Academic literature on the topic 'DNA Copy Number Variations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA Copy Number Variations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DNA Copy Number Variations"

1

Vijay, Aatira, Iti Garg, and Mohammad Zahid Ashraf. "Perspective: DNA Copy Number Variations in Cardiovascular Diseases." Epigenetics Insights 11 (January 2018): 251686571881883. http://dx.doi.org/10.1177/2516865718818839.

Full text
Abstract:
Human genome contains many variations, often called mutations, which are difficult to detect and have remained a challenge for years. A substantial part of the genome encompasses repeats and when such repeats are in the coding region they may lead to change in the gene expression profile followed by pathological conditions. Structural variants are alterations which change one or more sequence feature in the chromosome such as change in the copy number, rearrangements, and translocations of a sequence and can be balanced or unbalanced. Copy number variants (CNVs) may increase or decrease the copies of a given region and have a pivotal role in the onset of many diseases including cardiovascular disorders. Cardiovascular disorders have a magnitude of well-established risk factors and etiology, but their correlation with CNVs is still being studied. In this article, we have discussed history of CNVs and a summary on the diseases associated with CNVs. To detect such variations, we shed light on the number of techniques introduced so far and their limitations. The lack of studies on cardiovascular diseases to determine the frequency of such variants needs clinical studies with larger cohorts. This review is a compilation of articles suggesting the importance of CNVs in multitude of cardiovascular anomalies. Finally, future perspectives for better understanding of CNVs and cardiovascular disorders have also been discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Harrison, Steven M., Casey Seideman, and Linda A. Baker. "DNA Copy Number Variations in Patients with Persistent Cloaca." Journal of Urology 191, no. 5S (May 2014): 1543–46. http://dx.doi.org/10.1016/j.juro.2013.09.056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hovhannisyan, Galina, Tigran Harutyunyan, Rouben Aroutiounian, and Thomas Liehr. "DNA Copy Number Variations as Markers of Mutagenic Impact." International Journal of Molecular Sciences 20, no. 19 (September 24, 2019): 4723. http://dx.doi.org/10.3390/ijms20194723.

Full text
Abstract:
DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Wineinger, Nathan E., Richard E. Kennedy, Stephen W. Erickson, Mary K. Wojczynski, Carl E. Bruder, and Hemant K. Tiwari. "Statistical issues in the analysis of DNA Copy Number Variations." International Journal of Computational Biology and Drug Design 1, no. 4 (2008): 368. http://dx.doi.org/10.1504/ijcbdd.2008.022208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Yan, Leslie Cope, Wenyue Sun, Yongchun Wang, Nijaguna Prasad, Lauren Sangenario, Kristen Talbot, et al. "DNA Copy Number Variations Characterize Benign and Malignant Thyroid Tumors." Journal of Clinical Endocrinology & Metabolism 98, no. 3 (March 1, 2013): E558—E566. http://dx.doi.org/10.1210/jc.2012-3113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iacocca, Michael A., Jacqueline S. Dron, and Robert A. Hegele. "Progress in finding pathogenic DNA copy number variations in dyslipidemia." Current Opinion in Lipidology 30, no. 2 (April 2019): 63–70. http://dx.doi.org/10.1097/mol.0000000000000581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jaimes-Bernal, Claudia P., Monte Trujillo, Francisco José Márquez, and Antonio Caruz. "Complement C4 Gene Copy Number Variation Genotyping by High Resolution Melting PCR." International Journal of Molecular Sciences 21, no. 17 (August 31, 2020): 6309. http://dx.doi.org/10.3390/ijms21176309.

Full text
Abstract:
Background: Complement C4 gene copy number variation plays an important role as a determinant of genetic susceptibility to common diseases, such as systemic lupus erythematosus, schizophrenia, rheumatoid arthritis, and infectious diseases. This study aimed to develop an assay for the quantification of copy number variations in the C4 locus. Methods: the assay was based on a gene ratio analysis copy enumeration (GRACE) PCR combined with high resolution melting (HRM) PCR. The test was optimized using samples of a known genotype and validated with 72 DNA samples from healthy blood donors. Results: to validate the assay, standard curves were generated by plotting the C4/RP1 ratio values against copy number variation (CNV) for each gene, using genomic DNA with known C4 CNV. The range of copy numbers in control individuals was comparable to distributions observed in previous studies of European descent. Conclusions: the method herein described significantly simplifies C4 CNV diagnosis to validate the assay.
APA, Harvard, Vancouver, ISO, and other styles
8

Niu, Yue S., and Heping Zhang. "The screening and ranking algorithm to detect DNA copy number variations." Annals of Applied Statistics 6, no. 3 (September 2012): 1306–26. http://dx.doi.org/10.1214/12-aoas539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Villela, Darine, Claudia K. Suemoto, Renata Leite, Carlos Augusto Pasqualucci, Lea T. Grinberg, Peter Pearson, and Carla Rosenberg. "Increased DNA Copy Number Variation Mosaicism in Elderly Human Brain." Neural Plasticity 2018 (June 28, 2018): 1–9. http://dx.doi.org/10.1155/2018/2406170.

Full text
Abstract:
Aging is a complex process strongly determined by genetics. Previous reports have shown that the genome of neuronal cells displays somatic genomic mosaicism including DNA copy number variations (CNVs). CNVs represent a significant source of genetic variation in the human genome and have been implicated in several disorders and complex traits, representing a potential mechanism that contributes to neuronal diversity and the etiology of several neurological diseases and provides new insights into the normal, complex functions of the brain. Nonetheless, the features of somatic CNV mosaicism in nondiseased elderly brains have not been investigated. In the present study, we demonstrate a highly significant increase in the number of CNVs in nondiseased elderly brains compared to the blood. In two neural tissues isolated from paired postmortem samples (same individuals), we found a significant increase in the frequency of deletions in both brain areas, namely, the frontal cortex and cerebellum. Also, deletions were found to be significantly larger when present only in the cerebellum. The sizes of the variants described here were in the 150–760 kb range, and importantly, nearly all of them were present in the Database of Genomic Variants (common variants). Nearly all evidence of genome structural variation in human brains comes from studies detecting changes in single cells which were interpreted as derived from independent, isolated mutational events. The observations based on array-CGH analysis indicate the existence of an extensive clonal mosaicism of CNVs within and between the human brains revealing a different type of variation that had not been previously characterized.
APA, Harvard, Vancouver, ISO, and other styles
10

Ahmad, Niaz, and Brent L. Nielsen. "Plant Organelle DNA Maintenance." Plants 9, no. 6 (May 28, 2020): 683. http://dx.doi.org/10.3390/plants9060683.

Full text
Abstract:
Plant cells contain two double membrane bound organelles, plastids and mitochondria, that contain their own genomes. There is a very large variation in the sizes of mitochondrial genomes in higher plants, while the plastid genome remains relatively uniform across different species. One of the curious features of the organelle DNA is that it exists in a high copy number per mitochondria or chloroplast, which varies greatly in different tissues during plant development. The variations in copy number, morphology and genomic content reflect the diversity in organelle functions. The link between the metabolic needs of a cell and the capacity of mitochondria and chloroplasts to fulfill this demand is thought to act as a selective force on the number of organelles and genome copies per organelle. However, it is not yet clear how the activities of mitochondria and chloroplasts are coordinated in response to cellular and environmental cues. The relationship between genome copy number variation and the mechanism(s) by which the genomes are maintained through different developmental stages are yet to be fully understood. This Special Issue has several contributions that address current knowledge of higher plant organelle DNA. Here we briefly introduce these articles that discuss the importance of different aspects of the organelle genome in higher plants.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "DNA Copy Number Variations"

1

Adur, Ashwin. "DNA copy number variation in autism." Connect to resource, 2009. http://hdl.handle.net/1811/37275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cervera, Carles Laura. "Assessing the role of copy number variations, mitochondrial DNA and microRNAs in neurodegenerative disorders." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/668060.

Full text
Abstract:
Les malalties neurodegeneratives són patologies complexes i progressives que afecten milions de persones a tot el món. Entre d’altres, la malaltia d’Alzheimer (MA), la malaltia de Parkinson (MP) i la demència frontotemporal (DFT) són les tres condicions més prevalents. Tot i l’extensiva recerca duta a terme, els esdeveniments moleculars que desencadenen aquestes patologies són encara desconeguts. L’objectiu d’aquesta tesi és entendre el rol de determinats factors genètics i epigenètics en les malalties neurodegeneratives, a través de l’estudi de les reestructuracions genètiques, i la quantificació d’ADN mitocondrial circulant i espècies d’ARN no codificants. Primerament, s’ha analitzat el patró de variació estructural del cromosoma 17q21.31, una de les regions més complexes i dinàmiques del genoma humà, i s’ha avaluat la seva contribució en la ben establerta associació entre l’haplotip H1 del gen MAPT i la MP, la paràlisi supranuclear progressiva (PSP), la degeneració corticobasal (DCB) i la demència amb cossos de Lewy (DCLewy). Els resultats obtinguts suggereixen que els polimorfismes de número de còpies dintre d’aquesta regió no són responsables de l’efecte H1. Tot i això, hem trobat una sobre-representació dels portadors H1 en el grup de pacients amb DCLewy, expandint d’aquesta manera la rellevància biològica de l’haplotip en les malalties neurodegeneratives. També s’han examinat els nivells d’ADN mitocondrial circulant en líquid cefaloraquidi (LCR) i la seva utilitat com a indicador de la disfunció mitocondrial en el contínuum de la MA. Malgrat que la seva quantificació és fiable, la gran variabilitat interindividual entre els grups d’estudi limita la seva precisió i utilitat com a biomarcador diagnòstic. Finalment, s’ha investigat el perfil d’expressió de microARNs, una classe de ARNs no codificants involucrats en la modulació post-transcripcional de l’expressió gènica, continguts en vesícules extracel·lulars (VEs) de LCR en DFT i altres síndromes relacionats. Es poden detectar nombrosos microARNs en VEs de LCR. També s’han identificat quatre microARNs amb un patró d’expressió específic en pacients diagnosticats amb síndromes DFT 4R-tau.
Neurodegenerative diseases are complex and progressive disorders that affect millions of people worldwide. Among them, Alzheimer’s disease (AD), Parkinson’s disease (PD) and frontotemporal dementia (FTD) are three of the most prevalent. In spite of extensive research, the molecular events triggering these pathologies remain elusive. This thesis aims at understanding the role of certain genetic and epigenetic factors in neurodegenerative diseases through the study of structural genetic rearrangements, and the measurement of circulating mitochondrial DNA and non-coding RNA species. We first analyzed the structural variation pattern of the chromosome 17q21.31, one of the most complex and dynamic regions of the human genome, and evaluated its contribution to the well-established MAPT H1 haplotype relationship with PD, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and dementia with Lewy bodies (DLB). Our results suggest that copy number polymorphisms within this region are not responsible for the H1 effect. However, we found a significant overrepresentation of H1 carriers in DLB patients, thus expanding the biological relevance of the haplotype in neurodegenerative disorders. We also examined the levels of circulating cell-free mitochondrial DNA in cerebrospinal fluid (CSF) and its utility as an indicator of mitochondrial dysfunction in the AD continuum. Although its measurement is reliable, the considerable inter-individual variability within groups limits its accuracy and usefulness as a diagnostic biomarker. Finally, we investigated the expression profile of microRNAs, a class of non-coding RNAs involved in the post-transcriptional modulation of gene expression, contained in extracellular vesicles (EVs) from CSF in FTD and other related syndromes. Numerous microRNAs can be detected within EVs from CSF. Moreover, we identified four microRNAs with a specific expression pattern in patients diagnosed with 4R-tau FTD syndromes.
APA, Harvard, Vancouver, ISO, and other styles
3

Arnold, Alexander [Verfasser]. "Genomweite molekulargenetische Untersuchung von DNA Copy Number Variations (CNVs) in cholangiozellulären Karzinomen / Alexander Arnold." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2016. http://d-nb.info/1112552928/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tervasmäki, A. (Anna). "Hereditary predisposition to breast cancer:evaluating the role of rare copy number variant, protein-truncating and missense candidate alleles." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526220826.

Full text
Abstract:
Abstract Breast cancer is the most common cancer among women, and inherited predisposition is one of the major recognized causes of increased breast cancer risk. Only about half of the hereditary cases are explained by mutations in the known susceptibility genes, including the DNA damage response genes BRCA1, BRCA2 and PALB2, leaving the majority still uncovered. Identification of the missing genetic predisposing factors is important for more effective diagnostics and counseling of the risk families, and also for better understanding of the etiology and cellular characteristics of breast cancer. The first aim of this study was to investigate the cancer associations of six rare germline copy number variant (CNV) deletions, which were previously identified in breast cancer patients by a genome-wide microarray approach. The second aim was to identify novel susceptibility alleles, both protein-truncating variants and missense mutations, by next-generation sequencing (NGS) of nearly 800 DNA damage response genes in 189 hereditary breast cancer patients. The cancer-associations of all selected candidate alleles (6 CNVs, 39 protein-truncating variants and 35 missense mutations) were studied by case-control approach using DNA samples from several hundred breast cancer patients and healthy controls. The prevalence of the studied CNVs did not significantly differ between the cases and controls, but when studying the associations with specific clinical parameters, deletion in the CYP2C19 gene showed enrichment in the breast cancer patients with hormonally triple-negative tumors (p=0.021). As CYP2C19 functions in estrogen metabolism, the results indicate that disturbance of hormonal balance due to enzyme defects may predispose specifically to the estrogen receptor-negative subtype of breast cancer. Two protein truncating-variants, TEX15 c.7253dupT and FANCD2 c.2715+1G>A showed significant breast cancer association in the Northern Finnish cohort (p=0.018 and p=0.036, respectively). Similarly, two of the studied missense variants, RECQL p.Ile156Met (p=0.043) and POLG p.Leu392Val (p=0.010), were enriched in the breast cancer cases. Thus, this study provided novel connections between increased breast cancer risk and inherited mutations in TEX15, FANCD2 and POLG genes, and further supported the recently established role of RECQL as a breast cancer susceptibility gene
Tiivistelmä Rintasyöpä on naisten yleisin syöpä, ja perinnöllinen alttius on yksi merkittävimmistä sairastumisriskiin vaikuttavista tekijöistä. Tunnetuimpia alttiustekijöitä ovat mutaatiot BRCA1-, BRCA2- ja PALB2-DNA-vauriovastegeeneissä, mutta ne yhdessä muiden altistavien geenimutaatioiden kanssa selittävät kuitenkin vain noin puolet perinnöllisistä rintasyöpätapauksista. Uusien alttiusgeenien löytäminen mahdollistaa tehokkaamman diagnostiikan ja korkeassa syöpäriskissä olevien sukujen perinnöllisyysneuvonnan, sekä auttaa ymmärtämään syvemmin rintasyövän etiologiaa ja syntymekanismeja solutasolla. Tämän väitöskirjan ensimmäisenä päämääränä oli tutkia tarkemmin aiemmin genominlaajuisella mikrosirumenetelmällä rintasyöpäpotilailta tunnistettujen harvinaisten perinnöllisten DNA-kopiolukuvariaatioiden (CNV) yhteyttä rintasyöpäriskiin. Toisena tavoitteena oli tunnistaa uusia rintasyöpäalttiusalleeleja, sekä proteiinitrunkaatioita että missense-mutaatioita, hyödyntämällä uuden sukupolven sekvensointitekniikkaa, jonka avulla tutkittiin mutaatioita lähes 800 DNA-vauriovastegeenistä 189 pohjoissuomalaiselta rintasyöpäpotilaalta. Valittujen kandidaattialleelien (6 deleetion aiheuttavaa CNV:tä, 39 proteiinitrunkaatiota ja 35 missense-mutaatiota) yhteyttä rintasyöpään tutkittiin tapaus-verrokkimenetelmällä käyttäen DNA-näytteitä usealta sadalta rintasyöpäpotilaalta ja terveeltä kontrollihenkilöltä. Tutkittujen CNV:iden esiintyvyydessä ei ollut merkitseviä eroja potilaiden ja kontrollien välillä, mutta tarkasteltaessa yhteyttä potilaiden kasvaimista saatuihin kliinisiin parametreihin, deleetio CYP2C19-geenissä oli yleisempi hormonaalisesti kolmoisnegatiivisissa rintatuumoreissa kuin muissa tuumorityypeissä (p=0.021). Koska CYP2C19 on estrogeenimetaboliaan osallistuva entsyymi, sen viallinen toiminta voi mahdollisesti altistaa erityisesti estrogeenireseptorinegatiiviselle rintasyövälle. Kaksi tutkituista proteiinitrunkaatioista, TEX15 c.7253dupT ja FANCD2 c.2715+1G>A, olivat rikastuneet perinnöllisessä rintasyöpäpotilasaineistossa verrattuna kontrolleihin (p=0.018 ja p=0.036). Myös kaksi missense-alleelia, RECQL p.Ile156Met (p=0.043) ja POLG p.Leu392Val (p=0.010), olivat yleisempiä rintasyöpäpotilailla. Tulokset osoittivat uuden yhteyden kohonneen rintasyöpäriskin ja perinnöllisten muutosten TEX15-, FANCD2- ja POLG-geenien välillä, sekä tukivat aiempia tutkimustuloksia, joiden mukaan RECQL on kohtalaisen riskin rintasyöpäalttiusgeeni
APA, Harvard, Vancouver, ISO, and other styles
5

Hull, Ryan. "Accelerated adaptation through stimulated copy number variation in Saccharomyces cerevisiae." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284381.

Full text
Abstract:
Accelerated Adaptation through Stimulated Copy Number Variation in Saccharomyces cerevisiae Ryan Matthew Hull Repetitive regions of the genome, such as the centromeres, telomeres and ribosomal DNA account for a large proportion of the genetic variation between individuals. Differences in the number of repeat sequences between individuals is termed copy number variation (CNV) and is rife across eukaryotic genomes. CNV is of clinical importance as it has been implicated in many human disorders, in particularly cancers where is has been associated with tumour growth and drug resistance. The copper-resistance gene CUP1 in Saccharomyces cerevisiae is one such CNV gene. CUP1 is transcribed from a copper inducible promoter and encodes a protein involved in copper detoxification. In this work I show that yeast can regulate their repeat levels of the CUP1 gene through a transcriptionally stimulated CNV mechanism, as a direct adaptation response to a hostile environment. I characterise the requirement of the epigenetic mark Histone H3 Lysine 56 acetylation (H3K56ac) for stimulated CNV and its limitation of only working at actively transcribed genes. Based upon my findings, I propose a model for how stimulated CNV is regulated in yeast and show how we can pharmacologically manipulate this mechanism using drugs, like nicotinamide and rapamycin, to stimulate and repress a cell's ability to adapt to its environment. I further show that the model is not limited to high-copy CUP1 repeat arrays, but is also applicable to low-copy systems. Finally, I show that the model extends to other genetic loci in response to different challenging environments, such as formaldehyde stimulation of the formaldehyde-resistance gene SFA1. To the best of our knowledge, this is the first example of any eukaryotic cell undergoing genome optimisation as a novel means to accelerate its adaptation in direct response to its environment. If conserved in higher eukaryotes, such a mechanism could have major implications in how we consider and treat disorders associated with changes in CNV.
APA, Harvard, Vancouver, ISO, and other styles
6

Konyukh, Marina. "Copy number variations in autism spectrum disorders : identification and characterization of new candidate genes ( SEZ6L2 ans CNTN3-6)." Paris 7, 2010. http://www.theses.fr/2010PA077235.

Full text
Abstract:
Les troubles du spectre autistique (TSA) sont caractérisés par un déficit de la communication sociale et des comportements stéréotypés. Des études d'agrégation familiales et sur les jumeaux ont indiqué que les TSA ont une composante génétique forte. Récemment, l'étude du génome à grande échelle et à haute résolution a révélé des variations du nombre de copies (CNV). Un des CNV les plus fréquemment observés chez les patients atteints de TSA est la délétion/duplication localisée dans la région chromosomique 16pl 1. 2. Parmi les gènes situés dans ce CNV, des analyses montre que SEZ6L2, pourrait être associé aux TSA. J'ai recherché des mutations dans SEZ6L2 sur un group de 170 patients et sur un panel de 282 personnes de différentes origines ethniques. J'ai trouvé des variations qui sont prédites comme ayant un impact sur la fonction de la protéine, mais ne montrant aucun enrichissement significatif chez les patients comparé aux témoins. J'ai été impliquée dans L'analyse des CNV du génome entier pour des patients atteints de TSA (n=347) et pour des contrôles (n=338). J'ai pu détecter les CNV dans des gènes candidats potentiels, notamment dans les contactines, de protéines impliquées dans le guidage axonal et dans la connexion entre les axones et les cellules gliales. J'ai séquence la partie codante des gènes CNTN3-6 et CNTNAP2 dans des groupes patients et contrôles et j'ai pu identifier des variations rares et une mutation non-sens dans des familles avec TSA. Nos données in vitro, suggèrent que plusieurs variations ont pour conséquence une altération de la morphologie des neurones. Ces résultats confirment le câblage anormal du cerveau comme un facteur de risque pour les TSA
Autism spectrum disorders (ASD) are characterised by impaired reciprocal social communication, and stereotyped behaviour. Twin and familial studies have indicated that ASD are among the most genetic neuropsychiatric disorders. Recently, large-scale and high-resolution genome wide analyses revealed multiple copy number variations (CNV). Among the more frequently observed CNV associated with ASD are deletions/duplications, located on chromosome 16pl 1. 2. A primary analysis indicated that SEZ6L2 gene could be associated with ASD. During my thesis, I first screened for mutations in SEZ6L2 in a sample of 170 patients with ASD and in a panel of 282 individuals from different ethnic backgrounds. I was able to find mutations predicted as deleterious, but no significant enrichment compared with controls. I was also involved in the whole genome CNV screening of a large group of ASD patients (n=347) and controls (n=338). Using genome wide analysis, I could detect CNV altering compelling candidate genes. We could identify CNV altering several members of the contactins, a family of proteins involved in axonal guidance and the connection between axons and glial cells. I then screened for coding variations in CNTN3-6 and CNTNAP2. This screening revealed rare variants and a stop mutation present in ASD families. Our in vitro studies suggested that several variations had a functional consequence on neuronal morphology. These results further support abnormal brain wiring as a risk factor for ASD
APA, Harvard, Vancouver, ISO, and other styles
7

Molck, Miriam Coelho 1985. "Investigação de variações no número de cópias do DNA (Copy Number Variations, CNVs) em pacientes com suspeita clínica da Síndrome Velocardiofacial." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/313122.

Full text
Abstract:
Orientadores: Vera Lúcia Gil da Silva Lopes, Milena Simioni
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-27T18:40:32Z (GMT). No. of bitstreams: 1 Molck_MiriamCoelho_D.pdf: 5956023 bytes, checksum: 07a0d65667a7a002b0e8ad7a872c0d31 (MD5) Previous issue date: 2015
Resumo: A Síndrome Velocardiofacial (SVCF) tem prevalência de ~1:4.000 nascimentos e apresenta espectro fenotípico variável, incluindo defeitos cardíacos congênitos (DCC). Microdeleções de ~3 Mb em 22q11.2 representam a principal causa, entretanto deleções atípicas nesta região têm sido relatadas, assim como fenótipos similares associados a variações no número de cópias do DNA (Copy number variations, CNVs) em outras regiões cromossômicas. Esta proposta objetiva mapear os pontos de quebra da região 22q11.2 e investigar CNVs em outras regiões do genoma em pacientes com a deleção 22q11.2 confirmada previamente (Grupo I) e investigar CNVs no genoma de pacientes sem a deleção 22q11.2 (Grupo II). Foram investigados 108 pacientes (30 do Grupo I e 78 do Grupo II) com suspeita clínica da SVCF e DCC por Hibridação Genômica em arrays (array Genomic Hybridization- aGH). Para o Grupo I, o tamanho da deleção 22q11.2 proximal variou de 1,8 Mb a 3,3 Mb em 28 casos, sendo que um apresentou a deleção entre as LCRs (Low Copy Repeats) A-B e os demais 27 entre as LCRs A-D (região tipicamente deletada). Dois casos apresentaram deleções atípicas em 22q11.2: 3,6 Mb entre as LCRs B-F, elvolvendo as regiões 22q11.2 proximal e distal; e 1,5 Mb entre as LCRs D-E, envolvendo a região 22q11.2 distal. Além disso, foram observadas dez CNVs ? 300 kb relevantes fora da região 22q11.2, incluindo uma deleção em 11q14.3 e duplicações em 2q24.1-q24.2, 3p22.1, 5p15.2, 5q11.1, 6p21.2, 7p11.2, 15q13.3, 16q23.3 e Xp21.1. Para o Grupo II, foi observado um total de 25 CNVs ? 300 Kb relevantes. Destas, nove CNVs já foram descritas na literatura, incluindo deleções em 4q35.1-q35.2, 5p15.1-p15.33, 8p23.1, 10q22.3-q23.2, 16p11.2, 17q12 e 22q13.33; e duplicações em 3p26.3 e 3q26.2. As variações gênicas dentro dos pontos de quebra da região deletada 22q11.2, bem como as CNVs observadas em outras regiões cromossômicas contribuem para a variabilidade fenotípica observada nesta síndrome e confirmam a sobreposição desta com diferentes condições clínicas
Abstract: The Velocardiofacial Syndrome (VCFS) has a prevalence of ~1:4.000 births and shows variable phenotypic spectrum, including congenital heart defects (CHD). Microdeletions of ~3 Mb in 22q11.2 represent the main cause, however atypical deletions in this region have been reported, as well as similar phenotypes associated with changes in the number of DNA copies (Copy number variations, CNVs) in other chromosomal regions. This work aims to map the breakpoints of the 22q11.2 region and investigate CNVs in other regions of the genome in patients with the 22q11.2 deletion previously confirmed (Group I) and investigate CNVs on the genome of patients without the 22q11.2 deletion (Group II). We investigated 108 patients (30 from Group I and 78 from Group II) with clinical suspicion of VCFS and CHD for array Genomic Hybridization (aGH). For Group I, the size of proximal 22q11.2 deletion ranged from 1.8 Mb to 3.3 Mb in 28 cases, of these, one case had the deletion between LCRs (Low Copy Repeats) A-B and the other 27 between LCRs A-D (typically deleted region). Two cases had atypical deletions at 22q11.2: 3.6 Mb between LCRs B-F, involving proximal and distal 22q11.2 regions; and 1.5 Mb between LCRs D-E, involving distal 22q11.2 region. Additionally, we observed ten relevant CNVs ? 300 kb outside of 22q11.2 region, including a deletion in 11q14.3 and duplications in 2q24.1-q24.2, 3p22.1, 5p15.2, 5q11.1, 6p21.2, 7p11.2, 15q13.3, 16q23.3 and Xp21.1. For Group II, a total of 25 relevant CNVs ? 300 Kb was observed. Of these, nine CNVs have been described in the literature, including deletions in 4q35.1-q35.2, 5p15.1-p15.33, 8p23.1, 10q22.3-q23.2, 16p11.2, 17q12 and 22q13.33; and duplications in 3p26.3 and 3q26.2. Gene variations within the break points of the 22q11.2 deleted region and CNVs observed in other chromosomal regions contribute to phenotypic variability observed in this syndrome and confirm the overlapp with different clinical conditions
Doutorado
Ciencias Biomedicas
Doutora em Ciências Médicas
APA, Harvard, Vancouver, ISO, and other styles
8

Karcanias, Alexandra. "Investigation of genomic DNA copy number variation on the human sex chromosomes associated with genetic pathologies." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

DeConti, Derrick K. "Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/869.

Full text
Abstract:
Duplications and deletions are a major source of genomic variation. Duplications, specifically, have a significant impact on gene genesis and dosage, and the malaria parasite P. falciparum has developed resistance to a growing number of anti-malarial drugs via gene duplication. It also contains highly duplicated families of antigenically variable allelic genes. While specific genes and families have been studied, a comprehensive analysis of duplications and deletions within the reference genome and population has not been performed. We analyzed the extent of segmental duplications (SD) in the reference genome for P. falciparum, primarily by a whole genome self alignment. We discovered that while 5% of the genome identified as SD, the distribution within the genome was partition clustered, with the vast majority localized to the subtelomeres. Within the SDs, we found an overrepresentation of genes encoding antigenically diverse proteins exposed to the extracellular membrane, specifically the var, rifin, and stevor gene families. To examine variation of duplications and deletions within the parasite populations, we designed a novel computational methodology to identify copy number variants (CNVs) from high throughput sequencing, using a read depth based approach refined with discordant read pairs. After validating the program against in vitro lab cultures, we analyzed isolates from Senegal for initial tests into clinical isolates. We then expanded our search to a global sample of 610 strains from Africa and South East Asia, identifying 68 CNV regions. Geographically, genic CNV were found on average in less than 10% of the population, indicating that CNV are rare. However, CNVs at high frequency were almost exclusively duplications associated with known drug resistant CNVs. We also identified the novel biallelic duplication of the crt gene – containing both the chloroquine resistant and sensitive allele. The synthesis of our SD and CNV analysis indicates a CNV conservative P. falciparum genome except where drug and human immune pressure select for gene duplication.
APA, Harvard, Vancouver, ISO, and other styles
10

DeConti, Derrick K. "Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation." eScholarship@UMMS, 2015. https://escholarship.umassmed.edu/gsbs_diss/869.

Full text
Abstract:
Duplications and deletions are a major source of genomic variation. Duplications, specifically, have a significant impact on gene genesis and dosage, and the malaria parasite P. falciparum has developed resistance to a growing number of anti-malarial drugs via gene duplication. It also contains highly duplicated families of antigenically variable allelic genes. While specific genes and families have been studied, a comprehensive analysis of duplications and deletions within the reference genome and population has not been performed. We analyzed the extent of segmental duplications (SD) in the reference genome for P. falciparum, primarily by a whole genome self alignment. We discovered that while 5% of the genome identified as SD, the distribution within the genome was partition clustered, with the vast majority localized to the subtelomeres. Within the SDs, we found an overrepresentation of genes encoding antigenically diverse proteins exposed to the extracellular membrane, specifically the var, rifin, and stevor gene families. To examine variation of duplications and deletions within the parasite populations, we designed a novel computational methodology to identify copy number variants (CNVs) from high throughput sequencing, using a read depth based approach refined with discordant read pairs. After validating the program against in vitro lab cultures, we analyzed isolates from Senegal for initial tests into clinical isolates. We then expanded our search to a global sample of 610 strains from Africa and South East Asia, identifying 68 CNV regions. Geographically, genic CNV were found on average in less than 10% of the population, indicating that CNV are rare. However, CNVs at high frequency were almost exclusively duplications associated with known drug resistant CNVs. We also identified the novel biallelic duplication of the crt gene – containing both the chloroquine resistant and sensitive allele. The synthesis of our SD and CNV analysis indicates a CNV conservative P. falciparum genome except where drug and human immune pressure select for gene duplication.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "DNA Copy Number Variations"

1

Benign And Pathological Chromosomal Imbalances Microscopic And Submicroscopic Copy Number Variations Cnvs In Genetics And Counseling. Academic Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Charney, Alexander, and Pamela Sklar. Genetics of Schizophrenia and Bipolar Disorder. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0013.

Full text
Abstract:
Schizophrenia and bipolar disorder are the classic psychotic disorders. Both diseases are strongly familial, but have proven recalcitrant to genetic methodologies for identifying the etiology until recently. There is now convincing genetic evidence that indicates a contribution of many DNA changes to the risk of becoming ill. For schizophrenia, there are large contributions of rare copy number variants and common single nucleotide variants, with an overall highly polygenic genetic architecture. For bipolar disorder, the role of copy number variation appears to be much less pronounced. Specific common single nucleotide polymorphisms are associated, and there is evidence for polygenicity. Several surprises have emerged from the genetic data that indicate there is significantly more molecular overlap in copy number variants between autism and schizophrenia, and in common variants between schizophrenia and bipolar disorder.
APA, Harvard, Vancouver, ISO, and other styles
3

Schadt, Eric E. Network Methods for Elucidating the Complexity of Common Human Diseases. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0002.

Full text
Abstract:
The life sciences are now a significant contributor to the ever expanding digital universe of data, and stand poised to lead in both the generation of big data and the realization of dramatic benefit from it. We can now score variations in DNA across whole genomes; RNA levels and alternative isoforms, metabolite levels, protein levels, and protein state information across the transcriptome, metabolome and proteome; methylation status across the methylome; and construct extensive protein–protein and protein–DNA interaction maps, all in a comprehensive fashion and at the scale of populations of individuals. This chapter describes a number of analytical approaches aimed at inferring causal relationships among variables in very large-scale datasets by leveraging DNA variation as a systematic perturbation source. The causal inference procedures are also demonstrated to enhance the ability to reconstruct truly predictive, probabilistic causal gene networks that reflect the biological processes underlying complex phenotypes like disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Canli, Turhan, ed. The Oxford Handbook of Molecular Psychology. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199753888.001.0001.

Full text
Abstract:
Determining the biological bases for behavior—and the extent to which we can observe and explain their neural underpinnings—requires a bold, broadly defined research methodology. The interdisciplinary entries in this handbook are organized around the principle of “molecular psychology,” which unites cutting-edge research from such wide-ranging disciplines as clinical neuroscience and genetics, psychology, behavioral neuroscience, and neuroethology. For the first time in a single volume, leaders from diverse research areas present their work in which they use molecular approaches to investigate social behavior, psychopathology, emotion, cognition, and stress in healthy volunteers, patient populations, and an array of nonhuman species including nonhuman primates, rodents, insects, and fish. Chapters draw on molecular methods covering candidate genes, genome-wide association studies, copy number variations, gene expression studies, and epigenetics while addressing the ethical, legal, and social issues to emerge from this new and exciting research approach.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "DNA Copy Number Variations"

1

Mehrotra, Meenakshi. "PCR-Based Detection of DNA Copy Number Variation." In Clinical Applications of PCR, 27–32. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3360-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwarzenbach, Heidi. "Copy Number Variation Analysis on Cell-Free Serum DNA." In Cell-free DNA as Diagnostic Markers, 85–93. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8973-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salvi, Samanta, and Valentina Casadio. "Studying Copy Number Variations in Cell-Free DNA: The Example of AR in Prostate Cancer." In Cell-free DNA as Diagnostic Markers, 95–103. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8973-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zong, Chenghang. "Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) for the Analysis of DNA Copy Number Variation." In Neuromethods, 133–42. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7280-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Jianguo, and Zhanjiang John Liu. "Copy Number Variations." In Next Generation Sequencing and Whole Genome Selection in Aquaculture, 21–33. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780470958964.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blackburn, August N., and Donna M. Lehman. "Copy Number Variations and Chronic Diseases." In Genome Mapping and Genomics in Human and Non-Human Primates, 85–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46306-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Venegas, Victor, and Michelle C. Halberg. "Measurement of Mitochondrial DNA Copy Number." In Methods in Molecular Biology, 327–35. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-504-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Bo, Michael S. Haney, Xiaowei Zhu, Reenal Pattni, Alexej Abyzov, and Alexander E. Urban. "Detection and Quantification of Mosaic Genomic DNA Variation in Primary Somatic Tissues Using ddPCR: Analysis of Mosaic Transposable-Element Insertions, Copy-Number Variants, and Single-Nucleotide Variants." In Methods in Molecular Biology, 173–90. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7778-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Hwan Young. "Analysis of Low Copy Number DNA and Degraded DNA." In The Handbook of Mummy Studies, 1–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1614-6_43-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kallioniemi, Anne. "DNA Copy Number Analysis on Tissue Microarrays." In Methods in Molecular Biology, 127–34. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-806-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "DNA Copy Number Variations"

1

Algallaf, Abdullah K., Ahmed H. Tewfik, Scott B. Selleck, and Rebecca L. Johnson. "Predictive value of recurrent DNA copy number variations." In 2008 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2008. http://dx.doi.org/10.1109/gensips.2008.4555678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gokgoz, Nalan, Jay S. Wunder, and Irene L. Andrulis. "Abstract 5075: Genome-wide analysis of DNA copy number variations in osteosarcoma." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Wei, Nicholas Johnson, Baolin Wu, and Rui Kuang. "Signed network propagation for detecting differential gene expressions and DNA copy number variations." In the ACM Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2382936.2382979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alqallaf, Abdullah K., and Ahmed H. Tewfik. "Framework for the Identification of Common Variations in Multiple DNA Copy Number Samples." In 2007 41st Asilomar conference on Signals, Systems and Computers (ACSSC). IEEE, 2007. http://dx.doi.org/10.1109/acssc.2007.4487160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Alqallaf, Abdullah K., Ahmed H. Tewfik, Scott B. Selleck, and Rebecca Johnson. "Framework for the analysis of genetic variations across multiple DNA copy number samples." In ICASSP 2008. IEEE International Conference on Acoustic, Speech and Signal Processes. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4517669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Huanan, Ze Tian, and Rui Kuang. "Transfer Learning across Cancers on DNA Copy Number Variation Analysis." In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tian, Ze, Huanan Zhang, and Rui Kuang. "Sparse Group Selection on Fused Lasso Components for Identifying Group-Specific DNA Copy Number Variations." In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Xiaoji, Jill M. Spoerke, Kathryn Yoh, Walter C. Darbonne, Ling-Yuh Huw, Steven Gendreau, Shih-Min A. Huang, and Mark R. Lackner. "Abstract 2739: Low-pass whole genome sequencing detects copy number variations in circulating tumor DNA." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mori, Kellie M., Joseph P. McElroy, Daniel Y. Weng, Sangwoon Chung, Sarah A. Reisinger, Kevin L. Ying, Quentin A. Nickerson, et al. "Abstract 751: Lung mitochondrial DNA copy number variations: E-cig users, smokers, and never-smokers." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stamoulis, C., R. A. Betensky, G. Mohapatra, and D. N. Louis. "Application of signal processing techniques for estimating regions of copy number variations in human meningioma DNA." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333851.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "DNA Copy Number Variations"

1

Schmid, C. [Collection of low copy number repeats for use as probes in human DNA mapping]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6596446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmid, C. [Collection of low copy number repeats for use as probes in human DNA mapping]. Progress report, June 14, 1988--1993. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10147705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

[Collection of low copy number repeats for use as probes in human DNA Mapping]. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6613443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

[Collection of low copy number repeats for use as probes in human DNA Mapping]. Progress report, September 15, 1989. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/10147585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography