Academic literature on the topic 'DNA History'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA History.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "DNA History"
Brosh, Robert M., and Steven W. Matson. "History of DNA Helicases." Genes 11, no. 3 (February 27, 2020): 255. http://dx.doi.org/10.3390/genes11030255.
Full textTyagi, P., and M. Bhide. "History of DNA Sequencing." Folia Veterinaria 64, no. 2 (June 1, 2020): 66–73. http://dx.doi.org/10.2478/fv-2020-0019.
Full textSlatkin, Montgomery, and Fernando Racimo. "Ancient DNA and human history." Proceedings of the National Academy of Sciences 113, no. 23 (June 6, 2016): 6380–87. http://dx.doi.org/10.1073/pnas.1524306113.
Full textReardon, Jenny, and Kim TallBear. "“Your DNA Is Our History”." Current Anthropology 53, S5 (April 2012): S233—S245. http://dx.doi.org/10.1086/662629.
Full textCooper, Robert A. "Ancient DNA & Human History." American Biology Teacher 81, no. 5 (May 1, 2019): 378–79. http://dx.doi.org/10.1525/abt.2019.81.5.378.
Full textJohannes, Frank. "DNA methylation makes mutational history." Nature Plants 5, no. 8 (July 29, 2019): 772–73. http://dx.doi.org/10.1038/s41477-019-0491-z.
Full textKannan, Sampath K., and Tandy J. Warnow. "Inferring Evolutionary History From DNA Sequences." SIAM Journal on Computing 23, no. 4 (August 1994): 713–37. http://dx.doi.org/10.1137/s0097539791222171.
Full textDhillon, Manpreet Singh. "Pre-History of DNA ‘Fingerprinting’ in India." Research Journal of Humanities and Social Sciences 10, no. 3 (2019): 882. http://dx.doi.org/10.5958/2321-5828.2019.00145.1.
Full textStrasser, Bruno J., and Ulf Lagerkvist. "DNA: A History of a Thousand Heroes." BioScience 49, no. 3 (March 1999): 241. http://dx.doi.org/10.2307/1313519.
Full textVicente, Mário, and Carina M. Schlebusch. "African population history: an ancient DNA perspective." Current Opinion in Genetics & Development 62 (June 2020): 8–15. http://dx.doi.org/10.1016/j.gde.2020.05.008.
Full textDissertations / Theses on the topic "DNA History"
Price, Meredith Michelle. "DNA and the news media : science journalism and the history of DNA research." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614088.
Full textShapiro, Beth Alison. "Inferring evolutionary history and processes using ancient DNA." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288525.
Full textDaskalaki, Evangelia. "Archaeological Genetics - Approaching Human History through DNA Analysis." Doctoral thesis, Uppsala universitet, Evolutionsbiologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211156.
Full textDerksen, Linda Anne. "Agency and structure in the history of DNA profiling : the stabilization and standardization of a new technology /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3083460.
Full textDuran, Ferrer Martí. "Tracing the developmental history of B-cell tumors by DNA methylation." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670361.
Full textL’ADN de les nostres cèl·lules porta la informació genètica necessària per crear un ésser humà. Aquesta informació és interpretada a través de marques epigenètiques que permeten l’ expressió diferencial i altament coordinada dels gens en cada tipus cel·lular. La metilació de l’ADN representa una d’aquestes marques, i ha estat amplament descrita com a reguladora gènica tan en condicions fisiòlogues com en patològiques. Les primeres investigacions en el càncer varen identificar la metilació als promotor dels gens com un mètode alternatiu a les mutacions genètiques per silenciar els gens supressors de tumors. No obstant, estudis del genoma complet durant la darrera dècada han revelat que la majoria de canvis de metilació de l’ADN no estan directament relacionats amb la regulació gènica ,i conseqüentment no tenen aparentment un impacte funcional. Alguns d’aquests estudis s’han centrat en la metilació de l’ADN durant el desenvolupament normal de les cèl·lules B i la seva transformació cap als tipus principals de tumors de cèl·lula B. Aquestes investigacions han descrit un metiloma molt dinàmic durant el desenvolupament de cèl·lules B sanes i han proporcionat nous coneixements sobre la cèl·lula d’origen, els mecanismes patogènics i el comportament clínic de les neoplàsies de cèl·lules B. Malgrat la rellevància d’aquests estudis previs enfocats en cada tumor, faltava una visió holística de la metilació de l’ADN durant un programa sencer