Academic literature on the topic 'DNA barcoding'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA barcoding.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DNA barcoding"

1

Wulansari, Nuring, Mala Nurilmala, and N. Nurjanah. "Detection Tuna and Processed Products Based Protein and DNA Barcoding." Jurnal Pengolahan Hasil Perikanan Indonesia 18, no. 2 (August 25, 2015): 119–27. http://dx.doi.org/10.17844/jphpi.2015.18.2.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shadrin, D. M. "DNA Barcoding: Applications." Russian Journal of Genetics 57, no. 4 (April 2021): 489–97. http://dx.doi.org/10.1134/s102279542104013x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mitchell, Andrew. "DNA barcoding demystified." Australian Journal of Entomology 47, no. 3 (August 2008): 169–73. http://dx.doi.org/10.1111/j.1440-6055.2008.00645.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zuo, Yunjuan, Zhongjian Chen, Katsuhiko Kondo, Tsuneo Funamoto, Jun Wen, and Shiliang Zhou. "DNA Barcoding ofPanaxSpecies." Planta Medica 77, no. 02 (August 27, 2010): 182–87. http://dx.doi.org/10.1055/s-0030-1250166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Jianping. "Fungal DNA barcoding." Genome 59, no. 11 (November 2016): 913–32. http://dx.doi.org/10.1139/gen-2016-0046.

Full text
Abstract:
Fungi are ubiquitous in both natural and human-made environments. They play important roles in the health of plants, animals, and humans, and in broad ecosystem functions. Thus, having an efficient species-level identification system could significantly enhance our ability to treat fungal diseases and to monitor the spatial and temporal patterns of fungal distributions and migrations. DNA barcoding is a potent approach for rapid identification of fungal specimens, generating novel species hypothesis, and guiding biodiversity and ecological studies. In this mini-review, I briefly summarize (i) the history of DNA sequence-based fungal identification; (ii) the emergence of the ITS region as the consensus primary fungal barcode; (iii) the use of the ITS barcodes to address a variety of issues on fungal diversity from local to global scales, including generating a large number of species hypothesis; and (iv) the problems with the ITS barcode region and the approaches to overcome these problems. Similar to DNA barcoding research on plants and animals, significant progress has been achieved over the last few years in terms of both the questions being addressed and the foundations being laid for future research endeavors. However, significant challenges remain. I suggest three broad areas of research to enhance the usefulness of fungal DNA barcoding to meet the current and future challenges: (i) develop a common set of primers and technologies that allow the amplification and sequencing of all fungi at both the primary and secondary barcode loci; (ii) compile a centralized reference database that includes all recognized fungal species as well as species hypothesis, and allows regular updates from the research community; and (iii) establish a consensus set of new species recognition criteria based on barcode DNA sequences that can be applied across the fungal kingdom.
APA, Harvard, Vancouver, ISO, and other styles
6

ŠLAPETA, JAN. "DNA barcoding ofCryptosporidium." Parasitology 145, no. 5 (November 8, 2017): 574–84. http://dx.doi.org/10.1017/s0031182017001809.

Full text
Abstract:
SUMMARYCryptosporidiumspp. (Apicomplexa) causing cryptosporidiosis are of medical and veterinary significance. The genusCryptosporidiumhas benefited from the application of what is considered a DNA-barcoding approach, even before the term ‘DNA barcoding’ was formally coined. Here, the objective to define the DNA barcode diversity ofCryptosporidiuminfecting mammals is reviewed and considered to be accomplished. Within theCryptosporidiumliterature, the distinction between DNA barcoding and DNA taxonomy is indistinct. DNA barcoding and DNA taxonomy are examined using the latest additions to the growing spectrum of namedCryptosporidiumspecies and within-species and between-species identity is revisited. Ease and availability of whole-genome DNA sequencing of the relatively smallCryptosporidiumgenome offer an initial perspective on the intra-host diversity. The opportunity emerges to apply a metagenomic approach to purified field/clinicalCryptosporidumisolates. The outstanding question remains a reliable definition ofCryptosporidiumphenotype. The complementary experimental infections and metagenome approach will need to be applied simultaneously to addressCryptosporidiumphenotype with carefully chosen clinical evaluations enabling identification of virulence factors.
APA, Harvard, Vancouver, ISO, and other styles
7

Carvalho, C. B. V. "DNA Barcoding in Forensic Vertebrate Species Identification." Brazilian Journal of Forensic Sciences, Medical Law and Bioethics 4, no. 1 (2014): 12–23. http://dx.doi.org/10.17063/bjfs4(1)y201412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Munch, Kasper, Wouter Boomsma, Eske Willerslev, and Rasmus Nielsen. "Fast phylogenetic DNA barcoding." Philosophical Transactions of the Royal Society B: Biological Sciences 363, no. 1512 (October 7, 2008): 3997–4002. http://dx.doi.org/10.1098/rstb.2008.0169.

Full text
Abstract:
We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria for determining the taxonomic level at which a particular DNA sequence can be assigned.
APA, Harvard, Vancouver, ISO, and other styles
9

Scicluna, Stephanie M., Blessing Tawari, and C. Graham Clark. "DNA Barcoding of Blastocystis." Protist 157, no. 1 (February 2006): 77–85. http://dx.doi.org/10.1016/j.protis.2005.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Durand, J. D., N. Hubert, K. N. Shen, and P. Borsa. "DNA barcoding grey mullets." Reviews in Fish Biology and Fisheries 27, no. 1 (November 11, 2016): 233–43. http://dx.doi.org/10.1007/s11160-016-9457-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "DNA barcoding"

1

Zimmermann, Jonas [Verfasser]. "DNA barcoding and eDNA barcoding in diatoms / Jonas Zimmermann." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/106887502X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kalianková, Kateřina. "Znakově-orientované metody DNA barcodingu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-220729.

Full text
Abstract:
This work deals with character-based DNA barcoding. DNA barcoding and character-based DNA barcoding methods are described in the introduction. Another part contains information of method CAOS (Characteristic Attributes Organization) and method BLOG (Barcoding with LOGic). Programs are described in the practical part. The end contains results.
APA, Harvard, Vancouver, ISO, and other styles
3

Pena, Michelle Mendonça [UNESP]. "DNA Barcoding em Utricularia (Lentibulariaceae)." Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/136705.

Full text
Abstract:
Made available in DSpace on 2016-04-01T17:54:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2015-07-15. Added 1 bitstream(s) on 2016-04-01T18:00:35Z : No. of bitstreams: 1 000859555_20160715.pdf: 314328 bytes, checksum: de480f12444da2a9fedafb16079a9793 (MD5) Bitstreams deleted on 2016-07-25T13:17:41Z: 000859555_20160715.pdf,. Added 1 bitstream(s) on 2016-07-25T13:18:48Z : No. of bitstreams: 1 000859555.pdf: 4094738 bytes, checksum: 1c3690c0cf5379b39472b8236e1cdb9c (MD5)
A família Lentibulariaceae Rich. é considerada o maior grupo de plantas carnívoras dentre as angiospermas. Utricularia é o gênero de maior riqueza, com aproximadamente 250 espécies. Diversos estudos de identificação baseados em morfologia foram realizados para a família Lentibulariaceae, porém eles se mostram limitados para determinados grupos de espécies. Com base nisso a aplicação do DNA Barcoding pode ser uma importante alternativa. No presente estudo foram utilizadas sequências de DNA dos espaçadores intergênicos cloroplastidiais trnS-trnG e trnL-trnF e também do gene mitocondrial coxI com o objetivo de testá-las com a abordagem DNA Barcoding na diferenciação intraespecífica, interespecífica e entre as seções do gênero Utricularia. Com base nas matrizes de distâncias, a distância intraespecífica média foi de 0,004 para ambos os marcadores cloroplastidiais e de 0,006 para o gene coxI, a distância interespecífica média foi de 0,260 para trnS-trnG, 0,190 para trnL-trnF, 0,043 para coxI e a distância média entre as seções foi de 0,036, 0,029 e 0,025 para trnS-trnG, trnL-trnF e coxI, respectivamente. A análise baseada na árvore de Neighbor-Joining indicou que a maioria das espécies se agruparam em seções de acordo com o proposto para a filogenia do gênero, formando grupos monofiléticos. A eficácia de discriminação interespecífica foi 82% para trnS-trnG e 61% trnL-trnF, a discriminação intraespecífica foi de 36% para trnS-trnG e 23% para trnL-trnF. O gene mitocondrial coxI apresentou 24% de discriminação inter e intraespecífica, com resolução baixa de espécies na árvores de Neighbor-Joining. Esses resultados demonstram que as regiões cloroplastidiais apresentam informações satisfatórias para separação das espécies em clados que corroboram com a filogenia do grupo e que portanto trnS-trnG e trnL-trnF podem ser considerados bons barcodes para o...
The family Lentibulariaceae Rich. is considered the largest group of carnivorous plants among the angiosperms. Utricularia is the richest genus with approximately 250 species. Several studies based on morphological identification have been published for the family Lentibulariaceae, but they are limited regarding some groups of species. Hence, DNA Barcoding may be an important alternative. The present study used DNA sequences of chloroplast intergenic spacers trnS-trnG and trnL-trnF and also the mitochondrial gene coxI in order to test them with the DNA Barcoding approach to intraspecific, interspecific and between sections differentiation in the Utricularia genus. Based on the distance analyses, the average intraspecific distance was 0.004 for both chloroplast markers and 0.006 for the coxI gene, the average interspecific distance was 0.260 to trnS-trnG, 0.190 to trnL-trnF, 0.043 to coxI and the average distance between sections was 0.036, 0.029 and 0.025 to trnS-trnG, trnL-trnF and coxI, respectively. The analysis based on Neighbor-Joining tree indicated that most species were grouped into sections according to the proposed for the phylogeny of the genus, forming monophyletic groups. The efficacy of interspecies discrimination was 82% to trnS-trnG and 61% to trnL-trnF, intraspecific discrimination was 36% to trnS-trnG and 23% to trnL-trnF. The mitochondrial gene coxI showed 24% of inter and intraspecific discrimination, with low resolution of species on trees Neighbor-Joining. These results demonstrate that the chloroplast regions have satisfactory information to separate species in clades that corroborate the phylogeny of the group and therefore trnS-trnG and trnL-trnF can be considered good barcodes for the Utricularia genus
APA, Harvard, Vancouver, ISO, and other styles
4

Pena, Michelle Mendonça. "DNA "Barcoding" em Utricularia (Lentibulariaceae) /." Jaboticabal, 2015. http://hdl.handle.net/11449/136705.

Full text
Abstract:
Orientador: Vitor Fernandes Oliveira de Miranda
Coorientador: Alessandro de Mello Varani
Banca: Marcos Tulio de Oliveira
Banca: Yoannis Domínguez Rodríguez
Resumo: A família Lentibulariaceae Rich. é considerada o maior grupo de plantas carnívoras dentre as angiospermas. Utricularia é o gênero de maior riqueza, com aproximadamente 250 espécies. Diversos estudos de identificação baseados em morfologia foram realizados para a família Lentibulariaceae, porém eles se mostram limitados para determinados grupos de espécies. Com base nisso a aplicação do DNA "Barcoding" pode ser uma importante alternativa. No presente estudo foram utilizadas sequências de DNA dos espaçadores intergênicos cloroplastidiais trnS-trnG e trnL-trnF e também do gene mitocondrial coxI com o objetivo de testá-las com a abordagem DNA "Barcoding" na diferenciação intraespecífica, interespecífica e entre as seções do gênero Utricularia. Com base nas matrizes de distâncias, a distância intraespecífica média foi de 0,004 para ambos os marcadores cloroplastidiais e de 0,006 para o gene coxI, a distância interespecífica média foi de 0,260 para trnS-trnG, 0,190 para trnL-trnF, 0,043 para coxI e a distância média entre as seções foi de 0,036, 0,029 e 0,025 para trnS-trnG, trnL-trnF e coxI, respectivamente. A análise baseada na árvore de "Neighbor-Joining" indicou que a maioria das espécies se agruparam em seções de acordo com o proposto para a filogenia do gênero, formando grupos monofiléticos. A eficácia de discriminação interespecífica foi 82% para trnS-trnG e 61% trnL-trnF, a discriminação intraespecífica foi de 36% para trnS-trnG e 23% para trnL-trnF. O gene mitocondrial coxI apresentou 24% de discriminação inter e intraespecífica, com resolução baixa de espécies na árvores de "Neighbor-Joining". Esses resultados demonstram que as regiões cloroplastidiais apresentam informações satisfatórias para separação das espécies em clados que corroboram com a filogenia do grupo e que portanto trnS-trnG e trnL-trnF podem ser considerados bons "barcodes" para o...
Abstract: The family Lentibulariaceae Rich. is considered the largest group of carnivorous plants among the angiosperms. Utricularia is the richest genus with approximately 250 species. Several studies based on morphological identification have been published for the family Lentibulariaceae, but they are limited regarding some groups of species. Hence, DNA Barcoding may be an important alternative. The present study used DNA sequences of chloroplast intergenic spacers trnS-trnG and trnL-trnF and also the mitochondrial gene coxI in order to test them with the DNA Barcoding approach to intraspecific, interspecific and between sections differentiation in the Utricularia genus. Based on the distance analyses, the average intraspecific distance was 0.004 for both chloroplast markers and 0.006 for the coxI gene, the average interspecific distance was 0.260 to trnS-trnG, 0.190 to trnL-trnF, 0.043 to coxI and the average distance between sections was 0.036, 0.029 and 0.025 to trnS-trnG, trnL-trnF and coxI, respectively. The analysis based on Neighbor-Joining tree indicated that most species were grouped into sections according to the proposed for the phylogeny of the genus, forming monophyletic groups. The efficacy of interspecies discrimination was 82% to trnS-trnG and 61% to trnL-trnF, intraspecific discrimination was 36% to trnS-trnG and 23% to trnL-trnF. The mitochondrial gene coxI showed 24% of inter and intraspecific discrimination, with low resolution of species on trees Neighbor-Joining. These results demonstrate that the chloroplast regions have satisfactory information to separate species in clades that corroborate the phylogeny of the group and therefore trnS-trnG and trnL-trnF can be considered good barcodes for the Utricularia genus
Mestre
APA, Harvard, Vancouver, ISO, and other styles
5

Stockinger, Herbert. "DNA barcoding of arbuscular mycorrhizal fungi." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-114870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

deWaard, Jeremy Ryan. "Forest biomonitoring, biosecurity and DNA barcoding." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30496.

Full text
Abstract:
The economic, social and biological value of our forests makes their sustainability essential to our well-being. To ensure their long-term health, it is critical to regularly and effectively monitor their inhabitants, as well as to detect non-indigenous species early and accurately. These programs rely on the precise diagnosis of species, which can be complicated for terrestrial arthropods by sizeable trap samples, damaged specimens, immature life stages and incomplete taxonomy. The recent advent of DNA barcoding, a technique that differentiates species using sequence variation in a standard gene region, shows tremendous promise for circumventing these obstacles. This dissertation evaluates the integration of barcoding into forest arthropod biomonitoring and biosurveillance programs with several investigations of nocturnal moths (Lepidoptera) in British Columbia, Canada. Barcode reference libraries are constructed for looper moths (Geometridae) and Lymantria (Erebidae) tussock moths, and are determined to successfully discriminate species in over 93% and 97% of cases, respectively. The libraries demonstrate how barcoding might enhance biosurveillance programs by flagging two new records for geometrid moths, and by successfully diagnosing 32 intercepted tussock moth specimens. These two libraries, and a multi-gene phylogeny constructed for Geometridae, are used to conduct faunal inventories in modified forest systems, and investigate the influence of disturbance on three levels of moth diversity—species, genetic, and phylogenetic. A first level inventory of Stanley Park, Vancouver, produces a preliminary list of 190 species, the detection of four new exotic species, and the discovery of two potentially cryptic species. Surveys conducted across several harvest treatments at two silvicultural research forests display no evidence of increased diversity at intermediate disturbance levels, but do reveal a correlation between species and genetic diversity. And lastly, three levels of moth diversity are estimated in ponderosa pine systems that differ widely in attack by Dendroctonus bark beetles, and demonstrate a negative association between species diversity and tree mortality. In combination, all projects suggest that DNA barcoding provides several advantages over traditional biosurveillance and biomonitoring, including the ability to rapidly sort specimens, a reduction in specialist time, the detection of species at low density, and the ability to appraise multiple levels of diversity.
APA, Harvard, Vancouver, ISO, and other styles
7

Claro, Felippe Lourenço. "Estudos do DNA repetitivo no gênero Eigenmannia." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/41/41131/tde-24032014-105922/.

Full text
Abstract:
O DNA repetitivo constitui uma fração considerável do genoma de muitos organismos eucarióticos. Composto tanto por sequências funcionais, como os genes ribossômicos, quanto não codificantes, como é o caso dos elementos transponíveis, mini/microssatélites e o DNA satélite, essa porção do genoma tem sido amplamente utilizada como objeto de estudo, uma vez que sequências repetitivas podem estar associadas, por exemplo, a processos de diferenciação sexual. Esses estudos têm auxiliado tanto na melhor compreensão da dinâmica dessas regiões cromossômicas, como salientado a importância, a conservação e a evolução da porção repetitiva no genoma. O gênero Eigenmannia (Gymnotiformes, Sternopygidae) compreende espécies crípticas do ponto de vista morfológico que exibem variação no número cromossômico e podem apresentar sistemas sexuais XY ou ZW nos quais os elementos do par sexual diferem pela presença de blocos heterocromáticos maiores do que os encontrados em cromossomos autossomos, ou sistemas múltiplos envolvendo translocação Y-autossomo. O presente trabalho tem por objetivos o estudo sobre do gene Citocromo Oxidase I (COI), de forma a verificar a capacidade discriminatória desse gene mitocondrial e sugerir possíveis espécies dos então cariomorfos do gênero Eigenmannia no estado de São Paulo, continuidade do estudo do DNA repetitivo no gênero Eigenmannia, tanto de regiões funcionais do genoma, no caso o gene ribossômico 5S, bem como de elementos transponíveis, permitindo assim uma melhor compreensão sobre a distribuição, conservação nos cariomorfos e verificar sua eventual participação no processo de diferenciação não só de cromossomos sexuais, mas também na evolução cariotípica do grupo. Os resultados obtidos com o gene COI, assim como aqueles obtidos pelo gene ribossômico 5S evidenciam distâncias genéticas consistentes com a hipótese de que os cinco cariomorfos possam ser considerados como espécies distintas. Além disso, a hibridação in situ do gene ribossômico 5S forneceu uma nova evidência para a fusão cromossômica que deu origem ao cromossomo sexual Y, já descrita na literatura, enquanto que a hibridação de sequências teloméricas não forneceu evidências de processos de fusão recentes envolvendo os cariomorfos. Com relação aos elementos transponíveis foi possível verificar padrões distintos nos elementos TC1 e Rex1 no que diz respeito às sequências, uma vez que o elemento TC1 delimitou dois grandes grupos o que pode indicar uma invasão simultânea nos grupos e no retrotransposon Rex1 a invasão tenha ocorrido em um ancestral comum a todos os cariomorfos
The repetitive DNA constitutes a considerable fraction of the genome of many eukaryotic organisms. Compound by both functional sequences, such as ribosomal genes, and non-coding, such as transposable elements, mini / microsatellite DNA and the satellite, this portion of the genome has been widely used as a study object, since the repetitive sequences may be associated with, for example, the processes of sexual differentiation. These studies helped to understand the dynamics of these chromosomal regions, pointing the importance, conservation and evolution of the repetitive portion of the genome. The genus Eigenmannia (Gymnotiformes, Sternopygidae) comprises a morphological cryptic species that exhibit variation in chromosome number and may have sexual XY or ZW systems in which the elements of sexual pair differ by the presence of heterochromatic blocks larger than those found in chromosomes autosomes, or systems involving multiple Y-autosome translocation. The present work aims to study the gene Cytochrome Oxidase I (COI) to verify the discriminatory capacity of this mitochondrial gene and suggest possible species of the so called karyomorphs of the genus Eigenmannia in the state of São Paulo. The study of repetitive DNA in Eigenmannia genus, includes 5S ribosomal gene and transposable elements, thus allowing a better understanding of the distribution, conservation in karyomorphs and verify their possible participation in the process of differentiation not only of sex chromosomes, karyotypic evolution but also in the group. The results obtained with the COI gene, as well as those obtained by the 5S ribosomal gene demonstrate genetic distances consistent with the hypothesis that the five karyomorphs can be regarded as separate species. In addition, in situ hybridization of ribosomal 5S gene provided new evidence for chromosomal fusion which led to the Y sex chromosome, as described in the literature, whereas hybridization of telomeric sequences did not provide evidence of recent fusion events involving the karyomorphs. Regarding transposable elements, it could be verified distinct sequence patterns between TC1 and Rex1 elements, since the TC1 element delimited two groups which may indicate a simultaneously invasion in those groups and retrotransposon Rex1 invasion has occurred in a common ancestor to all karyomorphs
APA, Harvard, Vancouver, ISO, and other styles
8

Brabencová, Klára. "Analýza mitochondriálních genů živočichů pro DNA barcoding." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220849.

Full text
Abstract:
The aim of this work is a literature review on the topic of the mitochondrial genome and DNA barcoding, building a dataset of mitochondrial sequences from GenBank database and creatione of a software function for extraction of individual genes that are present in the mitochondrial genome. This function was developed in Matlab. DNA barcoding is a method that uses short DNA sequence of mitochondrial genome for identification of species. There is no comprehensive work examining the appropriateness of different mitochondrial genes. This aim investigates the potential of other mitochondrial genes and evaluate their effectiveness for DNA barcoding and calculation of intra-and interspecific variability.
APA, Harvard, Vancouver, ISO, and other styles
9

Kruger, Åsa. "DNA-Barcoding Identification of Medicinal Roots from Morocco." Thesis, Uppsala universitet, Systematisk biologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-141818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fogelström, Anna. "DNA barcoding of freshwater fishes in Matang, Malaysia." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "DNA barcoding"

1

Trivedi, Subrata, Hasibur Rehman, Shalini Saggu, Chellasamy Panneerselvam, and Sankar K. Ghosh, eds. DNA Barcoding and Molecular Phylogeny. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90680-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sucher, Nikolaus J., James R. Hennell, and Maria C. Carles, eds. Plant DNA Fingerprinting and Barcoding. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-609-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trivedi, Subrata, Hasibur Rehman, Shalini Saggu, Chellasamy Panneerselvam, and Sankar K. Ghosh, eds. DNA Barcoding and Molecular Phylogeny. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50075-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Trivedi, Subrata, Abid Ali Ansari, Sankar K. Ghosh, and Hasibur Rehman, eds. DNA Barcoding in Marine Perspectives. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41840-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

DNA barcodes: Methods and protocols. New York: Humana Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trivedi, Subrata, Sankar K. Ghosh, Hasibur Rehman, Shalini Saggu, and Chellasamy Panneerselvam. DNA Barcoding and Molecular Phylogeny. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trivedi, Subrata, Sankar K. Ghosh, Hasibur Rehman, Shalini Saggu, and Chellasamy Panneerselvam. DNA Barcoding and Molecular Phylogeny. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Trivedi, Subrata, Sankar K. Ghosh, Hasibur Rehman, Shalini Saggu, and Chellasamy Panneerselvam. DNA Barcoding and Molecular Phylogeny. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Barcoding Nature. Routledge, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barcoding Nature. Taylor & Francis Group, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "DNA barcoding"

1

Weigt, Lee A., Amy C. Driskell, Carole C. Baldwin, and Andrea Ormos. "DNA Barcoding Fishes." In DNA Barcodes, 109–26. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ivanova, Natalia V., Elizabeth L. Clare, and Alex V. Borisenko. "DNA Barcoding in Mammals." In DNA Barcodes, 153–82. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pal, Payal, and Ena Ray Banerjee. "Nanoscience and DNA Barcoding." In Nanomaterials and Biomedicine, 127–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5274-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rajthilak, C., P. Santhanam, P. Pachiappan, T. Veeramani, and S. Ravikumar. "DNA Barcoding of Copepods." In Basic and Applied Zooplankton Biology, 87–125. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7953-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Vere, Natasha, Tim C. G. Rich, Sarah A. Trinder, and Charlotte Long. "DNA Barcoding for Plants." In Methods in Molecular Biology, 101–18. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1966-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

James, Karen E. "DNA Barcoding Darwin’s Meadow." In Darwin-Inspired Learning, 257–70. Rotterdam: SensePublishers, 2015. http://dx.doi.org/10.1007/978-94-6209-833-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chauhan, Archana, Phuntsog Dolma, Anuragini Kadwalia, Ahmad Ali, and R. C. Sobti. "DNA Barcoding and Metabarcoding." In Environmental Studies and Climate Change, 35–46. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003220824-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahadani, Asim Kumar, Pradosh Mahadani, and Goutam Sanyal. "R in DNA Barcoding." In DNA Barcoding and Molecular Phylogeny, 31–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90680-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Evans, Nathaniel, and Gustav Paulay. "DNA Barcoding Methods for Invertebrates." In DNA Barcodes, 47–77. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vences, Miguel, Zoltán T. Nagy, Gontran Sonet, and Erik Verheyen. "DNA Barcoding Amphibians and Reptiles." In DNA Barcodes, 79–107. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "DNA barcoding"

1

Rousseau, Philip, Piet J. Vorster, Damon P. Little, and Michelle van der Bank. "DNA Barcoding Africa’s Endemic Cycads." In CYCAD 2011. The New York Botanical Garden Press, 2018. http://dx.doi.org/10.21135/893275389.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"The new method of DNA barcoding." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lockie-Williams, C., C. Gkouva, L. Gibson, and C. Howard. "DNA barcoding analysis: quality control of published DNA sequences." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Szaboova, Dana, Eliska Gburova Stubnova, and Ivona Kautmanova. "CHALLENGES ASSOCIATED WITH BARCODING METHOD." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/5.1/s20.012.

Full text
Abstract:
The DNA barcoding project provides a very quick and easy way to identify different types of organisms based on their DNA. The main objective of this study is to obtain the sequences of different species of fungi, plants and animals to map the biodiversity of Slovakia. This project also represents a new use for collections stored in natural history museums around the world. This paper shows in particular a laboratory view of the DNA barcoding project, such as the practical application of the methodology for different groups of organisms, the possibilities of using different genes and emphasizes the importance of professional taxonomists. In the museum, we deal with a wide range of samples and we encounter various difficulties. For example, some genera of fungi contain unreadable sections in the middle of the sequence, in insect groups it is a problem with samples killed with ethyl acetate or too old samples, where the DNA is mostly degraded. For the amplification of bird samples, we have found no consistent method for the whole group and we work with several different primer sets and conditions to be able to amplify most of the samples. The identification of various plant species according to their barcodes has also proven quite difficult, as plants are a very specific and fast-evolving group of organisms, and their distinction according to the short barcode regions is nearly impossible. Therefore, we would like to emphasize the necessity of cooperation with specialized taxonomists. Our data are continuously uploaded to the international BOLD database, where there are already more than 500 different species of a wide range of groups of fungi, plants and animals from Slovakia.
APA, Harvard, Vancouver, ISO, and other styles
5

Sanmartin, Victor, and Rejane Frozza. "Uso de DNA-Barcoding no alinhamento e localização de Primers para o reconhecimento de cianobactérias." In I Escola Regional de Computação do Rio Grande do Sul. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/ercomprs.2020.14298.

Full text
Abstract:
A bioinformática é uma área que possui um grande destaque e vem ganhando ainda mais visibilidade para a previsão de doenças através do DNA. Desde que surgiu, a bioinformática sempre esteve diretamente associada à biologia molecular, campo da biologia responsável por estudar a estrutura e as funções do material genético, bem como as proteínas, que são os resultados obtidos em uma síntese de DNA. As técnicas de DNA-Barcoding e Aprendizado de Máquina tendem a ajudar ainda mais os pesquisadores da área, buscando por soluções rápidas e inteligentes. Assim, o objetivo desta pesquisa ainda em andamento, busca unir as técnicas de Barcoding e Aprendizado de Máquina para o sequenciamento e identificação de Cianobactérias.
APA, Harvard, Vancouver, ISO, and other styles
6

Meenakshi, K., Reveendran Remya, and George Sanil. "DNA barcoding and microsatellite marker development forNyctibatrachus major." In the International Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1722024.1722029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Musthak, Bachelors, Adham, Dhabiya Al-kubaisi, Wadha Almarri, Ghizlane Bendriss, Aurora M. Castilla, and Kuei-chiu Chen. "Dna Barcoding Of Lizards (reptilia, Squamata) Of Qatar." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.eesp0760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hosoya, Tadatsugu. "DNA barcoding of Japanese scarabaeoid beetles (Coleoptera, Scarabaeoidea)." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salleh, Mohd Hairul Mohd, and Yuzine Esa. "Testudines’ Terrapins: DNA Barcoding and Their Conservation Status." In The 2nd International Electronic Conference on Diversity (IECD 2022)—New Insights into the Biodiversity of Plants, Animals and Microbes. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iecd2022-12426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MANDZYAK, N. B., I. A. KAYGORODOVA, and A. V. BOLBAT. "DNA BARCODING OF EASTERN SIBERIAN FLAT LEECHES (HIRUDINEA: GLOSSIPHONIIDAE)." In 5TH MOSCOW INTERNATIONAL CONFERENCE "MOLECULAR PHYLOGENETICSAND BIODIVERSITY BIOBANKING". TORUS PRESS, 2018. http://dx.doi.org/10.30826/molphy2018-57.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "DNA barcoding"

1

Nelson, Sarah, Megan Little, Karen James, Michael Marion, and Hamish Greig. Developing a standard operating procedure for species identifications of dragonfly larvae using DNA barcoding: A contribution of the Dragonfly Mercury Project. National Park Service, March 2022. http://dx.doi.org/10.36967/nrr-2288457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Smith, Gideon F., David Schindel, Richard Smith, and Scott Miller. Priority-driven Barcoding of Life for Southern Africa, and beyond: Report of a Southern Africa Regional DNA Barcode Meeting, South African National Biodiversity Institute, Cape Town, South Africa. Smithsonian Research Online, 2006. http://dx.doi.org/10.5479/10088/106722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meeting Report, DNA Barcoding in South and Central America, 19-20th March 2007, Campinas, SP – Brazil. Smithsonian Research Online, 2007. http://dx.doi.org/10.5479/10088/106718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

The Western and Central Africa DNA Barcoding meeting, 23-25 October 2008, Hilton Transcorp, Abuja, Nigeria. Smithsonian Research Online, 2008. http://dx.doi.org/10.5479/10088/106720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography