Academic literature on the topic 'District Cooling System'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'District Cooling System.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "District Cooling System"

1

Lo, Anthony CW, Phil Jones, and Francis WH Yik. "Effects of pumping station configuration on the energy performance of district cooling systems." Building Services Engineering Research and Technology 38, no. 3 (December 5, 2016): 287–308. http://dx.doi.org/10.1177/0143624416680019.

Full text
Abstract:
In this paper, a hypothetical district representing the typical urban districts in Hong Kong was considered and a district cooling system model was designed for this district. Mathematical models were tailor-designed for all the major district cooling system equipment to simulate the effects of changing the pumping station’s configuration on the energy performance of the district cooling system. The measures included the use of multiple pumping stations and an unequal number of pumps in each station. In view of the vast number of pumping station combinations possible for analysis, a hydraulic gradient evaluation method was adopted to assist a quick assessment and exploration of those combinations that would be technically feasible. Furthermore, the energy performance of all these technically feasible combinations was evaluated to identify an optimum design that would lead to the lowest electricity consumption. Practical application: In a district cooling system where there is only one main pumping station for distributing chilled water to all the buildings in the district, the chilled water flow rate and pressure head are very high. Adding booster pumping stations can help to reduce pressure head, pump size and hence power demand of the main pumping station. In this paper, the effects of different pumping station configurations on the energy performance of a district cooling system were investigated. The configuration that could mitigate the impacts of a low delta-T on the energy performance of the district cooling system was also identified.
APA, Harvard, Vancouver, ISO, and other styles
2

Duh Čož, Tjaša, Andrej Kitanovski, and Alojz Poredoš. "Primary Energy Factor of a District Cooling System." Strojniški vestnik - Journal of Mechanical Engineering 62, no. 12 (December 15, 2016): 717–29. http://dx.doi.org/10.5545/sv-jme.2016.3777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chow, T. T., Apple L. S. Chan, and C. L. Song. "Building-mix optimization in district cooling system implementation." Applied Energy 77, no. 1 (January 2004): 1–13. http://dx.doi.org/10.1016/s0306-2619(03)00102-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

KAWADA, Yoshitaka, and Masaru HATTORI. "District cooling system utilzing latent heat of ice." Journal of the Japanese Society of Snow and Ice 56, no. 2 (1994): 169–79. http://dx.doi.org/10.5331/seppyo.56.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Yu Ying, Yao Hua Zhao, Ying Jie Wang, Yan Ting Hu, and Yong Feng Ni. "Control Strategies on Yalong Bay Ice Storage District Cooling System." Advanced Materials Research 433-440 (January 2012): 7083–88. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.7083.

Full text
Abstract:
Yalong Bay ice storage district cooling system is a very high degree of automation system, the stategies of which are detailed analyzed in the artical from three parts: refrigerating system, chilled water distribution system and user cooling exchange system. For the benefit of the environment and the oprerating efficiency of power grid, these control strategies are designed on cooling demand and peak load shifting. Now they have been successfully applied to Yalong Bay DCS, through the three control hierarchies: local control, centralized management and optimizing control. The artical has reference value for design on ice storage district cooling system control.
APA, Harvard, Vancouver, ISO, and other styles
6

Charani Shandiz, Saeid, Alice Denarie, Gabriele Cassetti, Marco Calderoni, Antoine Frein, and Mario Motta. "A Simplified Methodology for Existing Tertiary Buildings’ Cooling Energy Need Estimation at District Level: A Feasibility Study of a District Cooling System in Marrakech." Energies 12, no. 5 (March 12, 2019): 944. http://dx.doi.org/10.3390/en12050944.

Full text
Abstract:
In district energy systems planning, the calculation of energy needs is a crucial step in making the investment profitable. Although several computational approaches exist for estimating the thermal energy need of individual buildings, this is challenging at the district level due to the amount of data needed, the diversity of building types, and the uncertainty of connections. The aim of this paper is to present a simplified measurement-based methodology for estimating the cooling energy needs at the district level, which can be employed in the preliminary sizing and design of a district cooling network. The methodology proposed is suitable for tertiary buildings and is based on building electricity bills as historical data to calculate the yearly cooling demand. Then, the developed method is applied to a real case study: the feasibility analysis of a sustainable district cooling network for a hotel district in the city of Marrakech. The designed system foresees a 23-MWcold district cooling network that is 4 km long, supplying 26 GWh of cooling to the tourist area. The results show that the proposed methodology for cooling demand estimation is coherent with the other existing methods in the literature.
APA, Harvard, Vancouver, ISO, and other styles
7

Jangsten, Maria, Peter Filipsson, Torbjörn Lindholm, and Jan-Olof Dalenbäck. "High Temperature District Cooling: Challenges and Possibilities Based on an Existing District Cooling System and its Connected Buildings." Energy 199 (May 2020): 117407. http://dx.doi.org/10.1016/j.energy.2020.117407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Inayat, Abrar, and Mohsin Raza. "District cooling system via renewable energy sources: A review." Renewable and Sustainable Energy Reviews 107 (June 2019): 360–73. http://dx.doi.org/10.1016/j.rser.2019.03.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Lu, Yun Zhen, Sun Qi Zeng, and WeiXiong Liu. "Deployment mode of District centralized cooling system in City." IOP Conference Series: Earth and Environmental Science 587 (October 23, 2020): 012056. http://dx.doi.org/10.1088/1755-1315/587/1/012056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khir, Reem, and Mohamed Haouari. "Optimization models for a single-plant District Cooling System." European Journal of Operational Research 247, no. 2 (December 2015): 648–58. http://dx.doi.org/10.1016/j.ejor.2015.05.083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "District Cooling System"

1

VILAFRANCA, MANGUÁN ANA. "Convesion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system." Thesis, University of Gävle, University of Gävle, Department of Technology and Built Environment, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-4145.

Full text
Abstract:

Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CHP plant was built. It is awarded with the electricity certificate system.

The study investigates the possibility for converting some of the compression cooling to absorption cooling and then analyzes the effects of the district heating system through MODEST optimizations. The effects of the analysis are studied in a system composed by the district heating system in Södertälje and cooling system in Astra Zeneca. In the current system the district heating production is from boiler and compression system supplies cooling to Astra Zeneca. The future system includes a CHP plant for the heating production, and compression system is converted to absorption system in Astra Zeneca. Four effects are analyzed in the system: optimal distribution of the district heating production with the plants available, saving fuel, environmental impact and total cost. The environmental impact has been analyzed considering the marginal electricity from coal condensing plants. The total cost is divided in two parts: production cost, in which district heating cost, purchase of electricity and Emissions Trading cost are included, and investment costs. The progressive changes are introduced in the system as four different scenarios.

The introduction of the absorption machines in the system with the current district heating production increases the total cost due to the low electricity price in Sweden. The introduction of the CHP plant in the district heating production supposes a profit of the production cost with compression system due to the high income of the electricity produced that is sold to the grid; it profit increases when compression is replaced by absorption system. The fuel used in the production of the future system decreases and also the emissions. Then, the future system becomes an opportunity from an environmental and economical point of view. At higher purchase electricity prices predicted in the open electricity market for an immediately future, the future system will become more economically advantageous.

 

 

APA, Harvard, Vancouver, ISO, and other styles
2

Chan, Lok Shun Apple. "Optimisation of piping network design for district cooling system." Thesis, De Montfort University, 2008. http://hdl.handle.net/2086/4109.

Full text
Abstract:
A district cooling system (DeS) is a.scheme for centralised cooling energy distribution which takes advantage of economies of scale and load diversity. . A cooling medium (chilled water) is generated at a central refrigeration plant and then supplied to a district area, comprising multiple buildings, through a closed-loop piping circuit. Because of the substantial capital investment involved, an optimal design of the distribution piping . configuration is one of the crucial factors for successful implementation of a district 1'. cooling scheme. Since there. exists an enormous number of different combinations of the piping configuration, it is not feasible to evaluate each individual case using an exhaustive approach. This thesis exammes the problem of determining an optimal distribution piping configuration using a genetic algorithm (GA). In order to estimate the spatial and temporal distribution of cooling loads; the climatic conditions of Hong Kong were investigated and a weather database in the form of a typical meteorological year (TMY) was developed. Detailed thermal modelling of a number of prototypical buildings was carried out to determine benchmark cooling loads. A novel Local Search/Looped Local Search algorithm was developed for finding optimal/near-optimal distribution piping configurations. By means of computational . experiments, it was demonstrated that there is a promising improvement to GA performance by including the Local Search/Looped Local Search algorithm, in terms of both solution quality and computational efficiency. The effects on the search performance of a number of parameters were systematically investigated to establish the most effective settings. In order to illustrate the effectiveness of the Local Search/Looped Local Search algorithm, a benchmark problem - the optimal communication,spanning tree (OCST) was used for comparison. The results showed that the Looped Local Search method developed in this work was an effective tool for optimal network design of the distribution piping system in DCS, as well as for optimising the OCST problem.
APA, Harvard, Vancouver, ISO, and other styles
3

Kang, Di. "Potential advantages of applying a centralized chilled water system to high-density urban areas in China." Kansas State University, 2017. http://hdl.handle.net/2097/35490.

Full text
Abstract:
Master of Science
Department of Architectural Engineering and Construction Science
Fred L. Hasler
This paper discusses the advantages of applying a utility centralized chilled water system as the district cooling choice for facilities in the high-density urban areas of China and how it will influence China’s development in the next decades. Presently, the Chinese government is trying to contribute to the world’s energy-saving goals as well as determine its sustainable development framework. As air pollution has become one of the main problems in China, indoor air quality (IAQ) is likely to gain priority as a building design consideration in the future. Consistent with this fact, this paper proposes an optimum HVAC system for cooling purposes to the Chinese government. Compared to unitary HVAC systems, the centralized HVAC system has significant advantages in system efficiency, energy reduction and cost savings and can, therefore, be a better choice. Furthermore, the paper will focus on the centralized chilled water system and demonstrate why they better match the development model in China. The application of the system in high-density urban areas will also be discussed. Due to a lack of understanding that the energy consumption of unitary systems, the first comparison presented is between unitary HVAC systems and centralized HVAC systems in individual buildings. The comparison presented will focus on the energy-saving benefits of the centralized HVAC system in individual buildings and its contribution to sustainable development. Consequently, prescribing a centralized chilled water system as a utility district cooling system and applying a centralized chilled water system to each individual building in the highdensity urban areas will be compared. Cost savings, including initial cost and life cycle cost, are the metrics used in this comparison. Additionally, energy consumption and system reliability will be explored in determining which model will be more appropriate for China's development. The paper concludes that the centralized chilled water system should become the mainstream in the high-density urban area in China. Several recommendations are also made to the Chinese government on setting up utility centralized chilled water systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Chen. "Hydraulic modeling of large district cooling systems for master planning purposes." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5862.

Full text
Abstract:
District Cooling Systems (DCS) have been widely applied in large institutions such as universities, government facilities, commercial districts, airports, etc. The hydraulic system of a large DCS can be complicated. They often stem from an original design that has had extensive additions and deletions over time. Expanding or retrofitting such a system involves large capital investment. Consideration of future expansion is often required. Therefore, a thorough study of the whole system at the planning phase is crucial. An effective hydraulic model for the existing DCS will become a powerful analysis tool for this purpose. Engineers can use the model to explore alternative system configurations to find an optimal way of accommodating the DCS hydraulic system to the planned future unit. This thesis presents the first complete procedure for the use of commercial simulation software to construct the hydraulic model for a large District Cooling System (DCS). A model for one of the largest DCS hydraulic systems in the United States has been developed based on this procedure and has been successfully utilized to assist its master planning study.
APA, Harvard, Vancouver, ISO, and other styles
5

Le, Alex. "An economic comparison between two district cooling systems in Halmstad." Thesis, Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-25752.

Full text
Abstract:
The supply of cooling has increased significantly in recent years, the trend shows that the increase will continue one reason is that the standard of living has increased, but EU has also set a requirement that energy consumption must be better at the same time. With “better” means more efficient and environmentally friendly. District cooling today uses either chillers or naturally available cold sources such as deep sea water, lake water or cold air. Cold air is, of course, only available when the seasons permit it and the cold air is not available when comfort cooling is needed for e.g. offices. The only alternative for areas that do not have a cold water source nearby is to use chillers. The most common chillers today are compressor chillers and absorption chillers. The most interesting chiller for the energy and environmental company HEM in Halmstad, is the absorption chiller which is driven by heat. HEM has, during the summer, surplus heat produced in Kristinehed plant which they want to use, they also have an increased inventory of waste during the summer which they get from the municipality of Halland. This heat is, of course, qualified to be used in the making of cold. Absorption chillers is today, however, not as common as compressor chillers which are capable of dealing with most cooling capacities, from small to large, and simultaneously works more or less flawlessly. Most of today’s absorption chillers are of a few hundred kW and upwards while there are no absorption chillers for the smaller effects, they are also very expensive and can have problems with crystallization of the absorbent if the operation is handled incorrectly. But it’s also expensive when it comes to piping of district cooling networks depending on where the pipes are desired, for example if it is the middle of town or over a grass field. A fictional project of the area Sannarp is used for a case study in this thesis where one investment alternative was to extend the existing district cooling pipes and another alternative was to invest in absorption chillers to meet the company's cooling demand. The results were obviously much affected by the area's layout and the distance to the first company starting from the existing pipe. The company's cooling demand also affected the results and the first alternatives investment cost could only be competitive with alternative 2 because the distance was just of the right length. If the distance to the company had been shorter, then the cooling demand for the same company has had to be less. The conclusion of the project was still in the end that and expansion of the current district cooling network to the company was the most feasible and economically advantageous.
APA, Harvard, Vancouver, ISO, and other styles
6

Kamal, Majd. "Potential for low temperature district heating system : Integrating 4th generation district heating system with existing technology." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-35816.

Full text
Abstract:
This project presents a feasibility study and an investigation of the potential for low temperature district heating system in Västerås. The investigation treats integrations possibilities for 4GDH (4th Generation District Heating) in Kungsängens area in Västerås, which is undergoing a large-scale building-up and construction.  The study is conducted for the company Mälarenergi AB. The advantages of 4GDH technology are identified and analyzed, where energy effectiveness and economic benefits aspects were concluded. Problems with existing technology and higher cooling demand expectations drive 4GDH to be an interesting and necessary technology in the future. Four Different integration solutions between old and new networks are presented, analyzed and discussed. Quantitative analysis conducted where initial cost for the four technical solutions were estimated and compared. The results show that low temperature district heating could lead to reduction in the initial cost for the network by using PEX instead of steel as pipe material. The results show also that one solution using heat exchanger as exchange stations has the lowest cost between the four solutions. The results show that the cost for the retention flow that is linked with 4GDH stands for 20%-30% of the total cost. The importance of the retention flow pipe is investigated using two physical models in OpenModelica and Excel, where simulations were conducted. It is concluded that it is possible to provide Kungsängen area with low temperature district heating without having the retention flow pipe. Three parameters were identified to be critical which are, geographical placement of the consumers, pattern variation for the heat demand and heat systems installed inside consumer’s buildings. The results show also that it might be critical to have a variate and optimized supply temperature for the area, depending on the demand. The simulations of a fictive area that could present a future heat demand for Kungsängen area shows that a temperature of 55°C is satisfying during winter season where the demand is high and a temperature between 60-65°C must be available during spring/autumn seasons and specially during summer. The variation depends directly on the temperature drop through the supply pipes to the consumers. The temperature drop is directly linked with water velocity inside the pipes. The losses increase during summer nights when the heat demand is low which lead to low water velocities.
APA, Harvard, Vancouver, ISO, and other styles
7

Calance, Marius Alexandru. "Energy Losses Study on District Cooling Pipes : Steady-state Modeling and Simulation." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18490.

Full text
Abstract:
Distributionsförluster är en viktig faktor i fjärrenergisystem. Genom att optimera förluster i sådana system, kan både ekonomiska och miljömässiga aspekter uppfyllas. Tyvärr finns det ringa information om rörförluster i fjärrkylasystem. Föreliggande studie fokuserar på förluster i ett fjärrkylanät genom att både använda ett R-nätverk och FEM simuleringsmodeller. Ett R-nätverksmodell bestående av termiska konduktanser har utvecklats genom analytiska ekvationer och simuleringar med FEM har utfört för validering av modellen. Därefter har ett fjärrkylanätverk som konstrueras i Gävle, analyserats. Undersökningen omfattar 15 olika rördiametrar i tre utföranden (dubbelrör med två symmetriska och en osymmetrisk värmeisolering) och i tre förläggningsdjup (0,8; 2 och 4 meter) för en säsong om 7 månader (April t o m Oktober). Särskilt utreds ökningen av temperaturen hos framledningsmediet, där matningsrören förlagts i en å mitt i staden om en sträcka av 1 km. Den maximala förlusten under säsongen, bland alla rörkonfigurationer, motsvarar 2 % av den totala levererade energin. Slutligen konstateras att kombinationen av isolerad framledningsrör och oisolerade returrör verkar som en gångbar investering, ekonomiskt och tekniskt, men kan inte användas i hela nätet eftersom stora delar har redan byggts med oisolerade plaströr. R-nätverksmodellen, som visades vara effektiv och pålitlig i undersökningen, kan som beräkningsverktyg, framförallt för dimensionering och för att uppskatta energiförluster.
Distribution losses are a very important factor in district energy systems. By optimizing the losses in such a system, both economical and environmental aspects can be fulfilled. Unfortunately, there is few information regarding losses for district cooling systems. This study focuses on losses in district cooling networks by using both R-network and FEM simulation models. A R-network model composed of thermal conductances has been developed through analytical equations and simulations have been performed for validation. Afterwards, an in-progress construction project of a district cooling network from the city of Gävle, Sweden, is analyzed. The assessment consists of 15 pipe diameters in three configurations (two symmetric cases and one asymmetric), at three ground laying depths (0.8, 2 and 4 meters) for a duration of 7 months (April to October). A particular case in which the main distribution pipes from and to the plant are submerged in the city’s river for a distance of 1 km is investigated in order to estimate the temperature increase of the supply water. A maximum cooling loss below 2% of the total delivered energy during the season for any network configuration resulted from the calculation. Finally, the mixed pipes array seems to be a feasible investment both economically and technically but it cannot be used for the entire network spread since a part of the network has been already built with the non-insulated plastic pipes. The R-network model proved to be effective and reliable in the analysis which provides confidence that it can serve as a solid foundation for a calculation tool - primarily for design purposes and also for estimating energy loss.
APA, Harvard, Vancouver, ISO, and other styles
8

Lo, Anthony. "Optimizing the cost and energy performance of district cooling system with the low delta-T syndrome." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/68282/.

Full text
Abstract:
Almost every chilled water system is affected by the low delta-T syndrome in which the supply and return chilled water temperatures falls short of the design level, particularly at low loads. This results in inefficient chillers and higher energy consumption of the chiller plant. This research is aimed at designing a district cooling system (DCS) that can accommodate the low delta-T problem and minimize its impact on the DCS’ energy performance. Methodologies were developed to minimize DCS energy consumption and running cost, particularly those related to the chiller plant and pumping station. A hypothetical urban district and a baseline DCS were set up for simulation of alternative designs to be evaluated and compared. Energy efficiency enhancement measures related to chiller system configuration, pumping station configuration and chilled water temperature were also evaluated. Moreover, mathematical models that simulate the performance of major DCS components were developed. These models were integrated to become a DCS model for identifying an optimum design. A life cycle cost (LCC) model was also adopted for identifying a cost optimal design solution that would result in the lowest LCC and an optimum energy performance when the DCS was operated under low delta-T conditions. The variants of DCS design evaluated include five combinations of chiller system configuration, eight chilled water temperature regimes, and 36,192 arrangements of pumping stations. A simple heuristic strategy was adopted to greatly reduce the number of design solutions to be studied. The energy, financial and environmental performances of these possible solutions were then evaluated. The results show that the optimum design in respect of energy performance, denoted as “Solution E”, could save 15.3% of the annual total electricity consumption of DCSO. After evaluating the LCC of each possible solution, it was found that instead of Solution E, “Solution C” was the most cost-effective. This cost-optimal design was about 7.5% lower in LCC than the baseline case. The LCC saving would amount to HK$332 million in present value. There were 15 equally-sized variable speed chillers in Solution C. Six pumping stations were located along both the main chilled water supply and return pipes, with five pumps in each station, and the chilled water supply and return temperatures were 5oC and 13oC respectively. This design could lead to a 14.6% reduction in the electricity consumption of DCSO. Although this percentage was about 1% lower than that achieved by Solution E, the LCC of Solution C was more financially favourable due to lower initial capital cost, and life-cycle replacement and maintenance cost. The methods devised in the presented research can help to provide a direction in the search for an integrated DCS design solution that could mitigate the impacts of degrading delta-T on the energy performance of the DCS. The results obtained from this study will enable a DCS owner to evaluate the energy benefits and the associated financial trade-offs. Moreover, the energy-optimal solution identified could lead to fewer impacts on the environment. Had we been able to account for the costs of the environmental impacts as well, the energy-optimal solution could well be the cost-optimal solution as well. This factor should be considered in a selection of the design to adopt in order to help our society achieve a more sustainable future.
APA, Harvard, Vancouver, ISO, and other styles
9

Djuric, Ilic Danica. "With district heating toward a sustainable future : System studies of district heating and cooling that interact with power, transport and industrial sectors." Doctoral thesis, Linköpings universitet, Energisystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106899.

Full text
Abstract:
The aim of this thesis is to identify measures which should be taken in DH systems (DHSs) in order to contribute to the development of the DHSs and other energy systems (especially transport, industrial and power sectors) toward sustainability. Four business strategies were analysed: delivering excess heat from biofuel production industry to DHSs, conversion of industrial processes to DH, integration of biofuel production in DHSs and integration of DHdriven absorption cooling technology in DHSs. Delivering excess heat from biofuel production industry to DHSs was analysed with a focus on the biofuel production costs for four biofuel production technologies. Integration of biofuel production and integration of DH-driven absorption cooling technology in DHSs were analysed with a focus on Stockholm’s DHS, using an optimisation model framework called MODEST. When the conversion of industrial processes to DH was analysed, DHSs and industrial companies in Västra Götaland, Östergötland and Jönköping counties were used as case studies; a method for heat load analysis called MeHLA was used to analyse the effects on the local DHSs. The results showed that when considering biomass an unlimited resource, by applying the abovementioned business strategies DH has a potential to reduce global fossil fuel consumption and global GHG emissions associated with power, industrial and transport sectors. DH producers may contribute to the sustainable development of the  transport sector by buying excess heat from the biofuel production industry. This business strategy results in lower biofuel production costs, which promotes development of biofuel production technologies that are not yet commercial. Moreover, introduction of large-scale biofuel production into local DHSs enables development of local biofuel supply chains; this may facilitate the introduction of biofuel in the local transport sectors and subsequently decrease gasoline and fossil diesel use. Conversion of industrial processes from fossil fuels and electricity to DH is a business strategy which would make the industry less dependent on fossil fuels and fossil fuelbased electricity. DH may also contribute to the sustainable development of the industry by buying waste heat from industrial processes, since this strategy increases the total energy efficiency of the industrial processes and reduces production costs. Furthermore, DH has a possibility to reduce fossil fuel consumption and subsequently GHG emissions in the power sector by producing electricity in biomass- or waste-fuelled CHP plants. When the marginal electricity is associated with high GHG emissions (e.g. when it is produced in coal-fired condensing power (CCP)) plants, the reduction of the marginal electricity production (due to the conversion of industrial processes from electricity to DH and due to the conversion of compression cooling to DHdriven absorption cooling) results in higher environmental benefits. On the other hand, the introduction of biofuel production into DHSs becomes less attractive from an environmental viewpoint, because the investments in biofuel production instead of in CHP production lead to lower electricity production in the DHSs. The increased DH use in industry and introduction of the biofuel production and DH-driven absorption cooling production into the DHSs lead to increased biomass use in the DHSs. Because of this, if biomass is considered a limited resource, the environmental benefits of applying these business strategies are lower or non-existent.
Syftet med denna avhandling är att identifiera åtgärder som bör vidtas i FJV-system (FJVS) för att bidra till en hållbar utveckling av FJV och andra relaterade energisystem som transport, industri- och energisektorn. Fyra affärsstrategier är analyserade: att leverera överskottsvärme från produktion av biobränsle för transportsektorn, konvertering av industriella processer till FJV, integration av biobränsleproduktion för transportsektorn i FJVS och integration av FJV-driven absorptionskylteknik i FJVS. Att leverera överskottsvärme från produktion av biobränsle till transportsektorn analyserades med fokus på kostnader för fyra olika produktionstekniker. Integration av biobränsleproduktion till transportsektorn och integration av FJV-driven absorptionskylteknik i FJVS analyserades på Stockholms FJVS med optimeringsmodellen MODEST. När konvertering av industriella processer till FJV analyserades, användes FJVS och industriföretag i Västra Götaland, Östergötlands och Jönköpings län som fallstudier. Metoden MeHLA som används för analys av värmebelastning tillämpades för att analysera effekterna på de lokala FJVS. Resultaten från studierna visar att när biomassa anses vara en obegränsad resurs har FJV en potential att minska den globala konsumtionen av fossila bränslen och de globala utsläppen av växthusgaser som förknippas med transport-, industri- och energisektorn, for samtliga analyserade affärsstrategierna. FJV producenter kan bidra till en hållbar utveckling av transportsektorn genom användningen av överskottsvärme från produktion av transportbiobränsle. Den analyserade affärsstrategin ger lägre produktionskostnader för transportbiobränsle vilket främjar utvecklingen av produktionsteknik som ännu inte är kommersiell. Dessutom möjliggörs utveckling av lokala försörjningskedjor av transportbiobränsle på grund av den storskaliga produktionen av transportbiobränsle i lokala FJVS. Detta kan sedan underlätta införandet av transportbiobränsle i lokala transporter och även minska användningen av bensin och fossil diesel. Konvertering av industriella processer från fossila bränslen och el till FJV är en affärsstrategi som skulle göra FJV-branschen mindre beroende av fossila bränslen. Att använda spillvärme från industriprocesser ökar den totala energieffektiviteten i de industriella processerna och minskar produktionskostnaderna. Genom att dessutom öka FJV-användningen inom industriella produktionsprocesser och genom att konvertera eldriven kompressionskyla till FJV driven komfortabsorptionskyla, minskar säsongsvariationerna av FJV lasten, vilket leder till ett bättre utnyttjande av produktionsanläggningar för FJV. Om produktionsanläggningarna för baslast i FJVS är kraftvärmeverk, leder dessa två affärsstrategier till en ökad elproduktion i FJVS. När marginalproducerad el förknippas med höga utsläpp av växthusgaser (t.ex. när det produceras i koleldade kondenskraftverk), resulterar en minskning av den marginella elproduktionen (på grund av konvertering av industriella processer från el till FJV och på grund av konvertering eldriven kompressionskyla till FJV-driven absorptionkyla) i minskade globala emissioner av växthusgas. Om man däremot tittar på införandet av produktion av transportbiobränsle i FJVS är denna affärsstrategi mindre attraktiv ur ett miljöperspektiv. Orsaken till detta är att investering i produktion av transportbiobränsle istället för i kraftvärmeproduktion, leder till minskad elproduktion i FJVS. Den ökade FJV-användningen inom industrin och införandet av produktion av biobränsle för transportsektorn och FJV driven absorptionskylproduktion i FJVS leder till en ökad användning av biomassa i FJVS. När biomassa anses vara en begränsad resurs, är de miljömässiga fördelarna med att tillämpa dessa affärsstrategier relativt låga eller till och med obefintliga.
APA, Harvard, Vancouver, ISO, and other styles
10

Östlin, Robert. "Lämplighetsundersökning av olika system för att producera kyla : Fallstudie för en fastighet med bageri, restaurang och kontor." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32530.

Full text
Abstract:
Kyla produceras med ett antal helt skilda metoder. Denna rapport och fallstudie tar hänsyn till fyra metoder för kylning, kompressordriven-, absorptions-, fri-, och fjärrkyla. En del i problematiken är att systemen har mycket olika tekniska utformningar och krav på fastigheten, så som geografi och närhet till stora tekniska system som fjärrvärme och fjärrkyla. Kylsystemen jämfördes för att finna vilket kylsystem som var lämpligast samt vilket som hade den mest gynnsamma taxeringen för fastigheten. Kylsystemens lämplighet bedömdes framförallt efter underhållsbehov, men även storlek och ljudnivå. Fastigheten som utgör examensarbetets studieobjekt har ett kylbehov på 150 kW, vilket attribueras ett bageri, restaurang, kontor samt kylbänkar m.fl. Dessa har ett kylbehov under framförallt fyra sommarmånader, där kylbänkar m.fl även har ett kylbehov under resterande året. Flera studier har gjorts och pekar på att kylbehovet i framtiden kommer att öka, även om en exakt prognos inte kan ges. Det är även tydligt att alla de ovan nämnda kylsystemslösningarna har en roll att spela framöver. Examensarbetet har framförallt använt sig av en litteraturstudie för att besvara frågeställningarna. För litteraturstudien användes hemsidor som Discovery och ScienceDirect. För att beräkna energiförbrukning, drifttider och total kostnad så har Microsoft Excel använts. Framförallt för kylproduktion med kompressor, där det givna referensaggregatet har fyra olika driftfall beroende på kylbehov, varav ett är kylproduktion med frikyla. För att vikta frikylans andel har klimatdata från SMHI (2020) använts. Programmet har även använts för att sammanställa de tabeller och figurer som presenteras i resultatet. Prisförslag har givits efter personliga kommunikation per e-mail och telefonintervjuer med energiproducenter och tillverkare av kylaggregat. Resultatet visade att fjärrkyla var det för studieobjektet mest lönsamma alternativet, det står även för det system som är lämpligast då det är helt underhållsfritt för kunden. Anledningen till dess lönsamhet tillskrevs framförallt dess låga investeringskostnad. Att använda Gavleån för ren frikyla visade sig inte vara möjligt då temperaturen i ån är för hög sommartid. Även absorptionskyla visade sig vara olämpligt för studieobjektet då temperaturen i det lokala fjärrvärmenätet är för låg samtidigt som investeringskostnaden blivit hög. För absorptionskyla hade ett extra system behövts installeras, vilket rapporten inte kunnat prissätta. Rapporten visar däremot att metoden att producera kyla med absorptionsaggregat har potential att under rätt förutsättningar ersätta kompressorkyla. Detta för att minska dels belastningen på elnätet samt som ett sätt att minska CO2-utsläpp globalt, genom export av elektricitet till Europa. Detta arbete visar att dagens teknik är begränsad men att framtida teknik visar sig ha potential. Rapporten fann även att vidare arbete med vinning kunnat utföras för att identifiera absorptionskylas expansionspotential.
Cooling is produced with several completely differentiated methods. This report and case study considers four different methods of cooling, vapor-compression-, absorption-, free- and district cooling. A part of the problem is that the systems have vastly different technical configuration and requirement of a facility, such as geography and vicinity to other big technical system such as district cooling and district heating. The cooling systems are compared to find the method that is most suitable and has the most beneficial assessment. The different methods suitablitiy was graded based on, noise level, size and required maintenance. The facility that constitutes this thesis study has a cooling demand of 150kW, which is attributed to a bakery, a restaurant, an office and cooling benches etc. These have a cooling demand during four summer months, where cooling benches etc also have a demand during the rest of the year. Multiple studies showcase and point out that the cooling demand will grow in the future, even if a precise prognosis is not made. It is also clear that these above-mentioned cooling systems have a continuing role to play going forward. This thesis has foremostly used a literature review to answer the research questions. For the review webpages such as Discovery and ScienceDirect was used. To calculate the energy consumption, running hours and total yearly cost Microsoft Excel was used. Especially when cool produced with the compressor unit. The reference unit has four different operating modes depending on the cooling demand, one of the modes is production with free cooling. To value the share and impact that free cooling has, Microsoft Excel is used in combination with statistical data from SMHI (2020). Microsoft Excel is also used to compile the tables and figures in the “results” section. The pricing published in this report is based on personal communications per e-mail and phone interviews with energy producers and manufacturers of different cooling units. The result of the thesis show that district cooling is the most beneficial solution for cooling the facility. As well as the most suitable system since it is completely maintenance free for a customer. The reason for its profitability is attributed to its low investment cost. Using the nearby river for free cooling was deemed impossible because of its high temperature during the summers. Using absorption cooling was also considered unsuitable for the case object because of the low temperature in the local district heating network during summer times, as well as the high investment cost required because of it. To make absorption cooling suitable an additional system for cooling the processes would have to be installed, which this report has not been able to price.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "District Cooling System"

1

(Firm), VBB Allen. Feasibility of energy recovery for heat pump-assisted district heating & cooling from the Metro Renton wastewater treatment plant and effluent transfer system: Phase 2 report. Salem, Or: VBB Allen, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bejan, Adrian, and Giuseppe Grazzini, eds. Shape and Thermodynamics. Florence: Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-836-9.

Full text
Abstract:
Shape and Thermodynamics is a two-day international Workshop focused on the Constructal Theory of generation of configuration in nature and engineering. From the early developments related to tree configurations for the cooling of electronics, today Constructal theory is being applied to conceptual design of transportation net-works, river basins, living bodies, building materials and many other flow systems. Constructal theory is also enriching thermo-dynamics, from basic theory to design and optimization. This theory approaches design "as science", with the generation of configuration regarded as a phenomenon of all physics, based on principle (the Constructal law). For example, Constructal Theory contributes to the evolution of fuel cells, in the design of cooling channels, the optimal feeding of reactants, etc. Important applications are also found in the design of heat exchangers, district heating networks, etc. The growing scientific literature on Constructal Theory has an important Italian component, although further dissemination is timely. Moreover, the relation with other thermodynamic research areas deserves to be explored. Website: Shape and Thermodinamics
APA, Harvard, Vancouver, ISO, and other styles
3

Lincoln installs district heating/cooling system. [Golden, Colo.?]: Western Area Power Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

New York State Energy Research and Development Authority., City of Buffalo Development Downtown, Inc., and Resource Development Associates, eds. Buffalo district heating and cooling system: Technical and economic assessment : final report. Albany, N.Y: NYSERDA, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Advanced District Heating and Cooling (DHC) Systems. Elsevier, 2016. http://dx.doi.org/10.1016/c2014-0-01422-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wiltshire, Robin. Advanced District Heating and Cooling (DHC) Systems. Elsevier Science & Technology, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "District Cooling System"

1

Nordin, Adzuieen, Zulhikmi Zali, Mohamad Asyraf Bin Othoman, Shahrul Nahar Omar Kamal, and Didi Asmara Salim. "Feasibility of a District Cooling System in Technical and Vocational Institutions." In Lecture Notes in Mechanical Engineering, 377–83. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0002-2_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Zhuolun, Lily Riahi, and Benjamin Hickman. "High Energy-Efficient District Cooling System and Its Engineering Applications in India." In Environmental Science and Engineering, 1419–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Jianrong, Ying Zhang, Ruipu Wang, Xiaoxiao Shen, Yang Yu, and Gao Yi. "Design and Operation of District Heating and Cooling System in Shanghai International Shipping Service Center." In Handbook of Energy Systems in Green Buildings, 1659–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49120-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Jianrong, Ying Zhang, Ruipu Wang, Xiaoxiao Shen, Yang Yu, and Gao Yi. "Design and Operation of District Heating and Cooling System in Shanghai International Shipping Service Center." In Handbook of Energy Systems in Green Buildings, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49088-4_12-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shah, Yatish T. "HESs for Carbon-Free District Heating and Cooling." In Hybrid Energy Systems, 71–127. First edition. | Boca Raton, FL : CRC Press, 2021. |: CRC Press, 2021. http://dx.doi.org/10.1201/9781003159421-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamza, Mohamed H., and Hesham Safwat. "Proposed District Cooling Plant for the British University in Egypt Campus." In Lecture Notes in Networks and Systems, 111–22. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48725-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Chundie, Jun Lu, Chuck Yu, Xinhui Zhang, and Wenzhuo Wang. "Optimized Configuration of Cooling Source in Districted CCHP System: A Case Study in Guangxi." In Lecture Notes in Electrical Engineering, 461–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39581-9_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tol, Hakan İbrahim, İbrahim Dinçer, and Svend Svendsen. "Determining the Optimal Capacities of Renewable-Energy-Based Energy Conversion Systems for Meeting the Demands of Low-Energy District Heating, Electricity, and District Cooling: Case Studies in Copenhagen and Toronto." In Progress in Clean Energy, Volume 2, 777–830. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17031-2_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Major Factors Influencing the Design of a District Cooling System." In District Cooling, 21–30. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315371634-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woods, P., and J. Overgaard. "Historical development of district heating and characteristics of a modern district heating system." In Advanced District Heating and Cooling (DHC) Systems, 3–15. Elsevier, 2016. http://dx.doi.org/10.1016/b978-1-78242-374-4.00001-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "District Cooling System"

1

Bukshaisha, A., and A. H. Beitelmal. "Energy performance investigation of a district cooling system." In ENERGY QUEST 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/eq160151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Ge, Biao Yan, Hongcai Zhang, and Yonghua Song. "Optimal power dispatch for district cooling system considering cooling water transport delay." In 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). IEEE, 2020. http://dx.doi.org/10.1109/appeec48164.2020.9220450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yun, Changho, Joon Ahn, and Byung Ha Kang. "Cooling and Dehumidification Characteristics of Desiccant Cooling System in a Residential Environment." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-08015.

Full text
Abstract:
Desiccant and water evaporation based cooling system is recently suggested as an alternative to refrigeration systems using typical vapor compression cycle for the purpose of energy saving and greenhouse gas reduction. The system receives the heat for the regeneration of the rotor from district heating, which is waste heat from a CHP plant or an incineration plant. KDHC (Korea District Heating Corporation) installed 4 systems at 4 individual houses in Su-Won, Korea and conducted field tests from Aug. 2010 to Sep. 2010. In this study, indoor conditions have been measured when the system is off as well as in operation. Also indoor conditions have been characterized according to outdoor conditions and users’ operation. Referring the ASHRAE standard, the cooling system in operation has been checked whether it could make indoor conditions comfortable or not. By analyzing the monitored variables, performance characteristics of the system were figured out. Major characteristics such as cooling capacity, heat & electricity consumption, and the COP of the system have been compared with those from the previous laboratory experiment.
APA, Harvard, Vancouver, ISO, and other styles
4

Zeng, Jing, Qun Xu, Youzhi Ning, and Xiuling Zhang. "Pipe Network Optimization in District Cooling/Heating System: A Review." In 2019 International Conference on Robots & Intelligent System (ICRIS). IEEE, 2019. http://dx.doi.org/10.1109/icris.2019.00042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brumana, G., G. Franchini, and E. Ghirardi. "Optimization and performance assessment of a solar district cooling system." In SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5138759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ElSherbini, A. I., and A. M. Al-Qattan. "Fuel Cell Distributed Generation System for Cooling." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65190.

Full text
Abstract:
Air conditioning (A/C) systems are the major consumers of power in hot climates. In a country like Kuwait, A/C accounts for 85% of power supplied to homes during peak hours and 55% of annual energy consumption by the residential sector. A fuel-cell-based cogeneration system is proposed to improve the efficiency of generating and utilizing power for cooling in residential buildings. Distributed electric power is generated by a solid oxide fuel cell (SOFC). The electricity is used to operate high-efficiency water-cooled chillers in a district-cooling setup, which replaces packaged A/C units typically used for homes. The exhaust fuel and heat from the SOFC operate a gas turbine and an absorption chiller. A thermal energy storage tank is used for storing chilled water to reduce the total capacity of the system and, hence, capital investment. The integrated fuel-cell air-conditioning (FCAC) system improves the cooling-to-fuel efficiency, expressed as coefficient of performance, by 375%. The peak power requirement is reduced by 65% and the total fuel energy is reduced by 58%. An example system of 2 MW delivers 3750 RT (13.2 MW) of cooling to a district. Over a 9-month period, it saves 94 TJ of fuel energy and feeds 5.21 GWh of electricity to the grid as a surplus.
APA, Harvard, Vancouver, ISO, and other styles
7

Stankovic, Branko. "Gas-Turbine-Cycle District Heating/Cooling-Power System With Refrigerating Exhaust." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37729.

Full text
Abstract:
A gas-turbine-cycle modification has been proposed, optimized primarily for (district) heating purposes, with a side-effect of obtaining gas-turbine exhaust gas at very low temperatures and potentially GHG-emission-free. Since its primary purpose is district heating without power generation, the associated gas-turbine-cycle equipment (compressors, turbines, heat exchangers) is typically arranged so that a maximum possible ratio of heat output and heat input is achieved. Whenever the heat ratio is greater than unity, that is, greater than 100% of the heat input, the exhaust gas temperature at the last gas-turbine exit is lower than atmospheric temperature. In other words, this means that it is possible to achieve greater heat output (or GT-cycle “waste heat”) than the heat input, at the “expense” of the cold GT exhaust gas (its internal energy). It is possible to arrange proposed GT-cycle modification in various configurations, such as: simple GT cycle, recuperated, intercooled, intercooled-recuperated, reheat-recuperated and intercooled-reheat-recuperated GT cycle. Maximum achievable ratio of heat output and heat input is estimated to about 1.15 (115%) and corresponding minimum GT exhaust gas temperature can be lower than the CO2 solidification temperature at atmospheric pressure (−78°C or 195 K or −108.4°F). This also means that the GT exhaust-gas stream could be entirely GHG-emission-free, without GHG-s like H2O and/or CO2, which could therefore be captured and sequestered in solid state, and in addition at very low refrigerating temperature. Such low-temperature GT exhaust gas could then be used for refrigeration purposes, or ultimately to refrigerate the Earth’s atmosphere and thus mitigate global-warming effects. The proposed GT-cycle heating system can operate also in the combined heating/cooling and power (CCHP) mode or in the stand-alone power generation mode using a combined-cycle configuration. In such operating modes/regimes, the heating part of the CHP system could still maintain its inherent advantages (achievement of the ratio of heat output and heat input greater than unity, potentially GHG-emission-free GT exhaust gas at refrigerating temperature levels), with CC thermal efficiencies only slightly lower than today’s typical values and with the CHP performance similar or better than modern GTCC or steam-turbine based CHP cycles.
APA, Harvard, Vancouver, ISO, and other styles
8

Chung, Jae Dong, Yoon-Pyo Lee, Hoseon Yoo, Jae-Heon Lee, Chang-Jun Lee, and Seung-Jae Moon. "Feasibility Study for Ice-Slurry to District Cooling System in Korea." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17336.

Full text
Abstract:
The district-cooling system (DCS) was in service in Sang-am in Seoul, Korea after 2005. The facility capacity of the DCS in Sang-am is 111Gcal/h at 2011 and 63Gcal/h of facility is planned to install till 2025. However, the cooling demand is increased due to new high-rise building blocks, and the required facility capacity is expected to be 101Gcal/h. A difficulty comes from building new plan in the existing plant. This paper is on the feasibility study for the new requirement under the restrictions of existing pipeline, limited space and regulation on the usage of electric driven chiller. Precise estimation of the diversity factor is essential to determine the required capacities. For this, every building in the area was categorized and the cooling loads were measured for the summer seasons of 2010 and 2011. The large energy capacity of ice slurry can potentially increase the cooling capacity in existing plants while maintaining the same flow rate and pumping power. Thus under the restriction of existing pipeline system, introducing ice slurry is expected as potential solution to the significantly increased cooling load without requiring increases in pipe size or system flow rates.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, M., D. Barnes, K. Bunz, and N. Rosenberry. "By-Pass Blending Station: An Innovative Secondary In-Building Pump System for District Heating and Cooling Systems." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65106.

Full text
Abstract:
An innovative secondary in-building pump system called the By-pass Blending Station (BBS) has been developed to reduce building pump energy consumption and maintain the desired return water temperatures in district heating and cooling systems. This method applies where district systems provide sufficient pump head for in-building water circulation. The BBS moves only the returned by-pass flow. Therefore, it uses less pump energy than the ASHRAE recommended method, which moves the entire building water flow by using in-building pump. The pump in the BBS is smaller than that of the ASHRAE recommended in-building secondary pump system. The BBS can be used in both constant and variable flow secondary systems. This paper compares the ASHRAE recommended secondary in-building pump with BBS systems using chilled water systems. The BBS only applies to cases where the primary distribution systems provide sufficient pump head for in-building circulation, which are typically found in commercial district cooling and heating systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Buoro, Dario, Melchiorre Casisi, Piero Pinamonti, and Mauro Reini. "Optimal Lay-Out and Operation of District Heating and Cooling Distributed Trigeneration Systems." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23416.

Full text
Abstract:
The paper deals with the optimization of a distributed urban district heating and cooling cogeneration system. The model is based on a Mixed Integer Linear Program (MILP) and includes a set of micro-cogeneration gas turbines and a district heating network potentially connecting each considered building to all the others. Absorption machines, supplied with cogenerated heat, can be used instead of conventional electrical chiller to face the cooling demand. In addition, a district cooling network can be introduced, independently from the district heating one. The objective of the paper is to obtain the optimal synthesis and operation strategy of the whole system, in terms of Total Annual Cost for owning, maintaining and operating the system. The solution has to specify the kind, the number and the location of cogeneration equipment and absorption machines, the size and the position of district heating and cooling pipelines as well as the optimal operation of each component. The effects of different plant options, comparing cogeneration and tri-generation machines adoption and district heating and cooling pipelines installation, are considered.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "District Cooling System"

1

Lowe, James William. Ground Source Geothermal District Heating and Cooling System. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Winters, P. J. District cooling: Phase 2, Direct freeze ice slurry system testing. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6300918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Winters, P. District cooling: Phase 2, Direct freeze ice slurry system testing. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7011359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Timmerman, R., and W. Broer. DOE grant for assessment of district cooling system for University of Arkansas for Medical Sciences, Little Rock, Arkansas. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7226791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leoni, Paolo, Ralf-Roman Schmidt, Roman Geyer, and Patrick Reiter. SWOT analysis of ST integration in DHC systems. IEA SHC Task 55, February 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0002.

Full text
Abstract:
Solar thermal (ST) energy is one of the few renewable heat sources that is available almost everywhere and can bring multiple benefits to district heating and cooling (DHC) networks (on an environmental and systemic level) with very low operation costs and risks. However, the current share of ST in DHC networks is almost zero on a global scale.
APA, Harvard, Vancouver, ISO, and other styles
6

Berberich, Magdalena. Market development for large scale SDH/SDC systems in country reports. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0011.

Full text
Abstract:
This publication of IEA SHC Task 55 describes the market development of Solar District Heating and Cooling in seven countries. Within country report presentations during the eight taskmeetings, the market developments in the participating countries were presented and discussed in the international expert group and the information is summarized in this factsheet.
APA, Harvard, Vancouver, ISO, and other styles
7

Schmidt, Ralf-Roman, Paolo Leoni, and Hamid Aghaie. The future of DH and the role of solar thermal energy. IEA SHC Task 55, October 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0007.

Full text
Abstract:
Solar thermal (ST) energy is one of the few renewable heat sources that is available almost everywhere and can bring multiple benefits to district heating and cooling (DHC) networks (on an environmental and systemic level) with very low operation costs and risks. However, the current share of ST in DHC networks is almost zero on a global scale.
APA, Harvard, Vancouver, ISO, and other styles
8

Aalto, P. J., and D. B. Chen. Application of imitation steam'' systems to hot water district heating and cooling systems. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/5066089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zakin, J. L., and R. N. Christensen. Reduction of pumping energy losses in district heating and cooling systems. Office of Scientific and Technical Information (OSTI), October 1992. http://dx.doi.org/10.2172/7020258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zakin, J. L. Reduction of pumping energy losses in district heating and cooling systems. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5960215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography