Academic literature on the topic 'DNA barcoding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA barcoding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNA barcoding"
Wulansari, Nuring, Mala Nurilmala, and N. Nurjanah. "Detection Tuna and Processed Products Based Protein and DNA Barcoding." Jurnal Pengolahan Hasil Perikanan Indonesia 18, no. 2 (August 25, 2015): 119–27. http://dx.doi.org/10.17844/jphpi.2015.18.2.119.
Full textShadrin, D. M. "DNA Barcoding: Applications." Russian Journal of Genetics 57, no. 4 (April 2021): 489–97. http://dx.doi.org/10.1134/s102279542104013x.
Full textMitchell, Andrew. "DNA barcoding demystified." Australian Journal of Entomology 47, no. 3 (August 2008): 169–73. http://dx.doi.org/10.1111/j.1440-6055.2008.00645.x.
Full textZuo, Yunjuan, Zhongjian Chen, Katsuhiko Kondo, Tsuneo Funamoto, Jun Wen, and Shiliang Zhou. "DNA Barcoding ofPanaxSpecies." Planta Medica 77, no. 02 (August 27, 2010): 182–87. http://dx.doi.org/10.1055/s-0030-1250166.
Full textXu, Jianping. "Fungal DNA barcoding." Genome 59, no. 11 (November 2016): 913–32. http://dx.doi.org/10.1139/gen-2016-0046.
Full textŠLAPETA, JAN. "DNA barcoding ofCryptosporidium." Parasitology 145, no. 5 (November 8, 2017): 574–84. http://dx.doi.org/10.1017/s0031182017001809.
Full textCarvalho, C. B. V. "DNA Barcoding in Forensic Vertebrate Species Identification." Brazilian Journal of Forensic Sciences, Medical Law and Bioethics 4, no. 1 (2014): 12–23. http://dx.doi.org/10.17063/bjfs4(1)y201412.
Full textMunch, Kasper, Wouter Boomsma, Eske Willerslev, and Rasmus Nielsen. "Fast phylogenetic DNA barcoding." Philosophical Transactions of the Royal Society B: Biological Sciences 363, no. 1512 (October 7, 2008): 3997–4002. http://dx.doi.org/10.1098/rstb.2008.0169.
Full textScicluna, Stephanie M., Blessing Tawari, and C. Graham Clark. "DNA Barcoding of Blastocystis." Protist 157, no. 1 (February 2006): 77–85. http://dx.doi.org/10.1016/j.protis.2005.12.001.
Full textDurand, J. D., N. Hubert, K. N. Shen, and P. Borsa. "DNA barcoding grey mullets." Reviews in Fish Biology and Fisheries 27, no. 1 (November 11, 2016): 233–43. http://dx.doi.org/10.1007/s11160-016-9457-7.
Full textDissertations / Theses on the topic "DNA barcoding"
Zimmermann, Jonas [Verfasser]. "DNA barcoding and eDNA barcoding in diatoms / Jonas Zimmermann." Gießen : Universitätsbibliothek, 2015. http://d-nb.info/106887502X/34.
Full textKalianková, Kateřina. "Znakově-orientované metody DNA barcodingu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-220729.
Full textPena, Michelle Mendonça [UNESP]. "DNA Barcoding em Utricularia (Lentibulariaceae)." Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/136705.
Full textA família Lentibulariaceae Rich. é considerada o maior grupo de plantas carnívoras dentre as angiospermas. Utricularia é o gênero de maior riqueza, com aproximadamente 250 espécies. Diversos estudos de identificação baseados em morfologia foram realizados para a família Lentibulariaceae, porém eles se mostram limitados para determinados grupos de espécies. Com base nisso a aplicação do DNA Barcoding pode ser uma importante alternativa. No presente estudo foram utilizadas sequências de DNA dos espaçadores intergênicos cloroplastidiais trnS-trnG e trnL-trnF e também do gene mitocondrial coxI com o objetivo de testá-las com a abordagem DNA Barcoding na diferenciação intraespecífica, interespecífica e entre as seções do gênero Utricularia. Com base nas matrizes de distâncias, a distância intraespecífica média foi de 0,004 para ambos os marcadores cloroplastidiais e de 0,006 para o gene coxI, a distância interespecífica média foi de 0,260 para trnS-trnG, 0,190 para trnL-trnF, 0,043 para coxI e a distância média entre as seções foi de 0,036, 0,029 e 0,025 para trnS-trnG, trnL-trnF e coxI, respectivamente. A análise baseada na árvore de Neighbor-Joining indicou que a maioria das espécies se agruparam em seções de acordo com o proposto para a filogenia do gênero, formando grupos monofiléticos. A eficácia de discriminação interespecífica foi 82% para trnS-trnG e 61% trnL-trnF, a discriminação intraespecífica foi de 36% para trnS-trnG e 23% para trnL-trnF. O gene mitocondrial coxI apresentou 24% de discriminação inter e intraespecífica, com resolução baixa de espécies na árvores de Neighbor-Joining. Esses resultados demonstram que as regiões cloroplastidiais apresentam informações satisfatórias para separação das espécies em clados que corroboram com a filogenia do grupo e que portanto trnS-trnG e trnL-trnF podem ser considerados bons barcodes para o...
The family Lentibulariaceae Rich. is considered the largest group of carnivorous plants among the angiosperms. Utricularia is the richest genus with approximately 250 species. Several studies based on morphological identification have been published for the family Lentibulariaceae, but they are limited regarding some groups of species. Hence, DNA Barcoding may be an important alternative. The present study used DNA sequences of chloroplast intergenic spacers trnS-trnG and trnL-trnF and also the mitochondrial gene coxI in order to test them with the DNA Barcoding approach to intraspecific, interspecific and between sections differentiation in the Utricularia genus. Based on the distance analyses, the average intraspecific distance was 0.004 for both chloroplast markers and 0.006 for the coxI gene, the average interspecific distance was 0.260 to trnS-trnG, 0.190 to trnL-trnF, 0.043 to coxI and the average distance between sections was 0.036, 0.029 and 0.025 to trnS-trnG, trnL-trnF and coxI, respectively. The analysis based on Neighbor-Joining tree indicated that most species were grouped into sections according to the proposed for the phylogeny of the genus, forming monophyletic groups. The efficacy of interspecies discrimination was 82% to trnS-trnG and 61% to trnL-trnF, intraspecific discrimination was 36% to trnS-trnG and 23% to trnL-trnF. The mitochondrial gene coxI showed 24% of inter and intraspecific discrimination, with low resolution of species on trees Neighbor-Joining. These results demonstrate that the chloroplast regions have satisfactory information to separate species in clades that corroborate the phylogeny of the group and therefore trnS-trnG and trnL-trnF can be considered good barcodes for the Utricularia genus
Pena, Michelle Mendonça. "DNA "Barcoding" em Utricularia (Lentibulariaceae) /." Jaboticabal, 2015. http://hdl.handle.net/11449/136705.
Full textCoorientador: Alessandro de Mello Varani
Banca: Marcos Tulio de Oliveira
Banca: Yoannis Domínguez Rodríguez
Resumo: A família Lentibulariaceae Rich. é considerada o maior grupo de plantas carnívoras dentre as angiospermas. Utricularia é o gênero de maior riqueza, com aproximadamente 250 espécies. Diversos estudos de identificação baseados em morfologia foram realizados para a família Lentibulariaceae, porém eles se mostram limitados para determinados grupos de espécies. Com base nisso a aplicação do DNA "Barcoding" pode ser uma importante alternativa. No presente estudo foram utilizadas sequências de DNA dos espaçadores intergênicos cloroplastidiais trnS-trnG e trnL-trnF e também do gene mitocondrial coxI com o objetivo de testá-las com a abordagem DNA "Barcoding" na diferenciação intraespecífica, interespecífica e entre as seções do gênero Utricularia. Com base nas matrizes de distâncias, a distância intraespecífica média foi de 0,004 para ambos os marcadores cloroplastidiais e de 0,006 para o gene coxI, a distância interespecífica média foi de 0,260 para trnS-trnG, 0,190 para trnL-trnF, 0,043 para coxI e a distância média entre as seções foi de 0,036, 0,029 e 0,025 para trnS-trnG, trnL-trnF e coxI, respectivamente. A análise baseada na árvore de "Neighbor-Joining" indicou que a maioria das espécies se agruparam em seções de acordo com o proposto para a filogenia do gênero, formando grupos monofiléticos. A eficácia de discriminação interespecífica foi 82% para trnS-trnG e 61% trnL-trnF, a discriminação intraespecífica foi de 36% para trnS-trnG e 23% para trnL-trnF. O gene mitocondrial coxI apresentou 24% de discriminação inter e intraespecífica, com resolução baixa de espécies na árvores de "Neighbor-Joining". Esses resultados demonstram que as regiões cloroplastidiais apresentam informações satisfatórias para separação das espécies em clados que corroboram com a filogenia do grupo e que portanto trnS-trnG e trnL-trnF podem ser considerados bons "barcodes" para o...
Abstract: The family Lentibulariaceae Rich. is considered the largest group of carnivorous plants among the angiosperms. Utricularia is the richest genus with approximately 250 species. Several studies based on morphological identification have been published for the family Lentibulariaceae, but they are limited regarding some groups of species. Hence, DNA Barcoding may be an important alternative. The present study used DNA sequences of chloroplast intergenic spacers trnS-trnG and trnL-trnF and also the mitochondrial gene coxI in order to test them with the DNA Barcoding approach to intraspecific, interspecific and between sections differentiation in the Utricularia genus. Based on the distance analyses, the average intraspecific distance was 0.004 for both chloroplast markers and 0.006 for the coxI gene, the average interspecific distance was 0.260 to trnS-trnG, 0.190 to trnL-trnF, 0.043 to coxI and the average distance between sections was 0.036, 0.029 and 0.025 to trnS-trnG, trnL-trnF and coxI, respectively. The analysis based on Neighbor-Joining tree indicated that most species were grouped into sections according to the proposed for the phylogeny of the genus, forming monophyletic groups. The efficacy of interspecies discrimination was 82% to trnS-trnG and 61% to trnL-trnF, intraspecific discrimination was 36% to trnS-trnG and 23% to trnL-trnF. The mitochondrial gene coxI showed 24% of inter and intraspecific discrimination, with low resolution of species on trees Neighbor-Joining. These results demonstrate that the chloroplast regions have satisfactory information to separate species in clades that corroborate the phylogeny of the group and therefore trnS-trnG and trnL-trnF can be considered good barcodes for the Utricularia genus
Mestre
Stockinger, Herbert. "DNA barcoding of arbuscular mycorrhizal fungi." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-114870.
Full textdeWaard, Jeremy Ryan. "Forest biomonitoring, biosecurity and DNA barcoding." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30496.
Full textClaro, Felippe Lourenço. "Estudos do DNA repetitivo no gênero Eigenmannia." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/41/41131/tde-24032014-105922/.
Full textThe repetitive DNA constitutes a considerable fraction of the genome of many eukaryotic organisms. Compound by both functional sequences, such as ribosomal genes, and non-coding, such as transposable elements, mini / microsatellite DNA and the satellite, this portion of the genome has been widely used as a study object, since the repetitive sequences may be associated with, for example, the processes of sexual differentiation. These studies helped to understand the dynamics of these chromosomal regions, pointing the importance, conservation and evolution of the repetitive portion of the genome. The genus Eigenmannia (Gymnotiformes, Sternopygidae) comprises a morphological cryptic species that exhibit variation in chromosome number and may have sexual XY or ZW systems in which the elements of sexual pair differ by the presence of heterochromatic blocks larger than those found in chromosomes autosomes, or systems involving multiple Y-autosome translocation. The present work aims to study the gene Cytochrome Oxidase I (COI) to verify the discriminatory capacity of this mitochondrial gene and suggest possible species of the so called karyomorphs of the genus Eigenmannia in the state of São Paulo. The study of repetitive DNA in Eigenmannia genus, includes 5S ribosomal gene and transposable elements, thus allowing a better understanding of the distribution, conservation in karyomorphs and verify their possible participation in the process of differentiation not only of sex chromosomes, karyotypic evolution but also in the group. The results obtained with the COI gene, as well as those obtained by the 5S ribosomal gene demonstrate genetic distances consistent with the hypothesis that the five karyomorphs can be regarded as separate species. In addition, in situ hybridization of ribosomal 5S gene provided new evidence for chromosomal fusion which led to the Y sex chromosome, as described in the literature, whereas hybridization of telomeric sequences did not provide evidence of recent fusion events involving the karyomorphs. Regarding transposable elements, it could be verified distinct sequence patterns between TC1 and Rex1 elements, since the TC1 element delimited two groups which may indicate a simultaneously invasion in those groups and retrotransposon Rex1 invasion has occurred in a common ancestor to all karyomorphs
Brabencová, Klára. "Analýza mitochondriálních genů živočichů pro DNA barcoding." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220849.
Full textKruger, Åsa. "DNA-Barcoding Identification of Medicinal Roots from Morocco." Thesis, Uppsala universitet, Systematisk biologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-141818.
Full textFogelström, Anna. "DNA barcoding of freshwater fishes in Matang, Malaysia." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255333.
Full textBooks on the topic "DNA barcoding"
Trivedi, Subrata, Hasibur Rehman, Shalini Saggu, Chellasamy Panneerselvam, and Sankar K. Ghosh, eds. DNA Barcoding and Molecular Phylogeny. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90680-5.
Full textSucher, Nikolaus J., James R. Hennell, and Maria C. Carles, eds. Plant DNA Fingerprinting and Barcoding. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-609-8.
Full textTrivedi, Subrata, Hasibur Rehman, Shalini Saggu, Chellasamy Panneerselvam, and Sankar K. Ghosh, eds. DNA Barcoding and Molecular Phylogeny. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50075-7.
Full textTrivedi, Subrata, Abid Ali Ansari, Sankar K. Ghosh, and Hasibur Rehman, eds. DNA Barcoding in Marine Perspectives. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41840-7.
Full textTrivedi, Subrata, Sankar K. Ghosh, Hasibur Rehman, Shalini Saggu, and Chellasamy Panneerselvam. DNA Barcoding and Molecular Phylogeny. Springer, 2018.
Find full textTrivedi, Subrata, Sankar K. Ghosh, Hasibur Rehman, Shalini Saggu, and Chellasamy Panneerselvam. DNA Barcoding and Molecular Phylogeny. Springer, 2020.
Find full textTrivedi, Subrata, Sankar K. Ghosh, Hasibur Rehman, Shalini Saggu, and Chellasamy Panneerselvam. DNA Barcoding and Molecular Phylogeny. Springer International Publishing AG, 2021.
Find full textBook chapters on the topic "DNA barcoding"
Weigt, Lee A., Amy C. Driskell, Carole C. Baldwin, and Andrea Ormos. "DNA Barcoding Fishes." In DNA Barcodes, 109–26. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_6.
Full textIvanova, Natalia V., Elizabeth L. Clare, and Alex V. Borisenko. "DNA Barcoding in Mammals." In DNA Barcodes, 153–82. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_8.
Full textPal, Payal, and Ena Ray Banerjee. "Nanoscience and DNA Barcoding." In Nanomaterials and Biomedicine, 127–34. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5274-8_8.
Full textRajthilak, C., P. Santhanam, P. Pachiappan, T. Veeramani, and S. Ravikumar. "DNA Barcoding of Copepods." In Basic and Applied Zooplankton Biology, 87–125. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7953-5_3.
Full textde Vere, Natasha, Tim C. G. Rich, Sarah A. Trinder, and Charlotte Long. "DNA Barcoding for Plants." In Methods in Molecular Biology, 101–18. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1966-6_8.
Full textJames, Karen E. "DNA Barcoding Darwin’s Meadow." In Darwin-Inspired Learning, 257–70. Rotterdam: SensePublishers, 2015. http://dx.doi.org/10.1007/978-94-6209-833-6_20.
Full textChauhan, Archana, Phuntsog Dolma, Anuragini Kadwalia, Ahmad Ali, and R. C. Sobti. "DNA Barcoding and Metabarcoding." In Environmental Studies and Climate Change, 35–46. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9781003220824-4.
Full textMahadani, Asim Kumar, Pradosh Mahadani, and Goutam Sanyal. "R in DNA Barcoding." In DNA Barcoding and Molecular Phylogeny, 31–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90680-5_2.
Full textEvans, Nathaniel, and Gustav Paulay. "DNA Barcoding Methods for Invertebrates." In DNA Barcodes, 47–77. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_4.
Full textVences, Miguel, Zoltán T. Nagy, Gontran Sonet, and Erik Verheyen. "DNA Barcoding Amphibians and Reptiles." In DNA Barcodes, 79–107. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-591-6_5.
Full textConference papers on the topic "DNA barcoding"
Rousseau, Philip, Piet J. Vorster, Damon P. Little, and Michelle van der Bank. "DNA Barcoding Africa’s Endemic Cycads." In CYCAD 2011. The New York Botanical Garden Press, 2018. http://dx.doi.org/10.21135/893275389.020.
Full text"The new method of DNA barcoding." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-347.
Full textLockie-Williams, C., C. Gkouva, L. Gibson, and C. Howard. "DNA barcoding analysis: quality control of published DNA sequences." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399756.
Full textSzaboova, Dana, Eliska Gburova Stubnova, and Ivona Kautmanova. "CHALLENGES ASSOCIATED WITH BARCODING METHOD." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/5.1/s20.012.
Full textSanmartin, Victor, and Rejane Frozza. "Uso de DNA-Barcoding no alinhamento e localização de Primers para o reconhecimento de cianobactérias." In I Escola Regional de Computação do Rio Grande do Sul. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/ercomprs.2020.14298.
Full textMeenakshi, K., Reveendran Remya, and George Sanil. "DNA barcoding and microsatellite marker development forNyctibatrachus major." In the International Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1722024.1722029.
Full textMusthak, Bachelors, Adham, Dhabiya Al-kubaisi, Wadha Almarri, Ghizlane Bendriss, Aurora M. Castilla, and Kuei-chiu Chen. "Dna Barcoding Of Lizards (reptilia, Squamata) Of Qatar." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.eesp0760.
Full textHosoya, Tadatsugu. "DNA barcoding of Japanese scarabaeoid beetles (Coleoptera, Scarabaeoidea)." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.112599.
Full textSalleh, Mohd Hairul Mohd, and Yuzine Esa. "Testudines’ Terrapins: DNA Barcoding and Their Conservation Status." In The 2nd International Electronic Conference on Diversity (IECD 2022)—New Insights into the Biodiversity of Plants, Animals and Microbes. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/iecd2022-12426.
Full textMANDZYAK, N. B., I. A. KAYGORODOVA, and A. V. BOLBAT. "DNA BARCODING OF EASTERN SIBERIAN FLAT LEECHES (HIRUDINEA: GLOSSIPHONIIDAE)." In 5TH MOSCOW INTERNATIONAL CONFERENCE "MOLECULAR PHYLOGENETICSAND BIODIVERSITY BIOBANKING". TORUS PRESS, 2018. http://dx.doi.org/10.30826/molphy2018-57.
Full textReports on the topic "DNA barcoding"
Nelson, Sarah, Megan Little, Karen James, Michael Marion, and Hamish Greig. Developing a standard operating procedure for species identifications of dragonfly larvae using DNA barcoding: A contribution of the Dragonfly Mercury Project. National Park Service, March 2022. http://dx.doi.org/10.36967/nrr-2288457.
Full textSmith, Gideon F., David Schindel, Richard Smith, and Scott Miller. Priority-driven Barcoding of Life for Southern Africa, and beyond: Report of a Southern Africa Regional DNA Barcode Meeting, South African National Biodiversity Institute, Cape Town, South Africa. Smithsonian Research Online, 2006. http://dx.doi.org/10.5479/10088/106722.
Full textMeeting Report, DNA Barcoding in South and Central America, 19-20th March 2007, Campinas, SP – Brazil. Smithsonian Research Online, 2007. http://dx.doi.org/10.5479/10088/106718.
Full textThe Western and Central Africa DNA Barcoding meeting, 23-25 October 2008, Hilton Transcorp, Abuja, Nigeria. Smithsonian Research Online, 2008. http://dx.doi.org/10.5479/10088/106720.
Full text