Journal articles on the topic 'DNA-damaged'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'DNA-damaged.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lehmann, Alan R. "Replication of Damaged DNA." Cell Cycle 2, no. 4 (2003): 299–301. http://dx.doi.org/10.4161/cc.2.4.407.
Full textCaetano, R. A., and P. A. Schulz. "Delocalized states in damaged DNA." Brazilian Journal of Physics 36, no. 2a (2006): 459–61. http://dx.doi.org/10.1590/s0103-97332006000300061.
Full textChatterjee, N., and W. Siede. "Replicating Damaged DNA in Eukaryotes." Cold Spring Harbor Perspectives in Biology 5, no. 12 (2013): a019836. http://dx.doi.org/10.1101/cshperspect.a019836.
Full textLukin, Mark, and Carlos de los Santos. "NMR Structures of Damaged DNA." Chemical Reviews 106, no. 2 (2006): 607–86. http://dx.doi.org/10.1021/cr0404646.
Full textInoki, Taeko, Hitoshi Endo, Yutaka Inoki, et al. "Damaged DNA-binding protein 2 accelerates UV-damaged DNA repair in human corneal endothelium." Experimental Eye Research 79, no. 3 (2004): 367–76. http://dx.doi.org/10.1016/j.exer.2004.06.010.
Full textYeh, J. I., A. S. Levine, S. Du, et al. "Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair." Proceedings of the National Academy of Sciences 109, no. 41 (2012): E2737—E2746. http://dx.doi.org/10.1073/pnas.1110067109.
Full textLanuszewska, J., A. Cudak, J. Rzeszowska-Wolny, and P. Widłak. "Detection of damage-recognition proteins from human lymphocytes." Acta Biochimica Polonica 47, no. 2 (2000): 443–50. http://dx.doi.org/10.18388/abp.2000_4024.
Full textRzeszowska-Wolny, J., and P. Widłak. "Damaged DNA-binding proteins: recognition of N-acetoxy-acetylaminofluorene-induced DNA adducts." Acta Biochimica Polonica 46, no. 1 (1999): 173–80. http://dx.doi.org/10.18388/abp.1999_4195.
Full textStrickland, Paul T., and Cristl Gentile. "Separation of carcinogen-damaged DNA fragments from undamaged DNA." Nucleic Acids Research 19, no. 24 (1991): 6955. http://dx.doi.org/10.1093/nar/19.24.6955.
Full textWilliams, Loren Dean, and Qi Gao. "DNA-ditercalinium interactions: implications for recognition of damaged DNA." Biochemistry 31, no. 17 (1992): 4315–24. http://dx.doi.org/10.1021/bi00132a024.
Full textFriedman, Joshua I., and James T. Stivers. "Detection of Damaged DNA Bases by DNA Glycosylase Enzymes." Biochemistry 49, no. 24 (2010): 4957–67. http://dx.doi.org/10.1021/bi100593a.
Full textLindahl, T. "Recognition and processing of damaged DNA." Journal of Cell Science 1995, Supplement 19 (1995): 73–77. http://dx.doi.org/10.1242/jcs.1995.supplement_19.10.
Full textWetzel, Cynthia C., and Steven J. Berberich. "p53 binds to cisplatin-damaged DNA." Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1517, no. 3 (2001): 392–97. http://dx.doi.org/10.1016/s0167-4781(00)00305-5.
Full textRossner, Pavel, and Radim J. Sram. "Immunochemical detection of oxidatively damaged DNA." Free Radical Research 46, no. 4 (2011): 492–522. http://dx.doi.org/10.3109/10715762.2011.632415.
Full textCarell, Thomas. "Sunlight-Damaged DNA Repaired with Sunlight." Angewandte Chemie International Edition in English 34, no. 22 (1995): 2491–94. http://dx.doi.org/10.1002/anie.199524911.
Full textAhmadi, Ali, and Soon-Chye Ng. "Fertilizing ability of DNA-damaged spermatozoa." Journal of Experimental Zoology 284, no. 6 (1999): 696–704. http://dx.doi.org/10.1002/(sici)1097-010x(19991101)284:6<696::aid-jez11>3.0.co;2-e.
Full textBagchi, Srilata, and Pradip Raychaudhuri. "Damaged-DNA Binding Protein-2 Drives Apoptosis Following DNA Damage." Cell Division 5, no. 1 (2010): 3. http://dx.doi.org/10.1186/1747-1028-5-3.
Full textKoehler, D. R., and P. C. Hanawalt. "Digestion of damaged DNA by the T7 DNA polymerase-exonuclease." Biochemical Journal 293, no. 2 (1993): 451–53. http://dx.doi.org/10.1042/bj2930451.
Full textRamadan, Kristijan, Igor V. Shevelev, Giovanni Maga та Ulrich Hübscher. "DNA Polymerase λ from Calf Thymus Preferentially Replicates Damaged DNA". Journal of Biological Chemistry 277, № 21 (2002): 18454–58. http://dx.doi.org/10.1074/jbc.m200421200.
Full textVillani, Giuseppe, and Nicolas Tanguy Le Gac. "Interactions of DNA Helicases with Damaged DNA: Possible Biological Consequences." Journal of Biological Chemistry 275, no. 43 (2000): 33185–88. http://dx.doi.org/10.1074/jbc.r000011200.
Full textHoelzer, M. A., and R. E. Michod. "DNA repair and the evolution of transformation in Bacillus subtilis. III. Sex with damaged DNA." Genetics 128, no. 2 (1991): 215–23. http://dx.doi.org/10.1093/genetics/128.2.215.
Full textPietrowska, Monika, and Piotr Widłak. "Characterization of a novel protein that specifically binds to DNA modified by N-acetoxy-acetylaminofluorene and cis-diamminedichloroplatinum." Acta Biochimica Polonica 52, no. 4 (2005): 867–74. http://dx.doi.org/10.18388/abp.2005_3400.
Full textGebel, Jakob, Marcel Tuppi, Nicole Sänger, Björn Schumacher, and Volker Dötsch. "DNA Damaged Induced Cell Death in Oocytes." Molecules 25, no. 23 (2020): 5714. http://dx.doi.org/10.3390/molecules25235714.
Full textPearlman, D., Holbrook, D. Pirkle, and S. Kim. "Molecular models for DNA damaged by photoreaction." Science 227, no. 4692 (1985): 1304–8. http://dx.doi.org/10.1126/science.3975615.
Full textTsuge, Maasa, Yusuke Masuda, Hidenori Kaneoka, Shunsuke Kidani, Katsuhide Miyake, and Shinji Iijima. "SUMOylation of damaged DNA-binding protein DDB2." Biochemical and Biophysical Research Communications 438, no. 1 (2013): 26–31. http://dx.doi.org/10.1016/j.bbrc.2013.07.013.
Full textSharova, N. P. "How does a cell repair damaged DNA?" Biochemistry (Moscow) 70, no. 3 (2005): 275–91. http://dx.doi.org/10.1007/s10541-005-0113-4.
Full textHacohen, Nir, and Yuk Yuen Lan. "Damaged DNA marching out of aging nucleus." Aging 11, no. 19 (2019): 8039–40. http://dx.doi.org/10.18632/aging.102340.
Full textGeorgiades, Emily, Nicola Crosetto, and Magda Bienko. "Compartmentalizing damaged DNA: A double-edged sword." Molecular Cell 84, no. 1 (2024): 12–13. http://dx.doi.org/10.1016/j.molcel.2023.12.001.
Full textWidłak, P. "Reconstitution of UV-damaged DNA into chromatin using Xenopus oocyte extracts." Acta Biochimica Polonica 45, no. 2 (1998): 595–603. http://dx.doi.org/10.18388/abp.1998_4252.
Full textIde, Hiroshi, and Mitsuharu Kotera. "Human DNA Glycosylases Involved in the Repair of Oxidatively Damaged DNA." Biological & Pharmaceutical Bulletin 27, no. 4 (2004): 480–85. http://dx.doi.org/10.1248/bpb.27.480.
Full textShiels, Jerome C., Bozidar Jerkovic, Anne M. Baranger, and Philip H. Bolton. "RNA–DNA Hybrids Containing Damaged DNA are Substrates for RNase H." Bioorganic & Medicinal Chemistry Letters 11, no. 19 (2001): 2623–26. http://dx.doi.org/10.1016/s0960-894x(01)00527-3.
Full textPROTIĆ, MIROSLAVA. "Eukaryotic Damaged DNA-Binding Proteins: DNA Repair Proteins or Transcription Factors?" Annals of the New York Academy of Sciences 726, no. 1 DNA Damage (1994): 333–35. http://dx.doi.org/10.1111/j.1749-6632.1994.tb52843.x.
Full textGordienko, I. "UvrAB activity at a damaged DNA site: is unpaired DNA present?" EMBO Journal 16, no. 4 (1997): 880–88. http://dx.doi.org/10.1093/emboj/16.4.880.
Full textRaja, Sripriya J., and Bennett Van Houten. "UV-DDB as a General Sensor of DNA Damage in Chromatin: Multifaceted Approaches to Assess Its Direct Role in Base Excision Repair." International Journal of Molecular Sciences 24, no. 12 (2023): 10168. http://dx.doi.org/10.3390/ijms241210168.
Full textHelland, D. E., P. W. Doetsch, and W. A. Haseltine. "Substrate specificity of a mammalian DNA repair endonuclease that recognizes oxidative base damage." Molecular and Cellular Biology 6, no. 6 (1986): 1983–90. http://dx.doi.org/10.1128/mcb.6.6.1983-1990.1986.
Full textHelland, D. E., P. W. Doetsch, and W. A. Haseltine. "Substrate specificity of a mammalian DNA repair endonuclease that recognizes oxidative base damage." Molecular and Cellular Biology 6, no. 6 (1986): 1983–90. http://dx.doi.org/10.1128/mcb.6.6.1983.
Full textMitra, Manu. "DNA Repairing and its Mechanism in the Cell." ACTA Scientific Medical Sciences 3, no. 8 (2019): 116–19. https://doi.org/10.5281/zenodo.3338556.
Full textPeng, Aimin, Andrea L. Lewellyn, and James L. Maller. "Undamaged DNA Transmits and Enhances DNA Damage Checkpoint Signals in Early Embryos." Molecular and Cellular Biology 27, no. 19 (2007): 6852–62. http://dx.doi.org/10.1128/mcb.00195-07.
Full textHayes, Steven, Pavel Shiyanov, Xiaoqun Chen, and Pradip Raychaudhuri. "DDB, a Putative DNA Repair Protein, Can Function as a Transcriptional Partner of E2F1." Molecular and Cellular Biology 18, no. 1 (1998): 240–49. http://dx.doi.org/10.1128/mcb.18.1.240.
Full textStokes, Matthew P., Ruth Van Hatten, Howard D. Lindsay, and W. Matthew Michael. "DNA replication is required for the checkpoint response to damaged DNA in Xenopus egg extracts." Journal of Cell Biology 158, no. 5 (2002): 863–72. http://dx.doi.org/10.1083/jcb.200204127.
Full textDoherty, Rachel, and Srinivasan Madhusudan. "DNA Repair Endonucleases." Journal of Biomolecular Screening 20, no. 7 (2015): 829–41. http://dx.doi.org/10.1177/1087057115581581.
Full textBaran, Vladimír, and Jozef Pisko. "Cleavage of Early Mouse Embryo with Damaged DNA." International Journal of Molecular Sciences 23, no. 7 (2022): 3516. http://dx.doi.org/10.3390/ijms23073516.
Full textYasuda, Gentaro, Ryotaro Nishi, Eriko Watanabe, et al. "In Vivo Destabilization and Functional Defects of the Xeroderma Pigmentosum C Protein Caused by a Pathogenic Missense Mutation." Molecular and Cellular Biology 27, no. 19 (2007): 6606–14. http://dx.doi.org/10.1128/mcb.02166-06.
Full textRachofsky, Edward, J. B. Ross, and Roman Osman. "Conformation and Dynamics of Normal and Damaged DNA." Combinatorial Chemistry & High Throughput Screening 4, no. 8 (2001): 675–706. http://dx.doi.org/10.2174/1386207013330706.
Full textMøller, Peter, Pernille Høgh Danielsen, Kim Jantzen, Martin Roursgaard, and Steffen Loft. "Oxidatively damaged DNA in animals exposed to particles." Critical Reviews in Toxicology 43, no. 2 (2013): 96–118. http://dx.doi.org/10.3109/10408444.2012.756456.
Full textZitka, Ondrej, Sona Krizkova, Sylvie Skalickova, et al. "Electrochemical Study of DNA Damaged by Oxidation Stress." Combinatorial Chemistry & High Throughput Screening 16, no. 2 (2013): 130–41. http://dx.doi.org/10.2174/138620713804806274.
Full textZitka, Ondrej, Sona Krizkova, Sylvie Skalickova, et al. "Electrochemical Study of DNA Damaged by Oxidation Stress." Combinatorial Chemistry & High Throughput Screening 16, no. 2 (2013): 130–41. http://dx.doi.org/10.2174/1386207311316020007.
Full textHirai, T., T. Torizawa, K. Kato, O. Nikaido, E. Otsuka, and I. Shimada. "Nobel antibody with UV-damaged DNA cleaving activity." Seibutsu Butsuri 41, supplement (2001): S99. http://dx.doi.org/10.2142/biophys.41.s99_2.
Full textDamsma, Gerke E., Aaron Alt, Florian Brueckner, Thomas Carell, and Patrick Cramer. "Mechanism of transcriptional stalling at cisplatin-damaged DNA." Nature Structural & Molecular Biology 14, no. 12 (2007): 1127–33. http://dx.doi.org/10.1038/nsmb1314.
Full textJung, Yongwon, and Stephen J. Lippard. "RNA Polymerase II Blockage by Cisplatin-damaged DNA." Journal of Biological Chemistry 281, no. 3 (2005): 1361–70. http://dx.doi.org/10.1074/jbc.m509688200.
Full text