Journal articles on the topic 'DNA bubbles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'DNA bubbles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Makasheva, Kristina A., Anton V. Endutkin, and Dmitry O. Zharkov. "Requirements for DNA bubble structure for efficient cleavage by helix–two-turn–helix DNA glycosylases." Mutagenesis 35, no. 1 (2019): 119–28. http://dx.doi.org/10.1093/mutage/gez047.
Full textSeverin, N., W. Zhuang, C. Ecker, A. A. Kalachev, I. M. Sokolov, and J. P. Rabe. "Blowing DNA Bubbles." Nano Letters 6, no. 11 (2006): 2561–66. http://dx.doi.org/10.1021/nl061989b.
Full textGonzalez, Rodrigo, Yan Zeng, Vassili Ivanov, and Giovanni Zocchi. "Bubbles in DNA melting." Journal of Physics: Condensed Matter 21, no. 3 (2008): 034102. http://dx.doi.org/10.1088/0953-8984/21/3/034102.
Full textGrinevich, A. A., A. A. Ryasik, and L. V. Yakushevich. "Trajectories of DNA bubbles." Chaos, Solitons & Fractals 75 (June 2015): 62–75. http://dx.doi.org/10.1016/j.chaos.2015.02.009.
Full textHariadi, Rizal F., Erik Winfree, and Bernard Yurke. "Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics." Proceedings of the National Academy of Sciences 112, no. 45 (2015): E6086—E6095. http://dx.doi.org/10.1073/pnas.1424673112.
Full textWu, Weimin, Naiqian Cheng, Lindsay Black, Hendrik Dietz, and Alasdair Steven. "Biphasic Packing of DNA and Internal Proteins in Bacteriophage T4 Heads Revealed by Bubblegram Imaging." Viruses 12, no. 11 (2020): 1282. http://dx.doi.org/10.3390/v12111282.
Full textZeng, Yan, and Giovanni Zocchi. "Mismatches and Bubbles in DNA." Biophysical Journal 90, no. 12 (2006): 4522–29. http://dx.doi.org/10.1529/biophysj.105.069591.
Full textvan Erp, T. S., S. Cuesta-López, and M. Peyrard. "Bubbles and denaturation in DNA." European Physical Journal E 20, no. 4 (2006): 421–34. http://dx.doi.org/10.1140/epje/i2006-10032-2.
Full textHennig, D., J. F. R. Archilla, and J. M. Romero. "Modelling the thermal evolution of enzyme-created bubbles in DNA." Journal of The Royal Society Interface 2, no. 2 (2005): 89–95. http://dx.doi.org/10.1098/rsif.2004.0024.
Full textLiang, C., and S. A. Gerbi. "Analysis of an origin of DNA amplification in Sciara coprophila by a novel three-dimensional gel method." Molecular and Cellular Biology 14, no. 2 (1994): 1520–29. http://dx.doi.org/10.1128/mcb.14.2.1520.
Full textLiang, C., and S. A. Gerbi. "Analysis of an origin of DNA amplification in Sciara coprophila by a novel three-dimensional gel method." Molecular and Cellular Biology 14, no. 2 (1994): 1520–29. http://dx.doi.org/10.1128/mcb.14.2.1520-1529.1994.
Full textKim, Sook Ho, Hae Jun Jung, Il-Buem Lee, Nam-Kyung Lee, and Seok-Cheol Hong. "Sequence-dependent cost for Z-form shapes the torsion-driven B–Z transition via close interplay of Z-DNA and DNA bubble." Nucleic Acids Research 49, no. 7 (2021): 3651–60. http://dx.doi.org/10.1093/nar/gkab153.
Full textDhar, S. K., N. R. Choudhury, V. Mittal, A. Bhattacharya, and S. Bhattacharya. "Replication initiates at multiple dispersed sites in the ribosomal DNA plasmid of the protozoan parasite Entamoeba histolytica." Molecular and Cellular Biology 16, no. 5 (1996): 2314–24. http://dx.doi.org/10.1128/mcb.16.5.2314.
Full textKapri, Rajeev, and Somendra M. Bhattacharjee. "Bubbles in DNA by random force." Physica A: Statistical Mechanics and its Applications 384, no. 1 (2007): 10–14. http://dx.doi.org/10.1016/j.physa.2007.04.108.
Full textGrinevich, Andrey A., Artem A. Ryasik, and Ludmila V. Yakushevich. "130 Modeling the DNA bubbles dynamics." Journal of Biomolecular Structure and Dynamics 33, sup1 (2015): 84. http://dx.doi.org/10.1080/07391102.2015.1032763.
Full textZrimec, Jan, and Ales Lapanje. "Fast Prediction of DNA Melting Bubbles Using DNA Thermodynamic Stability." IEEE/ACM Transactions on Computational Biology and Bioinformatics 12, no. 5 (2015): 1137–45. http://dx.doi.org/10.1109/tcbb.2015.2396057.
Full textBrennen, Christopher Earls. "Cavitation in medicine." Interface Focus 5, no. 5 (2015): 20150022. http://dx.doi.org/10.1098/rsfs.2015.0022.
Full textAdamcik, Jozef, Jae-Hyung Jeon, Konrad J. Karczewski, Ralf Metzler, and Giovanni Dietler. "Quantifying supercoiling-induced denaturation bubbles in DNA." Soft Matter 8, no. 33 (2012): 8651. http://dx.doi.org/10.1039/c2sm26089a.
Full textKalosakas, G., K. Ø. Rasmussen, and A. R. Bishop. "Nonlinear excitations in DNA: polarons and bubbles." Synthetic Metals 141, no. 1-2 (2004): 93–97. http://dx.doi.org/10.1016/j.synthmet.2003.08.020.
Full textLarijani, Mani, Alexander P. Petrov, Oxana Kolenchenko, Maribel Berru, Sergey N. Krylov, and Alberto Martin. "AID Associates with Single-Stranded DNA with High Affinity and a Long Complex Half-Life in a Sequence-Independent Manner." Molecular and Cellular Biology 27, no. 1 (2006): 20–30. http://dx.doi.org/10.1128/mcb.00824-06.
Full textShigaev, A. S., I. V. Lihachev, and V. D. Lakhno. "DNA Model with Non-Local Inter-Site Interaction in Collisional Thermostat." Mathematical Biology and Bioinformatics 15, no. 2 (2020): 129–37. http://dx.doi.org/10.17537/2020.15.129.
Full textHwa, T., E. Marinari, K. Sneppen, and L. h. Tang. "Localization of denaturation bubbles in random DNA sequences." Proceedings of the National Academy of Sciences 100, no. 8 (2003): 4411–16. http://dx.doi.org/10.1073/pnas.0736291100.
Full textSmelkova, Natalia V., and James A. Borowiec. "Synthetic DNA Replication Bubbles Bound and Unwound with Twofold Symmetry by a Simian Virus 40 T-Antigen Double Hexamer." Journal of Virology 72, no. 11 (1998): 8676–81. http://dx.doi.org/10.1128/jvi.72.11.8676-8681.1998.
Full textDasanna, Anil Kumar, Nicolas Destainville, John Palmeri, and Manoel Manghi. "Strand diffusion-limited closure of denaturation bubbles in DNA." EPL (Europhysics Letters) 98, no. 3 (2012): 38002. http://dx.doi.org/10.1209/0295-5075/98/38002.
Full textYuan, Chongli, Elizabeth Rhoades, Xiong Wen Lou, and Lynden A. Archer. "Spontaneous sharp bending of DNA: role of melting bubbles." Nucleic Acids Research 34, no. 16 (2006): 4554–60. http://dx.doi.org/10.1093/nar/gkl394.
Full textVallée, Nicolas, Sandrine Gaillard, André Peinnequin, Jean-Jacques Risso, and Jean-Eric Blatteau. "Evidence of cell damages caused by circulating bubbles: high level of free mitochondrial DNA in plasma of rats." Journal of Applied Physiology 115, no. 10 (2013): 1526–32. http://dx.doi.org/10.1152/japplphysiol.00025.2013.
Full textLarijani, Mani, and Alberto Martin. "Single-Stranded DNA Structure and Positional Context of the Target Cytidine Determine the Enzymatic Efficiency of AID." Molecular and Cellular Biology 27, no. 23 (2007): 8038–48. http://dx.doi.org/10.1128/mcb.01046-07.
Full textAmbjörnsson, Tobias, and Ralf Metzler. "Binding dynamics of single-stranded DNA binding proteins to fluctuating bubbles in breathing DNA." Journal of Physics: Condensed Matter 17, no. 20 (2005): S1841—S1869. http://dx.doi.org/10.1088/0953-8984/17/20/013.
Full textMitchell, J. S., C. A. Laughton, and Sarah A. Harris. "Atomistic simulations reveal bubbles, kinks and wrinkles in supercoiled DNA." Nucleic Acids Research 39, no. 9 (2011): 3928–38. http://dx.doi.org/10.1093/nar/gkq1312.
Full textSicard, François, Nicolas Destainville, and Manoel Manghi. "DNA denaturation bubbles: Free-energy landscape and nucleation/closure rates." Journal of Chemical Physics 142, no. 3 (2015): 034903. http://dx.doi.org/10.1063/1.4905668.
Full textBurnham, Daniel R., Bas Nijholt, Iwijn De Vlaminck, Jinhua Quan, Timur Yusufzai, and Cees Dekker. "Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively." Nucleic Acids Research 45, no. 8 (2017): 4687–95. http://dx.doi.org/10.1093/nar/gkx147.
Full textRoss, Jason P., Isao Suetake, Shoji Tajima, and Peter L. Molloy. "Recombinant mammalian DNA methyltransferase activity on model transcriptional gene silencing short RNA–DNA heteroduplex substrates." Biochemical Journal 432, no. 2 (2010): 323–32. http://dx.doi.org/10.1042/bj20100579.
Full textJeon, Jae-Hyung, and Wokyung Sung. "How Topological Constraints Facilitate Growth and Stability of Bubbles in DNA." Biophysical Journal 95, no. 8 (2008): 3600–3605. http://dx.doi.org/10.1529/biophysj.108.132258.
Full textTHEODORAKOPOULOS, NIKOS. "BUBBLES, CLUSTERS AND DENATURATION IN GENOMIC DNA: MODELING, PARAMETRIZATION, EFFICIENT COMPUTATION." Journal of Nonlinear Mathematical Physics 18, sup2 (2011): 429–47. http://dx.doi.org/10.1142/s1402925111001611.
Full textMcCauley, Micah J., Ioulia Rouzina, and Mark C. Williams. "Bubbles, Free Ends and the Kinetics of Force-Induced DNA Melting." Biophysical Journal 102, no. 3 (2012): 176a. http://dx.doi.org/10.1016/j.bpj.2011.11.957.
Full textЯкушевич, Л. В., та L. V. Yakushevich. "Траектории кинков ДНК в последовательностях, содержащих кодирующие области генов". Mathematical Biology and Bioinformatics 12, № 1 (2017): 1–13. http://dx.doi.org/10.17537/2017.12.1.
Full textKing, G. A., P. Gross, U. Bockelmann, M. Modesti, G. J. L. Wuite, and E. J. G. Peterman. "Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy." Proceedings of the National Academy of Sciences 110, no. 10 (2013): 3859–64. http://dx.doi.org/10.1073/pnas.1213676110.
Full textKing, Graeme A., Peter Gross, Ulrich Bockelmann, Mauro Modesti, Gijs J. L. Wuite, and Erwin J. G. Peterman. "Revealing the Competition between Peeled-Ssdna, Melting Bubbles and S-DNA during DNA Overstretching using Fluorescence Microscopy." Biophysical Journal 104, no. 2 (2013): 262a. http://dx.doi.org/10.1016/j.bpj.2012.11.1472.
Full textKobayashi, Takehiko, Theo Rein, and Melvin L. DePamphilis. "Identification of Primary Initiation Sites for DNA Replication in the Hamster Dihydrofolate Reductase Gene Initiation Zone." Molecular and Cellular Biology 18, no. 6 (1998): 3266–77. http://dx.doi.org/10.1128/mcb.18.6.3266.
Full textKawazu, Takeshi, Kazumi Hakamada, Yusuke Oda, Jun Miyake, Kazuo Maruyama, and Takeshi Nagasaki. "Ultrasound-mediated Transfection with Liposomal Bubbles Delivers Plasmid DNA Directly into Nucleus." Chemistry Letters 40, no. 3 (2011): 298–99. http://dx.doi.org/10.1246/cl.2011.298.
Full textHennig, D. "Formation and propagation of oscillating bubbles in DNA initiated by structural distortions." European Physical Journal B - Condensed Matter 37, no. 3 (2003): 391–97. http://dx.doi.org/10.1140/epjb/e2004-00071-7.
Full textKalejta, R. F., H. B. Lin, P. A. Dijkwel, and J. L. Hamlin. "Characterizing replication intermediates in the amplified CHO dihydrofolate reductase domain by two novel gel electrophoretic techniques." Molecular and Cellular Biology 16, no. 9 (1996): 4923–31. http://dx.doi.org/10.1128/mcb.16.9.4923.
Full textLin, Jinzhong, Yulong Shen, Jinfeng Ni, and Qunxin She. "A type III-A CRISPR–Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors." Nucleic Acids Research 49, no. 13 (2021): 7628–43. http://dx.doi.org/10.1093/nar/gkab590.
Full textZhang, X., H. Chen, S. Le, I. Rouzina, P. S. Doyle, and J. Yan. "Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry." Proceedings of the National Academy of Sciences 110, no. 10 (2013): 3865–70. http://dx.doi.org/10.1073/pnas.1213740110.
Full textKamath-Loeb, Ashwini S., Jiang-Cheng Shen, Michael W. Schmitt та Lawrence A. Loeb. "The Werner Syndrome Exonuclease Facilitates DNA Degradation and High Fidelity DNA Polymerization by Human DNA Polymerase δ". Journal of Biological Chemistry 287, № 15 (2012): 12480–90. http://dx.doi.org/10.1074/jbc.m111.332577.
Full textHeck, M. M., and A. C. Spradling. "Multiple replication origins are used during Drosophila chorion gene amplification." Journal of Cell Biology 110, no. 4 (1990): 903–14. http://dx.doi.org/10.1083/jcb.110.4.903.
Full textSzambowska, Anna, Ingrid Tessmer, Petri Kursula, et al. "DNA binding properties of human Cdc45 suggest a function as molecular wedge for DNA unwinding." Nucleic Acids Research 42, no. 4 (2013): 2308–19. http://dx.doi.org/10.1093/nar/gkt1217.
Full textRieloff, Ellen, Sandra C. C. Nunes, Alberto A. C. C. Pais, and Marie Skepö. "Structural Characterization of Bubbles Formed in DNA Melting: A Monte Carlo Simulation Study." ACS Omega 2, no. 5 (2017): 1915–21. http://dx.doi.org/10.1021/acsomega.7b00323.
Full textWu, Weimin, William W. Newcomb, Naiqian Cheng, Anastasia Aksyuk, Dennis C. Winkler, and Alasdair C. Steven. "Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging." Journal of Virology 90, no. 10 (2016): 5176–86. http://dx.doi.org/10.1128/jvi.03224-15.
Full textA., Abraham. "INTRODUCING IN VITRO EXPERIMENTS OF OXYGEN BUBBLES SHOCKWAVES TRIGGERING INTRACELLULAR LIPIDS LUMINESCENCE: IMPLICATIONS IN CANCER ETIOLOGY." International Journal of Research -GRANTHAALAYAH 7, no. 4 (2019): 355–64. http://dx.doi.org/10.29121/granthaalayah.v7.i4.2019.921.
Full text