Academic literature on the topic 'Dmdbtdma'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Dmdbtdma.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Dmdbtdma"

1

Weigl, Michael, Andreas Geist, Klaus Gompper, and Jae-Il Kim. "KINETICS OF LANTHANIDE/ACTINIDE CO-EXTRACTION WITH N,N′-DIMETHYL-N,N′-DIBUTYLTETRADECYLMALONIC DIAMIDE (DMDBTDMA)." Solvent Extraction and Ion Exchange 19, no. 2 (March 31, 2001): 215–29. http://dx.doi.org/10.1081/sei-100102692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sengupta, Arijit, Sk Musharaf Ali, and K. T. Shenoy. "Understanding the complexation of the Eu3+ ion with TODGA, CMPO, TOPO and DMDBTDMA: Extraction, luminescence and theoretical investigation." Polyhedron 117 (October 2016): 612–22. http://dx.doi.org/10.1016/j.poly.2016.06.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MOHAPATRA, P. K., S. SRIRAM, V. K. MANCHANDA, and L. P. BADHEKA. "Uptake of Metal Ions by Extraction Chromatography Using Dimethyl Dibutyl Tetradecyl-1,3-malonamide (DMDBTDMA) as the Stationary Phase." Separation Science and Technology 35, no. 1 (January 2000): 39–55. http://dx.doi.org/10.1081/ss-100100142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

LEFRANCOIS, LYDIE, FRÉDÉRIC BELNET, DIDIER NOEL, and CHRISTIAN TONDRE. "An Attempt to Theoretically Predict Third-Phase Formation in the Dimethyldibutyltetradecylmalonamide (DMDBTDMA)/Dodecane/Water/Nitric Acid Extraction System." Separation Science and Technology 34, no. 5 (January 1999): 755–70. http://dx.doi.org/10.1080/01496399908951143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sriram, S., and V. K. Manchanda. "TRANSPORT OF METAL IONS ACROSS A SUPPORTED LIQUID MEMBRANE (SLM) USING DIMETHYLDIBUTYL- TETRADECYL-1,3-MALONAMIDE (DMDBTDMA) AS THE CARRIER." Solvent Extraction and Ion Exchange 20, no. 1 (February 13, 2002): 97–114. http://dx.doi.org/10.1081/sei-100108827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hellé, Gwendolyne, Clarisse Mariet, and Gérard Cote. "Liquid–liquid microflow patterns and mass transfer of radionuclides in the systems Eu(III)/HNO3/DMDBTDMA and U(VI)/HCl/Aliquat® 336." Microfluidics and Nanofluidics 17, no. 6 (May 10, 2014): 1113–28. http://dx.doi.org/10.1007/s10404-014-1403-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ERLINGER, C., D. GAZEAU, T. ZEMB, C. MADIC, L. LEFRANÇOIS, M. HEBRANT, and C. TONDRE. "EFFECT OF NITRIC ACID EXTRACTION ON PHASE BEHAVIOR, MICROSTRUCTURE AND INTERACTIONS BETWEEN PRIMARY AGGREGATES IN THE SYSTEM DIMETHYLDIBUTYLTETRADECYLMALONAMIDE (DMDBTDMA) / n-DODECANE / WATER: A PHASE ANALYSIS AND SMALL ANGLE X-RAY SCATTERING (SAXS) CHARACTERISATION STUDY." Solvent Extraction and Ion Exchange 16, no. 3 (May 1998): 707–38. http://dx.doi.org/10.1080/07366299808934549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rivera, Augusto, and Mauricio Maldonado. "Unexpected behavior of 6H,13H-5:12,7:14-dimethanedibenzo[d,i][1,3,6,8]tetraazecine (DMDBTA) toward phenols." Tetrahedron Letters 47, no. 42 (October 2006): 7467–71. http://dx.doi.org/10.1016/j.tetlet.2006.08.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rivera, Augusto, Miguel Angel Navarro, and Jaime R弛s-Motta. "Solvent-Free Synthesis of 2-(1H-Benzimidazol-1-ylmethyl)-4-substituted 1-Hydroxyaryl by the Two Component Mannich Reaction between 6H,13H-5:12,7:14-Dimethanedibenzo-[d,i][1,3,6,8]tetraazecine (DMDBTA) and Phenols." HETEROCYCLES 75, no. 7 (2008): 1651. http://dx.doi.org/10.3987/com-08-11333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Myasoedov, B. F., T. A. Maryutina, M. N. Litvina, D. A. Malikov, Yu M. Kulyako, B. Ya Spivakov, Clement Hill, J. M. Adnet, M. Lecomte, and Charles Madic. "Americium(III)/curium(III) separation by countercurrent chromatography using malonamide extractants." Radiochimica Acta 93, no. 1 (January 1, 2005). http://dx.doi.org/10.1524/ract.93.1.9.58300.

Full text
Abstract:
AbstractThe separation of Am(III) and Cm(III) by countercurrent chromatography (CCC) was achieved using the liquid phase systems "diamide–hydrogenated tetrapropylene (TPH)–HNOThe following diamide extractants have been studied: (i) N,N´-dimethyl-N,N´-dibutyltetradecylmalonamide (DMDBTDMA), (ii) N,N´-dimethyl-N,N´-dioctylhexyl-ethoxymalonamide (DMDOHEMA) and (iii) N,N´-dimethyl-N,N´-dibutyldodecylethoxymalonamide (DMDBDDEMA). It is shown that these diamides can be used for the separation of Am(III) and Cm(III) by CCC. Increasing the column length leads to an increase of the stationary phase retention on the column while improving the Am/Cm separation. Increasing the speed of rotation of the centrifuge from 660 to 950 rpm also results in increasing the stationary phase retention but does not influence the resolution of the Am/Cm separation. Decreasing the flow rate of the mobile phase from 1.0 to 0.5 mL/min leads to a better resolution of Am and Cm separation. The best Am/Cm separation was achieved with systems based on DMDBDDEMA and DMDOHEMA in TPH using a two-layer coil column and an isocratic elution mode. The application of CCC makes it possible to separate the elements within 100 min: the Cm fraction contains 99.5% of Cm(III) and 0.6% of Am(III) inventories and the Am fraction contains 99.4% of Am(III) and 0.5% of Cm(III).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Dmdbtdma"

1

Scoppola, Ernesto. "Solvent extraction : a study of the liquid/liquid interface with ligands combining x-ray and neutron reflectivity measurements." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS203/document.

Full text
Abstract:
Dans le cadre du retraitement des déchets nucléaires et du recyclage de métaux critiques, l'extraction par solvant est l'une des technologies les plus utilisées. L'interface liquide entre deux fluides non miscibles est considérée comme une région où de multiples phénomènes physiques et chimiques sont à prendre en compte et peuvent limiter ou favoriser le transfert d'espèces entre les deux fluides. La structure de ces interfaces doit être connue en fonction de plusieurs paramètres thermodynamiques pour pouvoir déterminer le paysage énergétique associée. La réflectivité de neutrons et de rayons est un des outils appropriés pour sonder ce genre d'interfaces enfouies et fluctuantes à l'échelle nanométrique et à l'équilibre. Pour cette étude, une nouvelle cellule a été construite et un programme spécifique d'analyse de données a été élaboré.Nous avons également porté notre étude sur deux différents systèmes bi-phasiques (eau / dodécane) contenant des sels de lanthanides et deux différents ligands non ioniques (ou extractants) : une diamide de type DMDBTDMA et de type DMDOHEMA, ces deux extractants étant connus pour avoir des comportements différents dans un processus d'extraction de cations métalliques en phase organique. Bien que la structure amphiphile des deux diamides soit bien connue, la structure de l'interface liquide / liquide semble être différente de celle que l'on pourrait s'attendre avec des tensioactifs classiques. L'organisation de ces ligands à l'interface est en effet plus complexe, varie en fonction de leurs concentrations dans la phase organique (seules des concentrations inférieures à la concentration d'agrégation critique ont été étudiées) et en fonction de la concentration d'acide et de sel dans la phase aqueuse. Une organisation de type monocouche n'est pas l'organisation principale de ces systèmes à l'équilibre mais on observe plutôt une couche épaisse de ligands.Plus précisément, dans le cas de la DMDBTDMA, cette région plus épaisse (environ trois à quatre fois la longueur du ligand) crée une région interfaciale où les molécules d'huile et d'eau peuvent se mélanger ainsi que les sels. Le système DMDOHEMA, présente une structuration différente avec également une épaisse couche de ligand (environ deux fois la longueur du ligand) mais située plus à l'intérieur de la phase huileuse et distinct de la distribution des sels à l'interface. Ces différentes structures interfaciales de DMDBTDMA et DMDOHEMA peuvent permettre d'expliquer les différents régimes de transfert ionique qualifiés soit de diffusionnel ou de cinétique
In the frame of the nuclear waste reprocessing and various kinds of critical metals recycling methods, solvent extraction is one of the most used technological processes. The liquid interface between two immiscible fluids is considered as a region where many physical and chemical phenomena take place and can limit or promote the transfer of species between both fluids. The structure of these interfaces has to be known as a function of several thermodynamical parameters to be able to determine the associated energy landscape. X-ray and neutron reflectivity are suitable techniques to probe such kind of fluctuating and buried interfaces at the nanometer scale and at equilibrium. For this study, a new cell has been built and a specific data analysis procedure was established.We have focused our study on two different biphasic systems (water/dodecane) containing lanthanides salts and two different nonionic ligands or extractant molecules: DMDBTDMA and DMDOHEMA diamides. These ligands are known to have different behaviour in the lanthanides extraction process. Although the amphiphilic chemical structure of both diamides is well known, the structure of the liquid/liquid interface appears to be different as those expected for a classical surfactant molecule. This structure looks more complex, varies as a function of the ligand concentration in the organic phase (below the critical aggregation concentration) and as a function of the proton and salt concentration of the aqueous phase. A monolayer organization does not appear as the main interfacial structuration and a thicker organic layer with an excess of salt has to be considered.In the case of the DMDBTDMA, this thicker region (approximatively three or four times the length of the ligand) creates an interfacial region where oil and water molecules as well as some salts can mix in. The DMDOHEMA system shows a different structuration where we can roughly observe also a thick layer of the ligand (approximatively two times the length of the ligand) but located more within the oil phase and forming a barrier to the salt distribution. These different interfacial structures made of DMDBTDMA and DMDOHEMA could allow to explain the diffusive or kinetic regime of ion transfer observed respectively in similar systems by others authors
APA, Harvard, Vancouver, ISO, and other styles
2

DAL, DON MARTINE. "Etude des cinetiques d'extraction des nitrates de lanthanides (iii) et d'actinides (iii) par le diamide dmdbtdma." Paris 11, 1997. http://www.theses.fr/1997PA112424.

Full text
Abstract:
Cette etude s'insere dans le programme spin (separation incineration), dont l'objectif est la separation puis la transmutation des radionucleides a vie longue. La premiere etape de cette strategie de separation est le procede diamex concu pour coextraire les actinides et lanthanides trivalents du reste des dechets de haute activite. Cette operation est realisee par une molecule extractante a fonction diamide. Les etudes presentees dans ce memoire concernent la cinetique d'extraction des lanthanides (iii) et des actinides (iii) par le dmdbtdma (dimethyl dibutyl tetradecyl malonamide), actuelle molecule de reference. Deux cellules a aire interfaciale stable et de dimension reduite ont ete realisees et qualifiees dans le cadre de cette these. La premiere etude cinetique s'interesse au systeme chimique dmdbtdma-nitrate de neodyme. Elle a permis de demontrer que la reaction chimique est localisee a l'interface ; de connaitre l'influence de certains parametres chimiques (h#+, nd, no#3, temperature) sur la constante cinetique ; de proposer un mecanisme reactionnel. Une seconde approche concerne le comportement cinetique de l'ensemble des lanthanides. Le coefficient de distribution des lanthanides decroit de maniere non monotone avec la hausse du numero atomique, un effet tetrade a ete observe. La constante cinetique d'extraction des lanthanides chute egalement de facon irreguliere mais l'interpretation des phenomenes est delicate. La deshydratation partielle ou totale des lanthanides semble etre l'etape clef de la reaction d'extraction. Le comportement cinetique de l'americium (iii) et du curium (iii) a ete etudie : il est comparable a celui de l'europium.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Dmdbtdma"

1

Modolo, G., S. Seekamp, and H. Vijgen. "DIAMEX Process Development to Separate Trivalent Actinides From High Active Concentrates." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4812.

Full text
Abstract:
The DIAMEX process is one of the most promising processes for partitioning the trivalent actinides from the highly active raffinates (HARs) coming from the PUREX process. In the present work, experiements for the definition of a DIAMEX process for treating high-active concentrates (HACs), the product after the concentration and denitration of HAR, have been performed. Within the DIAMEX process, oxalic acid has to be added to the DIAMEX feed in order to prevent third-phase formation due to co-extraction of some fission products, e.g. Zr and Mo. However, the experimental results indicate that after adding oxalic acid to the HAC a precipitate is formed which, in addition to Zr and Mo as the main constituents, also contains considerable amounts of lanthanides, and thus will lead perhaps to a loss of trivalent actinides. This unusual behaviour of Ln(III) coprecipitation was further investigated. Thus, other Zr, Mo complexing agents were tested and with D-mannitol promising results were achieved. With D-mannitol we did not observe any precipitates and the extraction experiments could be performed using the DIAMEX solvent composed of 1.0 mol/L DMDBTDMA in TPH. Extraction results as the basis for the development of a continuous counter-current test will also be presented.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography