Academic literature on the topic 'DNA Copy Number Variations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA Copy Number Variations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNA Copy Number Variations"
Vijay, Aatira, Iti Garg, and Mohammad Zahid Ashraf. "Perspective: DNA Copy Number Variations in Cardiovascular Diseases." Epigenetics Insights 11 (January 2018): 251686571881883. http://dx.doi.org/10.1177/2516865718818839.
Full textHarrison, Steven M., Casey Seideman, and Linda A. Baker. "DNA Copy Number Variations in Patients with Persistent Cloaca." Journal of Urology 191, no. 5S (May 2014): 1543–46. http://dx.doi.org/10.1016/j.juro.2013.09.056.
Full textHovhannisyan, Galina, Tigran Harutyunyan, Rouben Aroutiounian, and Thomas Liehr. "DNA Copy Number Variations as Markers of Mutagenic Impact." International Journal of Molecular Sciences 20, no. 19 (September 24, 2019): 4723. http://dx.doi.org/10.3390/ijms20194723.
Full textWineinger, Nathan E., Richard E. Kennedy, Stephen W. Erickson, Mary K. Wojczynski, Carl E. Bruder, and Hemant K. Tiwari. "Statistical issues in the analysis of DNA Copy Number Variations." International Journal of Computational Biology and Drug Design 1, no. 4 (2008): 368. http://dx.doi.org/10.1504/ijcbdd.2008.022208.
Full textLiu, Yan, Leslie Cope, Wenyue Sun, Yongchun Wang, Nijaguna Prasad, Lauren Sangenario, Kristen Talbot, et al. "DNA Copy Number Variations Characterize Benign and Malignant Thyroid Tumors." Journal of Clinical Endocrinology & Metabolism 98, no. 3 (March 1, 2013): E558—E566. http://dx.doi.org/10.1210/jc.2012-3113.
Full textIacocca, Michael A., Jacqueline S. Dron, and Robert A. Hegele. "Progress in finding pathogenic DNA copy number variations in dyslipidemia." Current Opinion in Lipidology 30, no. 2 (April 2019): 63–70. http://dx.doi.org/10.1097/mol.0000000000000581.
Full textJaimes-Bernal, Claudia P., Monte Trujillo, Francisco José Márquez, and Antonio Caruz. "Complement C4 Gene Copy Number Variation Genotyping by High Resolution Melting PCR." International Journal of Molecular Sciences 21, no. 17 (August 31, 2020): 6309. http://dx.doi.org/10.3390/ijms21176309.
Full textNiu, Yue S., and Heping Zhang. "The screening and ranking algorithm to detect DNA copy number variations." Annals of Applied Statistics 6, no. 3 (September 2012): 1306–26. http://dx.doi.org/10.1214/12-aoas539.
Full textVillela, Darine, Claudia K. Suemoto, Renata Leite, Carlos Augusto Pasqualucci, Lea T. Grinberg, Peter Pearson, and Carla Rosenberg. "Increased DNA Copy Number Variation Mosaicism in Elderly Human Brain." Neural Plasticity 2018 (June 28, 2018): 1–9. http://dx.doi.org/10.1155/2018/2406170.
Full textAhmad, Niaz, and Brent L. Nielsen. "Plant Organelle DNA Maintenance." Plants 9, no. 6 (May 28, 2020): 683. http://dx.doi.org/10.3390/plants9060683.
Full textDissertations / Theses on the topic "DNA Copy Number Variations"
Adur, Ashwin. "DNA copy number variation in autism." Connect to resource, 2009. http://hdl.handle.net/1811/37275.
Full textCervera, Carles Laura. "Assessing the role of copy number variations, mitochondrial DNA and microRNAs in neurodegenerative disorders." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/668060.
Full textNeurodegenerative diseases are complex and progressive disorders that affect millions of people worldwide. Among them, Alzheimer’s disease (AD), Parkinson’s disease (PD) and frontotemporal dementia (FTD) are three of the most prevalent. In spite of extensive research, the molecular events triggering these pathologies remain elusive. This thesis aims at understanding the role of certain genetic and epigenetic factors in neurodegenerative diseases through the study of structural genetic rearrangements, and the measurement of circulating mitochondrial DNA and non-coding RNA species. We first analyzed the structural variation pattern of the chromosome 17q21.31, one of the most complex and dynamic regions of the human genome, and evaluated its contribution to the well-established MAPT H1 haplotype relationship with PD, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and dementia with Lewy bodies (DLB). Our results suggest that copy number polymorphisms within this region are not responsible for the H1 effect. However, we found a significant overrepresentation of H1 carriers in DLB patients, thus expanding the biological relevance of the haplotype in neurodegenerative disorders. We also examined the levels of circulating cell-free mitochondrial DNA in cerebrospinal fluid (CSF) and its utility as an indicator of mitochondrial dysfunction in the AD continuum. Although its measurement is reliable, the considerable inter-individual variability within groups limits its accuracy and usefulness as a diagnostic biomarker. Finally, we investigated the expression profile of microRNAs, a class of non-coding RNAs involved in the post-transcriptional modulation of gene expression, contained in extracellular vesicles (EVs) from CSF in FTD and other related syndromes. Numerous microRNAs can be detected within EVs from CSF. Moreover, we identified four microRNAs with a specific expression pattern in patients diagnosed with 4R-tau FTD syndromes.
Arnold, Alexander [Verfasser]. "Genomweite molekulargenetische Untersuchung von DNA Copy Number Variations (CNVs) in cholangiozellulären Karzinomen / Alexander Arnold." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2016. http://d-nb.info/1112552928/34.
Full textTervasmäki, A. (Anna). "Hereditary predisposition to breast cancer:evaluating the role of rare copy number variant, protein-truncating and missense candidate alleles." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526220826.
Full textTiivistelmä Rintasyöpä on naisten yleisin syöpä, ja perinnöllinen alttius on yksi merkittävimmistä sairastumisriskiin vaikuttavista tekijöistä. Tunnetuimpia alttiustekijöitä ovat mutaatiot BRCA1-, BRCA2- ja PALB2-DNA-vauriovastegeeneissä, mutta ne yhdessä muiden altistavien geenimutaatioiden kanssa selittävät kuitenkin vain noin puolet perinnöllisistä rintasyöpätapauksista. Uusien alttiusgeenien löytäminen mahdollistaa tehokkaamman diagnostiikan ja korkeassa syöpäriskissä olevien sukujen perinnöllisyysneuvonnan, sekä auttaa ymmärtämään syvemmin rintasyövän etiologiaa ja syntymekanismeja solutasolla. Tämän väitöskirjan ensimmäisenä päämääränä oli tutkia tarkemmin aiemmin genominlaajuisella mikrosirumenetelmällä rintasyöpäpotilailta tunnistettujen harvinaisten perinnöllisten DNA-kopiolukuvariaatioiden (CNV) yhteyttä rintasyöpäriskiin. Toisena tavoitteena oli tunnistaa uusia rintasyöpäalttiusalleeleja, sekä proteiinitrunkaatioita että missense-mutaatioita, hyödyntämällä uuden sukupolven sekvensointitekniikkaa, jonka avulla tutkittiin mutaatioita lähes 800 DNA-vauriovastegeenistä 189 pohjoissuomalaiselta rintasyöpäpotilaalta. Valittujen kandidaattialleelien (6 deleetion aiheuttavaa CNV:tä, 39 proteiinitrunkaatiota ja 35 missense-mutaatiota) yhteyttä rintasyöpään tutkittiin tapaus-verrokkimenetelmällä käyttäen DNA-näytteitä usealta sadalta rintasyöpäpotilaalta ja terveeltä kontrollihenkilöltä. Tutkittujen CNV:iden esiintyvyydessä ei ollut merkitseviä eroja potilaiden ja kontrollien välillä, mutta tarkasteltaessa yhteyttä potilaiden kasvaimista saatuihin kliinisiin parametreihin, deleetio CYP2C19-geenissä oli yleisempi hormonaalisesti kolmoisnegatiivisissa rintatuumoreissa kuin muissa tuumorityypeissä (p=0.021). Koska CYP2C19 on estrogeenimetaboliaan osallistuva entsyymi, sen viallinen toiminta voi mahdollisesti altistaa erityisesti estrogeenireseptorinegatiiviselle rintasyövälle. Kaksi tutkituista proteiinitrunkaatioista, TEX15 c.7253dupT ja FANCD2 c.2715+1G>A, olivat rikastuneet perinnöllisessä rintasyöpäpotilasaineistossa verrattuna kontrolleihin (p=0.018 ja p=0.036). Myös kaksi missense-alleelia, RECQL p.Ile156Met (p=0.043) ja POLG p.Leu392Val (p=0.010), olivat yleisempiä rintasyöpäpotilailla. Tulokset osoittivat uuden yhteyden kohonneen rintasyöpäriskin ja perinnöllisten muutosten TEX15-, FANCD2- ja POLG-geenien välillä, sekä tukivat aiempia tutkimustuloksia, joiden mukaan RECQL on kohtalaisen riskin rintasyöpäalttiusgeeni
Hull, Ryan. "Accelerated adaptation through stimulated copy number variation in Saccharomyces cerevisiae." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/284381.
Full textKonyukh, Marina. "Copy number variations in autism spectrum disorders : identification and characterization of new candidate genes ( SEZ6L2 ans CNTN3-6)." Paris 7, 2010. http://www.theses.fr/2010PA077235.
Full textAutism spectrum disorders (ASD) are characterised by impaired reciprocal social communication, and stereotyped behaviour. Twin and familial studies have indicated that ASD are among the most genetic neuropsychiatric disorders. Recently, large-scale and high-resolution genome wide analyses revealed multiple copy number variations (CNV). Among the more frequently observed CNV associated with ASD are deletions/duplications, located on chromosome 16pl 1. 2. A primary analysis indicated that SEZ6L2 gene could be associated with ASD. During my thesis, I first screened for mutations in SEZ6L2 in a sample of 170 patients with ASD and in a panel of 282 individuals from different ethnic backgrounds. I was able to find mutations predicted as deleterious, but no significant enrichment compared with controls. I was also involved in the whole genome CNV screening of a large group of ASD patients (n=347) and controls (n=338). Using genome wide analysis, I could detect CNV altering compelling candidate genes. We could identify CNV altering several members of the contactins, a family of proteins involved in axonal guidance and the connection between axons and glial cells. I then screened for coding variations in CNTN3-6 and CNTNAP2. This screening revealed rare variants and a stop mutation present in ASD families. Our in vitro studies suggested that several variations had a functional consequence on neuronal morphology. These results further support abnormal brain wiring as a risk factor for ASD
Molck, Miriam Coelho 1985. "Investigação de variações no número de cópias do DNA (Copy Number Variations, CNVs) em pacientes com suspeita clínica da Síndrome Velocardiofacial." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/313122.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-27T18:40:32Z (GMT). No. of bitstreams: 1 Molck_MiriamCoelho_D.pdf: 5956023 bytes, checksum: 07a0d65667a7a002b0e8ad7a872c0d31 (MD5) Previous issue date: 2015
Resumo: A Síndrome Velocardiofacial (SVCF) tem prevalência de ~1:4.000 nascimentos e apresenta espectro fenotípico variável, incluindo defeitos cardíacos congênitos (DCC). Microdeleções de ~3 Mb em 22q11.2 representam a principal causa, entretanto deleções atípicas nesta região têm sido relatadas, assim como fenótipos similares associados a variações no número de cópias do DNA (Copy number variations, CNVs) em outras regiões cromossômicas. Esta proposta objetiva mapear os pontos de quebra da região 22q11.2 e investigar CNVs em outras regiões do genoma em pacientes com a deleção 22q11.2 confirmada previamente (Grupo I) e investigar CNVs no genoma de pacientes sem a deleção 22q11.2 (Grupo II). Foram investigados 108 pacientes (30 do Grupo I e 78 do Grupo II) com suspeita clínica da SVCF e DCC por Hibridação Genômica em arrays (array Genomic Hybridization- aGH). Para o Grupo I, o tamanho da deleção 22q11.2 proximal variou de 1,8 Mb a 3,3 Mb em 28 casos, sendo que um apresentou a deleção entre as LCRs (Low Copy Repeats) A-B e os demais 27 entre as LCRs A-D (região tipicamente deletada). Dois casos apresentaram deleções atípicas em 22q11.2: 3,6 Mb entre as LCRs B-F, elvolvendo as regiões 22q11.2 proximal e distal; e 1,5 Mb entre as LCRs D-E, envolvendo a região 22q11.2 distal. Além disso, foram observadas dez CNVs ? 300 kb relevantes fora da região 22q11.2, incluindo uma deleção em 11q14.3 e duplicações em 2q24.1-q24.2, 3p22.1, 5p15.2, 5q11.1, 6p21.2, 7p11.2, 15q13.3, 16q23.3 e Xp21.1. Para o Grupo II, foi observado um total de 25 CNVs ? 300 Kb relevantes. Destas, nove CNVs já foram descritas na literatura, incluindo deleções em 4q35.1-q35.2, 5p15.1-p15.33, 8p23.1, 10q22.3-q23.2, 16p11.2, 17q12 e 22q13.33; e duplicações em 3p26.3 e 3q26.2. As variações gênicas dentro dos pontos de quebra da região deletada 22q11.2, bem como as CNVs observadas em outras regiões cromossômicas contribuem para a variabilidade fenotípica observada nesta síndrome e confirmam a sobreposição desta com diferentes condições clínicas
Abstract: The Velocardiofacial Syndrome (VCFS) has a prevalence of ~1:4.000 births and shows variable phenotypic spectrum, including congenital heart defects (CHD). Microdeletions of ~3 Mb in 22q11.2 represent the main cause, however atypical deletions in this region have been reported, as well as similar phenotypes associated with changes in the number of DNA copies (Copy number variations, CNVs) in other chromosomal regions. This work aims to map the breakpoints of the 22q11.2 region and investigate CNVs in other regions of the genome in patients with the 22q11.2 deletion previously confirmed (Group I) and investigate CNVs on the genome of patients without the 22q11.2 deletion (Group II). We investigated 108 patients (30 from Group I and 78 from Group II) with clinical suspicion of VCFS and CHD for array Genomic Hybridization (aGH). For Group I, the size of proximal 22q11.2 deletion ranged from 1.8 Mb to 3.3 Mb in 28 cases, of these, one case had the deletion between LCRs (Low Copy Repeats) A-B and the other 27 between LCRs A-D (typically deleted region). Two cases had atypical deletions at 22q11.2: 3.6 Mb between LCRs B-F, involving proximal and distal 22q11.2 regions; and 1.5 Mb between LCRs D-E, involving distal 22q11.2 region. Additionally, we observed ten relevant CNVs ? 300 kb outside of 22q11.2 region, including a deletion in 11q14.3 and duplications in 2q24.1-q24.2, 3p22.1, 5p15.2, 5q11.1, 6p21.2, 7p11.2, 15q13.3, 16q23.3 and Xp21.1. For Group II, a total of 25 relevant CNVs ? 300 Kb was observed. Of these, nine CNVs have been described in the literature, including deletions in 4q35.1-q35.2, 5p15.1-p15.33, 8p23.1, 10q22.3-q23.2, 16p11.2, 17q12 and 22q13.33; and duplications in 3p26.3 and 3q26.2. Gene variations within the break points of the 22q11.2 deleted region and CNVs observed in other chromosomal regions contribute to phenotypic variability observed in this syndrome and confirm the overlapp with different clinical conditions
Doutorado
Ciencias Biomedicas
Doutora em Ciências Médicas
Karcanias, Alexandra. "Investigation of genomic DNA copy number variation on the human sex chromosomes associated with genetic pathologies." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612017.
Full textDeConti, Derrick K. "Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/869.
Full textDeConti, Derrick K. "Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation." eScholarship@UMMS, 2015. https://escholarship.umassmed.edu/gsbs_diss/869.
Full textBooks on the topic "DNA Copy Number Variations"
Benign And Pathological Chromosomal Imbalances Microscopic And Submicroscopic Copy Number Variations Cnvs In Genetics And Counseling. Academic Press, 2013.
Find full textCharney, Alexander, and Pamela Sklar. Genetics of Schizophrenia and Bipolar Disorder. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0013.
Full textSchadt, Eric E. Network Methods for Elucidating the Complexity of Common Human Diseases. Edited by Dennis S. Charney, Eric J. Nestler, Pamela Sklar, and Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0002.
Full textCanli, Turhan, ed. The Oxford Handbook of Molecular Psychology. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199753888.001.0001.
Full textBook chapters on the topic "DNA Copy Number Variations"
Mehrotra, Meenakshi. "PCR-Based Detection of DNA Copy Number Variation." In Clinical Applications of PCR, 27–32. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3360-0_3.
Full textSchwarzenbach, Heidi. "Copy Number Variation Analysis on Cell-Free Serum DNA." In Cell-free DNA as Diagnostic Markers, 85–93. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8973-7_6.
Full textSalvi, Samanta, and Valentina Casadio. "Studying Copy Number Variations in Cell-Free DNA: The Example of AR in Prostate Cancer." In Cell-free DNA as Diagnostic Markers, 95–103. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8973-7_7.
Full textZong, Chenghang. "Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) for the Analysis of DNA Copy Number Variation." In Neuromethods, 133–42. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7280-7_7.
Full textLu, Jianguo, and Zhanjiang John Liu. "Copy Number Variations." In Next Generation Sequencing and Whole Genome Selection in Aquaculture, 21–33. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780470958964.ch2.
Full textBlackburn, August N., and Donna M. Lehman. "Copy Number Variations and Chronic Diseases." In Genome Mapping and Genomics in Human and Non-Human Primates, 85–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46306-2_6.
Full textVenegas, Victor, and Michelle C. Halberg. "Measurement of Mitochondrial DNA Copy Number." In Methods in Molecular Biology, 327–35. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-504-6_22.
Full textZhou, Bo, Michael S. Haney, Xiaowei Zhu, Reenal Pattni, Alexej Abyzov, and Alexander E. Urban. "Detection and Quantification of Mosaic Genomic DNA Variation in Primary Somatic Tissues Using ddPCR: Analysis of Mosaic Transposable-Element Insertions, Copy-Number Variants, and Single-Nucleotide Variants." In Methods in Molecular Biology, 173–90. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7778-9_11.
Full textLee, Hwan Young. "Analysis of Low Copy Number DNA and Degraded DNA." In The Handbook of Mummy Studies, 1–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1614-6_43-1.
Full textKallioniemi, Anne. "DNA Copy Number Analysis on Tissue Microarrays." In Methods in Molecular Biology, 127–34. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-806-5_13.
Full textConference papers on the topic "DNA Copy Number Variations"
Algallaf, Abdullah K., Ahmed H. Tewfik, Scott B. Selleck, and Rebecca L. Johnson. "Predictive value of recurrent DNA copy number variations." In 2008 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2008. http://dx.doi.org/10.1109/gensips.2008.4555678.
Full textGokgoz, Nalan, Jay S. Wunder, and Irene L. Andrulis. "Abstract 5075: Genome-wide analysis of DNA copy number variations in osteosarcoma." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5075.
Full textZhang, Wei, Nicholas Johnson, Baolin Wu, and Rui Kuang. "Signed network propagation for detecting differential gene expressions and DNA copy number variations." In the ACM Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2382936.2382979.
Full textAlqallaf, Abdullah K., and Ahmed H. Tewfik. "Framework for the Identification of Common Variations in Multiple DNA Copy Number Samples." In 2007 41st Asilomar conference on Signals, Systems and Computers (ACSSC). IEEE, 2007. http://dx.doi.org/10.1109/acssc.2007.4487160.
Full textAlqallaf, Abdullah K., Ahmed H. Tewfik, Scott B. Selleck, and Rebecca Johnson. "Framework for the analysis of genetic variations across multiple DNA copy number samples." In ICASSP 2008. IEEE International Conference on Acoustic, Speech and Signal Processes. IEEE, 2008. http://dx.doi.org/10.1109/icassp.2008.4517669.
Full textZhang, Huanan, Ze Tian, and Rui Kuang. "Transfer Learning across Cancers on DNA Copy Number Variation Analysis." In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.58.
Full textTian, Ze, Huanan Zhang, and Rui Kuang. "Sparse Group Selection on Fused Lasso Components for Identifying Group-Specific DNA Copy Number Variations." In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.35.
Full textChen, Xiaoji, Jill M. Spoerke, Kathryn Yoh, Walter C. Darbonne, Ling-Yuh Huw, Steven Gendreau, Shih-Min A. Huang, and Mark R. Lackner. "Abstract 2739: Low-pass whole genome sequencing detects copy number variations in circulating tumor DNA." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2739.
Full textMori, Kellie M., Joseph P. McElroy, Daniel Y. Weng, Sangwoon Chung, Sarah A. Reisinger, Kevin L. Ying, Quentin A. Nickerson, et al. "Abstract 751: Lung mitochondrial DNA copy number variations: E-cig users, smokers, and never-smokers." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-751.
Full textStamoulis, C., R. A. Betensky, G. Mohapatra, and D. N. Louis. "Application of signal processing techniques for estimating regions of copy number variations in human meningioma DNA." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5333851.
Full textReports on the topic "DNA Copy Number Variations"
Schmid, C. [Collection of low copy number repeats for use as probes in human DNA mapping]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6596446.
Full textSchmid, C. [Collection of low copy number repeats for use as probes in human DNA mapping]. Progress report, June 14, 1988--1993. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10147705.
Full text[Collection of low copy number repeats for use as probes in human DNA Mapping]. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/6613443.
Full text[Collection of low copy number repeats for use as probes in human DNA Mapping]. Progress report, September 15, 1989. Office of Scientific and Technical Information (OSTI), December 1989. http://dx.doi.org/10.2172/10147585.
Full text