Academic literature on the topic 'DNA-ligand interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNA-ligand interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DNA-ligand interactions"

1

Piosik, Jacek, Kacper Wasielewski, Anna Woziwodzka, Wojciech Śledź, and Anna Gwizdek-Wiśniewska. "De-intercalation of ethidium bromide and propidium iodine from DNA in the presence of caffeine." Open Life Sciences 5, no. 1 (February 1, 2010): 59–66. http://dx.doi.org/10.2478/s11535-009-0077-2.

Full text
Abstract:
AbstractCaffeine (CAF) is capable of interacting directly with several genotoxic aromatic ligands by stacking aggregation. Formation of such hetero-complexes may diminish pharmacological activity of these ligands, which is often related to its direct interaction with DNA. To check these interactions we performed three independent series of spectroscopic titrations for each ligand (ethidium bromide, EB, and propidium iodine, PI) according to the following setup: DNA with ligand, ligand with CAF and DNA-ligand mixture with CAF. We analyzed DNA-ligand and ligand-CAF mixtures numerically using wel
APA, Harvard, Vancouver, ISO, and other styles
2

Hopfinger, A. J., Mario G. Cardozo, and Y. Kawakami. "Molecular modelling of ligand–DNA intercalation interactions." J. Chem. Soc., Faraday Trans. 91, no. 16 (1995): 2515–24. http://dx.doi.org/10.1039/ft9959102515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piehler, Jacob, Andreas Brecht, Günter Gauglitz, Marion Zerlin, Corinna Maul, Ralf Thiericke, and Susanne Grabley. "Label-Free Monitoring of DNA–Ligand Interactions." Analytical Biochemistry 249, no. 1 (June 1997): 94–102. http://dx.doi.org/10.1006/abio.1997.2160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Royen, Martin E., Sónia M. Cunha, Maartje C. Brink, Karin A. Mattern, Alex L. Nigg, Hendrikus J. Dubbink, Pernette J. Verschure, Jan Trapman, and Adriaan B. Houtsmuller. "Compartmentalization of androgen receptor protein–protein interactions in living cells." Journal of Cell Biology 177, no. 1 (April 9, 2007): 63–72. http://dx.doi.org/10.1083/jcb.200609178.

Full text
Abstract:
Steroid receptors regulate gene expression in a ligand-dependent manner by binding specific DNA sequences. Ligand binding also changes the conformation of the ligand binding domain (LBD), allowing interaction with coregulators via LxxLL motifs. Androgen receptors (ARs) preferentially interact with coregulators containing LxxLL-related FxxLF motifs. The AR is regulated at an extra level by interaction of an FQNLF motif in the N-terminal domain with the C-terminal LBD (N/C interaction). Although it is generally recognized that AR coregulator and N/C interactions are essential for transcription r
APA, Harvard, Vancouver, ISO, and other styles
5

Adasme, Melissa F., Katja L. Linnemann, Sarah Naomi Bolz, Florian Kaiser, Sebastian Salentin, V. Joachim Haupt, and Michael Schroeder. "PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA." Nucleic Acids Research 49, W1 (May 5, 2021): W530—W534. http://dx.doi.org/10.1093/nar/gkab294.

Full text
Abstract:
Abstract With the growth of protein structure data, the analysis of molecular interactions between ligands and their target molecules is gaining importance. PLIP, the protein–ligand interaction profiler, detects and visualises these interactions and provides data in formats suitable for further processing. PLIP has proven very successful in applications ranging from the characterisation of docking experiments to the assessment of novel ligand–protein complexes. Besides ligand–protein interactions, interactions with DNA and RNA play a vital role in many applications, such as drugs targeting DNA
APA, Harvard, Vancouver, ISO, and other styles
6

Murade, Chandrashekhar U., and George T. Shubeita. "A fluorescent reporter on electrostatic DNA-ligand interactions." Biomedical Optics Express 13, no. 1 (December 7, 2021): 159. http://dx.doi.org/10.1364/boe.439791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cremers, Glenn A. O., Bas J. H. M. Rosier, Ab Meijs, Nicholas B. Tito, Sander M. J. van Duijnhoven, Hans van Eenennaam, Lorenzo Albertazzi, and Tom F. A. de Greef. "Determinants of Ligand-Functionalized DNA Nanostructure–Cell Interactions." Journal of the American Chemical Society 143, no. 27 (June 28, 2021): 10131–42. http://dx.doi.org/10.1021/jacs.1c02298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peterman, Erwin J. G., and Peter Gross. "Biophysics of DNA–ligand interactions resolved by force." Physics of Life Reviews 7, no. 3 (September 2010): 344–45. http://dx.doi.org/10.1016/j.plrev.2010.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murat, Pierre, Yashveer Singh, and Eric Defrancq. "Methods for investigating G-quadruplex DNA/ligand interactions." Chemical Society Reviews 40, no. 11 (2011): 5293. http://dx.doi.org/10.1039/c1cs15117g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shi, Xuesong, and Robert B. Macgregor. "Volume and hydration changes of DNA–ligand interactions." Biophysical Chemistry 125, no. 2-3 (February 2007): 471–82. http://dx.doi.org/10.1016/j.bpc.2006.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "DNA-ligand interactions"

1

Rackham, Benjamin. "Single molecule studies of ligand-DNA interactions using atomic force microscopy." Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/48783/.

Full text
Abstract:
This thesis describes the results of experiments into the intra and inter-molecular binding of various ligands with dsDNA via the mechanism of intercalation, principally using the technique of atomic force microscopy (AFM). Since the description of the first AFM in the mid 1980’s, AFM has emerged as a sensitive and versatile analytical tool, capable both of detecting and manipulating artefacts at picometer resolutions. In these studies, AFM imaging, supported by circular dichroism, reveals unusual conformational changes in DNA that occur as a result of the binding of ligands that incorporate t
APA, Harvard, Vancouver, ISO, and other styles
2

Zietlow, Christopher Mark. "SPIN-LABELED DNA CATIONIC LIGAND INTERACTIONS ASSOCIATED WITH NON-VIRAL GENE THERAPY." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin997112806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rangan, Anupama. "Structural studies of nucleic acids dynamics of RNA pseudoknots and G-quadruplex DNA-ligand interactions /." Access restricted to users with UT Austin EID, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3077362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schechner-Resom, Martina Gabriele. "Ligand binding and molecular flexibility : Studies on DNA gyrase B." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR1A001.

Full text
Abstract:
L’ADN gyrase est une enzyme vitale pour la bactérie grâce à sa capacité de manipuler les molécules d’ADN dans la cellule vivante. Cette capacité fait de l’ADN gyrase une cible idéale pour des composés anti-infectieux. Dans ce travail, l’ADN gyrase a été étudié par des méthodes de modélisatoin moléculaire. Une approche de conception de ligands basée sur la structure a été entreprise sur le sous-domaine N-terminal de 24 kDa de l’ADN gyrase B (domaine GHKL). La flexibilité de deux boucles du site actif du domaine GHKL a été étudiée par des simulations de dynamiques moléculaires en présence de dif
APA, Harvard, Vancouver, ISO, and other styles
5

Greguric, Antun, University of Western Sydney, of Science Technology and Environment College, and of Science Food and Horticulture School. "The DNA binding interactions of Ru(II) polypyridyl complexes." THESIS_CSTE_SFH_Greguric_A.xml, 2002. http://handle.uws.edu.au:8081/1959.7/620.

Full text
Abstract:
This thesis reports on the synthesis, characterisation, enantiomeric resolution, 1H NMR structural study and physical evaluation of a series of certain bidentate ligand metal complexes, where ‘L-L’ denotes the ancillary bidentate ligand and ‘intercalator’ indicates the intercalating bidentate ligand. The L-L series varies in size and shape. Results of many tests and projects conducted are explained in detail.<br>Master of Science (Hons)
APA, Harvard, Vancouver, ISO, and other styles
6

McFail-Isom, Lori. "Effects of ligand binding, coordinate error and ion binding on nucleic acid structure and conformation." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greguric, Antun. "The DNA binding interactions of Ru(II) polypyridyl complexes." Thesis, View thesis View thesis, 2002. http://handle.uws.edu.au:8081/1959.7/620.

Full text
Abstract:
This thesis reports on the synthesis, characterisation, enantiomeric resolution, 1H NMR structural study and physical evaluation of a series of certain bidentate ligand metal complexes, where ‘L-L’ denotes the ancillary bidentate ligand and ‘intercalator’ indicates the intercalating bidentate ligand. The L-L series varies in size and shape. Results of many tests and projects conducted are explained in detail.
APA, Harvard, Vancouver, ISO, and other styles
8

Siu, Kit-man Phyllis. "Luminescent cyclometalated platinum(II) complexes : protein binding studies and biological applications /." View the Table of Contents & Abstract, 2005. http://sunzi.lib.hku.hk/hkuto/record/B30575357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yan. "Effects of glucocorticoid receptor binding on base excision repair at deoxyuridine in the glucocorticoid response element." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Summer2006/y%5Fwang%5F072106.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rhoad, Jonathan Sidney. "DNA-binding carbohydrates for coordination to a photoactive dirhodium complex and molecular dynamics studies of methyl furanosides evaluation of available force fields /." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1101315894.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.<br>Title from first page of PDF file. Document formatted into pages; contains xviii, 160 p.; also includes graphics Includes bibliographical references (p. 117-120). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "DNA-ligand interactions"

1

Guschlbauer, Wilhelm, and Wolfram Saenger, eds. DNA—Ligand Interactions. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NATO ASI/FEBS Course on DNA-Ligand Interactions: From Drugs to Proteins (1986 Abbey of Fontevraud). DNA-ligand interactions: From drugs to proteins. New York: Plenum Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Neidle, Stephen. DNA structure and recognition. Oxford, Eng: IRL Press at Oxford University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Patrick N. Design, synthesis, kinetics and biological evaluation of acridine baseed DNA intercalators. Dublin: University College Dublin, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

D, Hadjiliadis Nick, and Sletten Einar, eds. Metal complexes: DNA interactions. Chichester: John Wiley & Sons, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ismail, Matthew Arif. DNA-ligand interactions: A biophysical study of 9-hydroxyellipticine, Hoechst 33258 and a meso-substituted porphyrin derivative binding to DNA. [s.l.]: typescript, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aldrich-Wright, Janice. Metallointercalators: Synthesis and Techniques to Probe Their Interactions with Biomolecules. Vienna: Springer-Verlag/Wien, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pollwein, Peter. Spezifische Bindungsstellen von SV40 T-Antigen im zellulären Mausgenom. Konstanz: Hartung-Gorre, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Ying. Nanomechanics of DNA-ligand interaction investigated with magnetic tweezers. Bielefeld: Universitätsbibliothek Bielefeld, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bibudhendra, Sarkar, and International Symposium on "Metals and Genetics" (1st : 1994 : Toronto, Ont.), eds. Genetic response to metals. New York: M. Dekker, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "DNA-ligand interactions"

1

Kennard, Olga. "DNA Structure: Current Results from Single Crystal X-Ray Diffraction Studies." In DNA—Ligand Interactions, 1–21. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hippel, Peter H., and Otto G. Berg. "On the Nature and Specificity of DNA-Protein Interactions in the Regulation of Gene Expression." In DNA—Ligand Interactions, 159–71. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lehming, Norbert, Juergen Sartorius, Brigitte von Wilcken-Bergmann, and Benno Mueller-Hill. "Searching for the Code of Ideal Protein-DNA-Recognition." In DNA—Ligand Interactions, 173–82. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sigler, P. B., A. Joachimiak, R. W. Schevitz, C. L. Lawson, R. G. Zhang, Z. Otwinowski, and R. Marmostein. "trp Repressor, A Crystallographic Study of Allostery in Genetic Regulation." In DNA—Ligand Interactions, 183–84. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steitz, T. A., L. Beese, B. Engelman, P. Freemont, J. Friedman, M. Sanderson, S. Schultz, G. Shields, and J. Warwicker. "Structural Studies of Three DNA Binding Proteins: Catabolite Gene Activator Protein, Resolvase, and the Klenow Fragment of DNA Polymerase I." In DNA—Ligand Interactions, 185–89. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boelens, R., R. M. Scheek, R. M. J. N. Lamerichs, J. de Vlieg, J. H. van Boom, and R. Kaptein. "A Two-Dimensional NMR Study of the Complex of lac Repressor Headpiece with a 14 Base Pair lac Operator Fragment." In DNA—Ligand Interactions, 191–215. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Radman, Miroslav. "DNA Methylation and Mismatch Repair: Molecular Specificities." In DNA—Ligand Interactions, 217–24. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maass, Guenter. "Recognition of DNA Sequences by Restriction Endonucleases." In DNA—Ligand Interactions, 225–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bennett, S. Paul, and Stephen E. Halford. "Mechanism and Specificity of two Restriction Enzymes, CauI and CauII, that Recognize Asymmetrical DNA Sequences." In DNA—Ligand Interactions, 239–50. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rosenberg, John M., Judith A. McClarin, Christin A. Frederick, Bi-Cheng Wang, John Grable, Herbert W. Boyer, and Patricia Greene. "Structure of the DNA-EcoRI Endonuclease Recognition Complex." In DNA—Ligand Interactions, 251–56. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5383-6_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "DNA-ligand interactions"

1

Murade, Chandrashekhar U., and George T. Shubeita. "Detecting DNA-Ligand Electrostatic Interactions With a FRET-Based Probe." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/3d.2022.jw5d.5.

Full text
Abstract:
DNA-ligand interactions are dominated by electrostatics as DNA is a highly charged molecule at physiological conditions. Here, we present a FRET-based sensor which can optically report on these interactions between DNA and charged ligands.
APA, Harvard, Vancouver, ISO, and other styles
2

Matsushita, Y., T. Murakawa, K. Shimamura, M. Oishi, T. Ohyama, and N. Kurita. "Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation." In THE IRAGO CONFERENCE 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brewer, Bryson M., Yandong Gao, Rebecca M. Sappington, and Deyu Li. "Microfluidic Molecular Trap: Probing Extracellular Signaling by Selectively Blocking Exchange of Specific Molecules in Cell-Cell Interactions." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64489.

Full text
Abstract:
Communication among cell populations is achieved via a wide variety of soluble, extracellular signaling molecules [1]. In order to investigate the role of specific molecules in a cellular process, researchers often utilize in vitro cell culture techniques in which the molecule under question has been removed from the signaling pathway. Traditionally, this has been accomplished by eliminating the gene in the cell that is responsible for coding the targeted ligand/receptor by using modern DNA technology such as gene knockout; however, this process is expensive, time-consuming, and labor intensiv
APA, Harvard, Vancouver, ISO, and other styles
4

Rilak Simović, Ana, Dejan Lazić, Milica Međedović, Dušan Ćoćić, and Biljana Petrović. "SYNTHESIS AND BIOLOGICAL ACTIVITY OF THE NEW PINCER TYPE RUTHENIUM(III) COMPLEX." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.316rs.

Full text
Abstract:
We synthesized and characterized the ruthenium(III) pincer-type complex [RuCl3(H2Lt-Bu] (H2Lt- Bu = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine, 1) by elemental analysis, IR and UV-Vis spectroscopy, and mass spectrometry (MS) method ESI Q-TOF. For comparison reason, we also studied ruthenium(III) terpyridine complexes of the general formula [Ru(N-N-N)Cl3] where N-N-N = 4′-chloro- terpyridine (Cl-tpy; 2) or 4′-chlorophenyl-terpyridine (Cl-Ph-tpy; 3). Kinetic study of the substitution reactions of 1–3 with biomolecules showed that the rate constants depend on the properties of the spectator li
APA, Harvard, Vancouver, ISO, and other styles
5

Tersch, C., C. Witte, F. Lisdat, and J. Glöckler. "5.1.3 DNA electrodes for detection of sequence specific nucleic acid-ligand interaction." In 14th International Meeting on Chemical Sensors - IMCS 2012. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2012. http://dx.doi.org/10.5162/imcs2012/5.1.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Selamat, Norhidayah, Lee Yook Heng, Nurul Izzaty Hassan, and Nurul Huda Abd Karim. "Synthesis and characterization of 6,6’-bis(2-hydroxyphenyl)-2,2’-bipyridine ligand and its interaction with ct-DNA." In THE 2015 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2015 Postgraduate Colloquium. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4931296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bussel, J. "FOR MODULATION AS A MEANS OF ELEVATING THE PLATELET COUNT IN ITP." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644761.

Full text
Abstract:
ITP is an autoantibody-mediated disease which would logically be treated by decreasing the level of autoantibody. However, the most exciting developments in understanding the pathophysiology of the thrombocytopenia and its treatment involve a better understanding of the MPS FcR system and ways in which it can be modulated. This work has focussed on phagocytic paralysis or FcR blockade (FcRBl): the slowing of destruction of antibody-coated platelets despite the persistent presence of antibody on the surface of the platelet.Several areas have been explored in learning about the MPS system. Inves
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!