindholm, and Jan-Olof Dalenbäck. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings." Energy 199 (May 2020): 117407. http://dx.doi.org/10.1016/j.energy.2020.117407.
Full textInayat, Abrar, and Mohsin Raza. "District cooling system via renewable energy sources: A review." Renewable and Sustainable Energy Reviews 107 (June 2019): 360–73. http://dx.doi.org/10.1016/j.rser.2019.03.023.
Full textWang, Lu, Yun Zhen, Sun Qi Zeng, and WeiXiong Liu. "Deployment mode of District centralized cooling system in City." IOP Conference Series: Earth and Environmental Science 587 (October 23, 2020): 012056. http://dx.doi.org/10.1088/1755-1315/587/1/012056.
Full textKhir, Reem, and Mohamed Haouari. "Optimization models for a single-plant District Cooling System." European Journal of Operational Research 247, no. 2 (December 2015): 648–58. http://dx.doi.org/10.1016/j.ejor.2015.05.083.
Full textDissertations / Theses on the topic "District Cooling System"
VILAFRANCA, MANGUÁN ANA. "Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system." Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4145.
Full textAstra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system.
The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios.
The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.
Chan, Lok Shun Apple. "Optimisation of piping network design for district cooling system." Thesis, De Montfort University, 2008. http://hdl.handle.net/2086/4109.
Full textKang, Di. "Potential advantages of applying a centralized chilled water system to high-density urban areas in China." Kansas State University, 2017. http://hdl.handle.net/2097/35490.
Full textDepartment of Architectural Engineering and Construction Science
Fred L. Hasler
This paper discusses the advantages of applying a utility centralized chilled water system as the district cooling choice for facilities in the high-density urban areas of China and how it will influence China’s development in the next decades. Presently, the Chinese government is trying to contribute to the world’s energy-saving goals as well as determine its sustainable development framework. As air pollution has become one of the main problems in China, indoor air quality (IAQ) is likely to gain priority as a building design consideration in the future. Consistent with this fact, this paper proposes an optimum HVAC system for cooling purposes to the Chinese government. Compared to unitary HVAC systems, the centralized HVAC system has significant advantages in system efficiency, energy reduction and cost savings and can, therefore, be a better choice. Furthermore, the paper will focus on the centralized chilled water system and demonstrate why they better match the development model in China. The application of the system in high-density urban areas will also be discussed. Due to a lack of understanding that the energy consumption of unitary systems, the first comparison presented is between unitary HVAC systems and centralized HVAC systems in individual buildings. The comparison presented will focus on the energy-saving benefits of the centralized HVAC system in individual buildings and its contribution to sustainable development. Consequently, prescribing a centralized chilled water system as a utility district cooling system and applying a centralized chilled water system to each individual building in the highdensity urban areas will be compared. Cost savings, including initial cost and life cycle cost, are the metrics used in this comparison. Additionally, energy consumption and system reliability will be explored in determining which model will be more appropriate for China's development. The paper concludes that the centralized chilled water system should become the mainstream in the high-density urban area in China. Several recommendations are also made to the Chinese government on setting up utility centralized chilled water systems.
Xu, Chen. "Hydraulic modeling of large district cooling systems for master planning purposes." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5862.
Full textLe, Alex. "An economic comparison between two district cooling systems in Halmstad." Thesis, Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-25752.
Full textKamal, Majd. "Potential for low temperature district heating system : Integrating 4th generation district heating system with existing technology." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35816.
Full textCalance, Marius Alexandru. "Energy Losses Study on District Cooling Pipes : Steady-state Modeling and Simulation." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18490.
Full textDistribution losses are a very important factor in district energy systems. By optimizing the losses in such a system, both economical and environmental aspects can be fulfilled. Unfortunately, there is few information regarding losses for district cooling systems. This study focuses on losses in district cooling networks by using both R-network and FEM simulation models. A R-network model composed of thermal conductances has been developed through analytical equations and simulations have been performed for validation. Afterwards, an in-progress construction project of a district cooling network from the city of Gävle, Sweden, is analyzed. The assessment consists of 15 pipe diameters in three configurations (two symmetric cases and one asymmetric), at three ground laying depths (0.8, 2 and 4 meters) for a duration of 7 months (April to October). A particular case in which the main distribution pipes from and to the plant are submerged in the city’s river for a distance of 1 km is investigated in order to estimate the temperature increase of the supply water. A maximum cooling loss below 2% of the total delivered energy during the season for any network configuration resulted from the calculation. Finally, the mixed pipes array seems to be a feasible investment both economically and technically but it cannot be used for the entire network spread since a part of the network has been already built with the non-insulated plastic pipes. The R-network model proved to be effective and reliable in the analysis which provides confidence that it can serve as a solid foundation for a calculation tool - primarily for design purposes and also for estimating energy loss.
Lo, Anthony. "Optimizing the cost and energy performance of district cooling system with the low delta-T syndrome." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/68282/.
Full textDjuric, Ilic Danica. "With district heating toward a sustainable future : System studies of district heating and cooling that interact with power, transport and industrial sectors." Doctoral thesis, Linköpings universitet, Energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106899.
Full textSyftet med denna avhandling är att identifiera åtgärder som bör vidtas i FJV-system (FJVS) för att bidra till en hållbar utveckling av FJV och andra relaterade energisystem som transport, industri- och energisektorn. Fyra affärsstrategier är analyserade: att leverera överskottsvärme från produktion av biobränsle för transportsektorn, konvertering av industriella processer till FJV, integration av biobränsleproduktion för transportsektorn i FJVS och integration av FJV-driven absorptionskylteknik i FJVS. Att leverera överskottsvärme från produktion av biobränsle till transportsektorn analyserades med fokus på kostnader för fyra olika produktionstekniker. Integration av biobränsleproduktion till transportsektorn och integration av FJV-driven absorptionskylteknik i FJVS analyserades på Stockholms FJVS med optimeringsmodellen MODEST. När konvertering av industriella processer till FJV analyserades, användes FJVS och industriföretag i Västra Götaland, Östergötlands och Jönköpings län som fallstudier. Metoden MeHLA som används för analys av värmebelastning tillämpades för att analysera effekterna på de lokala FJVS. Resultaten från studierna visar att när biomassa anses vara en obegränsad resurs har FJV en potential att minska den globala konsumtionen av fossila bränslen och de globala utsläppen av växthusgaser som förknippas med transport-, industri- och energisektorn, for samtliga analyserade affärsstrategierna. FJV producenter kan bidra till en hållbar utveckling av transportsektorn genom användningen av överskottsvärme från produktion av transportbiobränsle. Den analyserade affärsstrategin ger lägre produktionskostnader för transportbiobränsle vilket främjar utvecklingen av produktionsteknik som ännu inte är kommersiell. Dessutom möjliggörs utveckling av lokala försörjningskedjor av transportbiobränsle på grund av den storskaliga produktionen av transportbiobränsle i lokala FJVS. Detta kan sedan underlätta införandet av transportbiobränsle i lokala transporter och även minska användningen av bensin och fossil diesel. Konvertering av industriella processer från fossila bränslen och el till FJV är en affärsstrategi som skulle göra FJV-branschen mindre beroende av fossila bränslen. Att använda spillvärme från industriprocesser ökar den totala energieffektiviteten i de industriella processerna och minskar produktionskostnaderna. Genom att dessutom öka FJV-användningen inom industriella produktionsprocesser och genom att konvertera eldriven kompressionskyla till FJV driven komfortabsorptionskyla, minskar säsongsvariationerna av FJV lasten, vilket leder till ett bättre utnyttjande av produktionsanläggningar för FJV. Om produktionsanläggningarna för baslast i FJVS är kraftvärmeverk, leder dessa två affärsstrategier till en ökad elproduktion i FJVS. När marginalproducerad el förknippas med höga utsläpp av växthusgaser (t.ex. när det produceras i koleldade kondenskraftverk), resulterar en minskning av den marginella elproduktionen (på grund av konvertering av industriella processer från el till FJV och på grund av konvertering eldriven kompressionskyla till FJV-driven absorptionkyla) i minskade globala emissioner av växthusgas. Om man däremot tittar på införandet av produktion av transportbiobränsle i FJVS är denna affärsstrategi mindre attraktiv ur ett miljöperspektiv. Orsaken till detta är att investering i produktion av transportbiobränsle istället för i kraftvärmeproduktion, leder till minskad elproduktion i FJVS. Den ökade FJV-användningen inom industrin och införandet av produktion av biobränsle för transportsektorn och FJV driven absorptionskylproduktion i FJVS leder till en ökad användning av biomassa i FJVS. När biomassa anses vara en begränsad resurs, är de miljömässiga fördelarna med att tillämpa dessa affärsstrategier relativt låga eller till och med obefintliga.
Östlin, Robert. "Lämplighetsundersökning av olika system för att producera kyla : Fallstudie för en fastighet med bageri, restaurang och kontor." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32530.
Full textCooling is produced with several completely differentiated methods. This report and case study considers four different methods of cooling, vapor-compression-, absorption-, free- and district cooling. A part of the problem is that the systems have vastly different technical configuration and requirement of a facility, such as geography and vicinity to other big technical system such as district cooling and district heating. The cooling systems are compared to find the method that is most suitable and has the most beneficial assessment. The different methods suitablitiy was graded based on, noise level, size and required maintenance. The facility that constitutes this thesis study has a cooling demand of 150kW, which is attributed to a bakery, a restaurant, an office and cooling benches etc. These have a cooling demand during four summer months, where cooling benches etc also have a demand during the rest of the year. Multiple studies showcase and point out that the cooling demand will grow in the future, even if a precise prognosis is not made. It is also clear that these above-mentioned cooling systems have a continuing role to play going forward. This thesis has foremostly used a literature review to answer the research questions. For the review webpages such as Discovery and ScienceDirect was used. To calculate the energy consumption, running hours and total yearly cost Microsoft Excel was used. Especially when cool produced with the compressor unit. The reference unit has four different operating modes depending on the cooling demand, one of the modes is production with free cooling. To value the share and impact that free cooling has, Microsoft Excel is used in combination with statistical data from SMHI (2020). Microsoft Excel is also used to compile the tables and figures in the “results” section. The pricing published in this report is based on personal communications per e-mail and phone interviews with energy producers and manufacturers of different cooling units. The result of the thesis show that district cooling is the most beneficial solution for cooling the facility. As well as the most suitable system since it is completely maintenance free for a customer. The reason for its profitability is attributed to its low investment cost. Using the nearby river for free cooling was deemed impossible because of its high temperature during the summers. Using absorption cooling was also considered unsuitable for the case object because of the low temperature in the local district heating network during summer times, as well as the high investment cost required because of it. To make absorption cooling suitable an additional system for cooling the processes would have to be installed, which this report has not been able to price.
Books on the topic "District Cooling System"
(Firm), VBB Allen. Feasibility of energy recovery for heat pump-assisted district heating & cooling from the Metro Renton wastewater treatment plant and effluent transfer system: Phase 2 report. Salem, Or: VBB Allen, 1986.
Find full textBejan, Adrian, and Giuseppe Grazzini, eds. Shape and Thermodynamics. Florence: Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-836-9.
Full textLincoln installs district heating/cooling system. [Golden, Colo.?]: Western Area Power Administration, 1990.
Find full textNew York State Energy Research and Development Authority., City of Buffalo Development Downtown, Inc., and Resource Development Associates, eds. Buffalo district heating and cooling system: Technical and economic assessment : final report. Albany, N.Y: NYSERDA, 1986.
Find full textAdvanced District Heating and Cooling (DHC) Systems. Elsevier, 2016. http://dx.doi.org/10.1016/c2014-0-01422-0.
Full textWiltshire, Robin. Advanced District Heating and Cooling (DHC) Systems. Elsevier Science & Technology, 2015.
Find full textBook chapters on the topic "District Cooling System"
Nordin, Adzuieen, Zulhikmi Zali, Mohamad Asyraf Bin Othoman, Shahrul Nahar Omar Kamal, and Didi Asmara Salim. "Feasibility of a District Cooling System in Technical and Vocational Institutions." In Lecture Notes in Mechanical Engineering, 377–83. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0002-2_39.
Full textChen, Zhuolun, Lily Riahi, and Benjamin Hickman. "High Energy-Efficient District Cooling System and Its Engineering Applications in India." In Environmental Science and Engineering, 1419–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_143.
Full textYang, Jianrong, Ying Zhang, Ruipu Wang, Xiaoxiao Shen, Yang Yu, and Gao Yi. "Design and Operation of District Heating and Cooling System in Shanghai International Shipping Service Center." In Handbook of Energy Systems in Green Buildings, 1659–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49120-1_12.
Full textYang, Jianrong, Ying Zhang, Ruipu Wang, Xiaoxiao Shen, Yang Yu, and Gao Yi. "Design and Operation of District Heating and Cooling System in Shanghai International Shipping Service Center." In Handbook of Energy Systems in Green Buildings, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49088-4_12-1.
Full textShah, Yatish T. "HESs for Carbon-Free District Heating and Cooling." In Hybrid Energy Systems, 71–127. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003159421-3.
Full textHamza, Mohamed H., and Hesham Safwat. "Proposed District Cooling Plant for the British University in Egypt Campus." In Lecture Notes in Networks and Systems, 111–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48725-0_12.
Full textLi, Chundie, Jun Lu, Chuck Yu, Xinhui Zhang, and Wenzhuo Wang. "Optimized Configuration of Cooling Source in Districted CCHP System: A Case Study in Guangxi." In Lecture Notes in Electrical Engineering, 461–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39581-9_46.
Full textTol, Hakan İbrahim, İbrahim Dinçer, and Svend Svendsen. "Determining the Optimal Capacities of Renewable-Energy-Based Energy Conversion Systems for Meeting the Demands of Low-Energy District Heating, Electricity, and District Cooling: Case Studies in Copenhagen and Toronto." In Progress in Clean Energy, Volume 2, 777–830. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17031-2_53.
Full text"Major Factors Influencing the Design of a District Cooling System." In District Cooling, 21–30. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371634-4.
Full textWoods, P., and J. Overgaard. "Historical development of district heating and characteristics of a modern district heating system." In Advanced District Heating and Cooling (DHC) Systems, 3–15. Elsevier, 2016. http://dx.doi.org/10.1016/b978-1-78242-374-4.00001-x.
Full textConference papers on the topic "District Cooling System"
Bukshaisha, A., and A. H. Beitelmal. "Energy performance investigation of a district cooling system." In ENERGY QUEST 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/eq160151.
Full textChen, Ge, Biao Yan, Hongcai Zhang, and Yonghua Song. "Optimal power dispatch for district cooling system considering cooling water transport delay." In 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2020. http://dx.doi.org/10.1109/appeec48164.2020.9220450.
Full textYun, Changho, Joon Ahn, and Byung Ha Kang. "Cooling and Dehumidification Characteristics of Desiccant Cooling System in a Residential Environment." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-08015.
Full textZeng, Jing, Qun Xu, Youzhi Ning, and Xiuling Zhang. "Pipe Network Optimization in District Cooling/Heating System: A Review." In 2019 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2019. http://dx.doi.org/10.1109/icris.2019.00042.
Full textBrumana, G., G. Franchini, and E. Ghirardi. "Optimization and performance assessment of a solar district cooling system." In SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5138759.
Full textElSherbini, A. I., and A. M. Al-Qattan. "Fuel Cell Distributed Generation System for Cooling." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65190.
Full textStankovic, Branko. "Gas-Turbine-Cycle District Heating/Cooling-Power System With Refrigerating Exhaust." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37729.
Full textChung, Jae Dong, Yoon-Pyo Lee, Hoseon Yoo, Jae-Heon Lee, Chang-Jun Lee, and Seung-Jae Moon. "Feasibility Study for Ice-Slurry to District Cooling System in Korea." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17336.
Full textLiu, M., D. Barnes, K. Bunz, and N. Rosenberry. "By-Pass Blending Station: An Innovative Secondary In-Building Pump System for District Heating and Cooling Systems." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65106.
Full textBuoro, Dario, Melchiorre Casisi, Piero Pinamonti, and Mauro Reini. "Optimal Lay-Out and Operation of District Heating and Cooling Distributed Trigeneration Systems." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23416.
Full textReports on the topic "District Cooling System"
Lowe, James William. Ground Source Geothermal District Heating and Cooling System. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329477.
Full textWinters, P. J. District cooling: Phase 2, Direct freeze ice slurry system testing. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6300918.
Full textWinters, P. District cooling: Phase 2, Direct freeze ice slurry system testing. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7011359.
Full textTimmerman, R., and W. Broer. DOE grant for assessment of district cooling system for University of Arkansas for Medical Sciences, Little Rock, Arkansas. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7226791.
Full textLeoni, Paolo, Ralf-Roman Schmidt, Roman Geyer, and Patrick Reiter. SWOT analysis of ST integration in DHC systems. IEA SHC Task 55, February 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0002.
Full textBerberich, Magdalena. Market development for large scale SDH/SDC systems in country reports. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0011.
Full textSchmidt, Ralf-Roman, Paolo Leoni, and Hamid Aghaie. The future of DH and the role of solar thermal energy. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0007.
Full textAalto, P. J., and D. B. Chen. Application of imitation steam'' systems to hot water district heating and cooling systems. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5066089.
Full textZakin, J. L., and R. N. Christensen. Reduction of pumping energy losses in district heating and cooling systems. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/7020258.
Full textZakin, J. L. Reduction of pumping energy losses in district heating and cooling systems. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5960215.
Full text