de desenvolupament de cèl·lules sanes y les seves neoplàsies derivades. Aquesta visió no estava disponible ni per les cèl·lules B ni per cap altre llinatge humà, i per tant era l’objectiu principal d’aquesta tesis doctoral. Emprant dades prèvies i generades expressament, vaig explorar les fonts de variabilitat en la metilació de l’ADN de les principals neoplàsies de cèl·lula B sorgides al llarg del desenvolupament complet de cèl·lules B sanes. Aquestes neoplàsies varen incloure la leucèmia linfoblàstica aguda de cèl·lules B (LLA), el limfoma de cèl·lules del mantell (LCM) (Estudi 1), la leucèmia limfocítica crònica (LLC), el limfoma difús de cèl·lules B grans (LDCB), i el mieloma múltiple (MM). Aquest enfocament integrador amb més de 2.000 mostres de pacients va desxifrar que el metiloma humà és notablement més dinàmic del que el concebíem, i va revelà nous coneixements biològics i clínics de les neoplasias de cèl·lules B (Estudi 2). Vaig identificar que els tumors de les cèl·lules B presenten empremtes de metilació derivades del desenvolupament normal i canvis adquirits de novo. Ambdós tipus de canvis de metilació de l’ADN varen permetre crear una eina diagnòstica epigenètica molt precisa per 14 subtipus de neoplàsies de cèl·lules B amb diferent abordatge clínic. En consonància amb coneixements previs, vaig identificar que la majoria dels canvis de metilació en l’ADN en el pacients tenien lloc en regions de la cromatina silenciades. Cal destacar que vaig poder relacionar aquest fenomen amb la història proliferativa de les cèl·lules B normals i tumorals, on cada divisió cel·lular semblava que deixava traces epigenètiques en el genoma sense repercussions transcripcionals (Estudi 3). En general, vaig veure que l’activitat mitòtica deixava simultàniament guanys i pèrdues de metilació en l’ADN, però algunes neoplàsies mostraven un biaix cap una direcció o l’altre. Basat en aquestes dades, vaig crear el rellotge mitòtic epigenètic epiCMIT considerant tant guanys com pèrdues de metilació en l’ADN relacionats amb la divisió cel·lular, la qual cosa representa una millora considerable respecte altres rellotges mitòtics proposats prèviament. Cal destacar que la història proliferativa recollida per l’epiCMIT abans del tractament dels pacients va ser altament predictiva del seu futur comportament clínic no només en tumors de cèl·lules B sinó en altres tipus de neoplàsies. Vaig observar que l’acumulació d’alteracions genètiques amb selecció positiva augmentaven l’epiCMIT, però algunes en particular semblaven que conferien una avantatge proliferativa significativa a les cèl·lules de LLC i LCM i distingien pacients amb un comportament clínic molt advers (Estudi 4). Finalment, vaig comparar el rellotge mitòtic epiCMIT amb un altre rellotge epigenètic que identifica de manera molt precisa l’edat cronològica de les persones, l’anomenat rellotge de Horvath. Curiosament, l’epiCMIT estava fortament associat amb una edat accelerada en les neoplàsies de cèl·lula B, suggerint una relació entre l’activitat mitòtica i l’envelliment (Estudi 3). En conclusió, la riquesa de dades presentades en aquesta tesis doctoral revelen la metilació de l’ADN com un traçador holístic del desenvolupament tumoral en les neoplàsies de cèl·lules B, i proporcionen nous coneixements biològics i clínics pels tumors de cèl·lula B i el càncer en general.
Abernethy, J. K. "Recent human history : inferences from the Y-chromosome and mitochondrial DNA." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1444478/.
Full textBeltrán, Margarita Sofía. "The speciation history of Heliconius : inferences from multilocus DNA sequence data." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1446412/.
Full textMuller, Romy. "Tuberculosis throughout history : ancient DNA analyses on European skeletal and dental remains." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/tuberculosis-throughout-history-ancient-dna-analyses-on-european-skeletal-and-dental-remains(15084f13-8e8d-4f5f-9806-dc9c99ad2dac).html.
Full textShook, Beth Alison Schultz. "Ancient DNA and the biological history and prehistory of northeastern North America /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2005. http://uclibs.org/PID/11984.
Full textFages, Antoine. "The genomic history of horse domestication and management : an ancient DNA perspective." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30329.
Full textAmong all domesticates, the horse can confidently be considered as the animal that most impacted the history of human dynamics. Once they domesticated the horse, human civilizations got hold of essential domestication products including meat and milk, but also invaluable secondary products, such as fast transportation and powerful workforce. The horse thus deeply enhanced the circulation of people, goods, culture and ideas, promoting the spread of vast military and political units across Eurasia up until the 1900s. The various steps underpinning horse domestication are however difficult to track in the archaeological record and still poorly understood based on patterns of DNA variation among modern breeds. In the last decade, the advent of ancient genomics has revolutionized evolutionary biology by providing a direct window into the past history of populations. Ancient genomics therefore provides the necessary time travel machine to investigate the key historical transition in the history of humankind that was induced by the horse domestication. Leveraging the latest advances in ancient DNA recovery and High-Throughput sequencing technologies, this PhD project aimed at deciphering the genetic changes underlying the horse domestication process by generating the largest ancient genome dataset for a non-human organism, spanning the whole temporal and geographic range of horse domestication. This dataset revealed that horses first herded at Botai in Northern Kazakhstan ~5,500 years ago are not the ancestors of modern domestic horses but instead of modern Przewalski’s horses, previously thought to represent last true wild population on Earth. This major discovery also suggests that a swift genomic replacement in the domestic stock took place in the third millennium BCE, probably contributing to precipitating humankind into a new metal era, the Bronze Age. Additionally, this PhD work identified the genetic signatures associated with different management strategies and the evolutionary dynamics at play within distinct domestication stages. In particular, we were able to rule out Iberia as a major contributor to the modern domestic stock and moving towards more recent times, we characterized the growing influence of Persian-like horses starting in the early Middle Ages
Books on the topic "DNA History"
1948-, Lynch Michael, ed. Truth machine: The contentious history of DNA fingerprinting. Chicago: University of Chicago Press, 2008.
Find full textKing, Turi. Surnames, DNA, and family history. Oxford, UK: Oxford University Press, 2011.
Find full textI︠A︡rish, I︠A︡roslav (I︠A︡roslav Ivanovych), 1981-, ed. Iz sʹomoho dna. Kharkiv: Vyd-vo Klub Simeĭnoho Dozvilli︠a︡, 2011.
Find full textVincent, Francene. An African American family history story. [Chicago, Illinois]: Francene Vincent, 2009.
Find full textSue, Bix Amy, and Essential Library (Firm), eds. Rosalind Franklin: DNA discoverer. Minneapolis, Minnesota: ABDO Publishing Company, 2018.
Find full textWo men liu zhu bu tong de xue ye: Yi xue xing, ji yin de ke xue zheng ju jie kai Taiwan ge zu qun shen shi zhi mi. Taibei Shi: Qian wei chu ban she, 2010.
Find full textBook chapters on the topic "DNA History"
Fan, Chunhai, and Di Li. "Brief History of DNA Nanotechnology." In DNA Nanotechnology, 3–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36077-0_1.
Full textHollard, Clémence, and Christine Keyser. "Funerary Recruitment and Ancient DNA: Making DNA Speak." In Archaeology, history and biosciences, edited by Susanne Brather-Walter, 151–60. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110616651-009.
Full textSteen, R. Grant. "The Dark History of Eugenics." In DNA and Destiny, 33–48. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2768-2_3.
Full textWhite, Lisa D. "History of DNA Sequencing Technologies." In Next Generation Sequencing, 3–17. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7001-4_1.
Full textTuross, Noreen, and Michael G. Campana. "CHAPTER 6. Ancient DNA." In The Science of Roman History, edited by Walter Scheidel, 205–23. Princeton: Princeton University Press, 2018. http://dx.doi.org/10.23943/9781400889730-011.
Full textSinkovics, Joseph G. "“Making Cancer History” at M.D. Anderson Hospital." In RNA/DNA and Cancer, 527–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22279-0_29.
Full textSerafini, Anthony. "On the Trail of DNA." In The Epic History of Biology, 331–62. New York, NY: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-6327-7_23.
Full textManning, Patrick. "DNA in a Progressive Era, 1945–1980." In Methods for Human History, 109–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53882-8_10.
Full textFischer, Ernst Peter. "The archetypal gene — the open history of a successful concept." In The future of DNA, 35–42. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5494-9_4.
Full textDash, Hirak Ranjan, Kamayani Vajpayee, and Radhika Agarwal. "A Glimpse of Famous Cases in History Solved by DNA Typing." In Handbook of DNA Profiling, 1–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9364-2_14-1.
Full textConference papers on the topic "DNA History"
SUZUKI, H., Y. SATO, and N. OHBA. "AN EVOLUTIONARY HISTORY OF THE JAPANESE AQUATIC FIREFLIES INFERRED FROM MITOCHONDRIAL DNA SEQUENCES." In Proceedings of the 13th International Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702203_0014.
Full textMeagher, Robert L. "From worms in the fields to moth DNA — a history of Spodoptera frugiperda migration in North America." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.105637.
Full textDumitrescu, Ramona G., Yun-Ling Zheng, Yang Yang, Francoise Seillier-Moiseiwitsch, Stephanie M. Spernak, Christopher Loffredo, David H. Phillips, and Peter G. Shields. "Abstract 4701: DNA-adducts levels and chromosomal aberrations in relation to smoking history and topography in smokers." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4701.
Full textNozdracheva, Aleksandra, Nadezhda Pleskach, and Mirya Kuranova. "FEATURES OF DNA REPAIR IN DERMAL FIBROBLASTS IN PATIENTS WITH BREAST CANCER AND PERSONS WITH MEDICAL HISTORY OF CANCER." In RAP Conference. Sievert Association, 2020. http://dx.doi.org/10.37392/rapproc.2020.10.
Full textGraham, J. B., D. B. Lubahn, J. D. Kirshtein, S. T. Lord, I. M. Nilsson, A. Wallmark, R. Ljung, et al. "THE “MALMO“ EPITOPE OF FACTOR IX: PHENOTYPIC EXPRESSION OF THE “VIKING“ GENE." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643566.
Full textImgenberg-Kreuz, Juliana, Christopher Sjöwall, Martina Frodlund, Iva Gunnarsson, Elisabet Svenungsson, and Dag Leonard. "12 Epigenome-wide association study reveals differential DNA methylation in systemic lupus erythematosus patients with a history of ischemic heart disease." In 13th International Congress on Systemic Lupus Erythematosus (LUPUS 2019), San Francisco, California, USA, April 5–8, 2019, Abstract Presentations. Lupus Foundation of America, 2019. http://dx.doi.org/10.1136/lupus-2019-lsm.12.
Full textImgenberg-Kreuz, Juliana, Christopher Sjöwall, Martina Frodlund, Iva Gunnarsson, Elisabet Svenungsson, and Dag Leonard. "P89 Epigenome-wide association study reveals differential DNA methylation in systemic lupus erythematosus patients with a history of ischemic heart disease." In 12th European Lupus Meeting. Lupus Foundation of America, 2020. http://dx.doi.org/10.1136/lupus-2020-eurolupus.133.
Full textZhang, Aili, Chao Chen, and Lisa X. Xu. "Numerical Study of Nanoparticle-Enhanced PCR." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192725.
Full textKillela, Patrick J., Ahmed B. Rasheed, and Hai Yan. "Abstract 1846: Identification of a germline mutation in PMS2, a DNA mismatch repair gene, in a large consanguineous family with a history of Pediatric GBMs." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1846.
Full textWang, Xin, Stephanie Melkonian, Jian Gu, David Chang, Nizar Tannir, Christopher Wood, and Xifeng Wu. "Abstract 4320: Mitochondrial DNA copy number in peripheral blood and the risk of clear-cell renal cell carcinoma: Effect of age, gender, smoking, and history of hypertension." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4320.
Full textReports on the topic "DNA History"
Research, Gratis. Vaccines Through History: Smallpox to COVID-19. Gratis Research, March 2021. http://dx.doi.org/10.47496/gr.blog.011.
Full textRepository, Science. Epigenetics – Blurring the Lines between Nature and Nurture. Science Repository OÜ, November 2020. http://dx.doi.org/10.31487/sr.blog.12.
Full textUsachenko, S. I., and E. M. Bradbury. Histone-DNA contacts in structure/function relationships of nucleosomes as revealed by crosslinking. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/334246.
Full textHuang, Yi, and Xiaowei Yang. The Role of Histone Deacetylase and DNA Methylation in Estrogen a Expression in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2001. http://dx.doi.org/10.21236/ada404589.
Full textVAQUERO DÍAZ, BEATRIZ. Historia da escritura na Galicia medieval. Consello da Cultura Galega, 2014. http://dx.doi.org/10.17075/gmh.007.
Full textHuang, Yi. The Roles of Histone Deacetylase and DNA Methylation in Estrogen Receptor alpha Expression in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada407368.
Full textShook, Molly S., Elena N. Cravens, Erika J. Hughes, Scott A. Coonrod, and Eric J. Richards. ICBP90 Regulation of DNA Methylation, Histone Ubiquitination, and Tumor Suppressor Gene Expression in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada566787.
Full textHuang, Yi. The Roles of Histone Deacetylase and DNA Methylation in Estrogen Receptor alpha Expression in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, June 2003. http://dx.doi.org/10.21236/ada421800.
Full textShook, Molly. ICBP90 Regulation of DNA Methylation, Histone Ubiquitination, and Tumor Suppressor Gene Expression in Breast Cancer Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2011. http://dx.doi.org/10.21236/ada551855.
Full textAndrián, Leandro, and Jorge Hirs. Colombia: Desafíos del desarrollo en tiempos de COVID-19. Inter-American Development Bank, December 2020. http://dx.doi.org/10.18235/0003000.
Full text