Journal articles on the topic 'DNA origami mechanisms and machines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'DNA origami mechanisms and machines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Su, Hai-Jun, and Carlos E. Castro. "The Rise of the DNA Nanorobots." Mechanical Engineering 138, no. 08 (2016): 44–49. http://dx.doi.org/10.1115/1.2016-aug-3.
Full textMarras, Alexander E., Lifeng Zhou, Hai-Jun Su, and Carlos E. Castro. "Programmable motion of DNA origami mechanisms." Proceedings of the National Academy of Sciences 112, no. 3 (2015): 713–18. http://dx.doi.org/10.1073/pnas.1408869112.
Full textEndo, Masayuki, and Hiroshi Sugiyama. "DNA Origami Nanomachines." Molecules 23, no. 7 (2018): 1766. http://dx.doi.org/10.3390/molecules23071766.
Full textMarras, Alexander E. "Fabricating and Actuating DNA Origami Mechanisms." Biophysical Journal 112, no. 3 (2017): 301a. http://dx.doi.org/10.1016/j.bpj.2016.11.1629.
Full textFelton, S., M. Tolley, E. Demaine, D. Rus, and R. Wood. "A method for building self-folding machines." Science 345, no. 6197 (2014): 644–46. http://dx.doi.org/10.1126/science.1252610.
Full textWang, Shuang, Zhaoyu Zhou, Ningning Ma, et al. "DNA Origami-Enabled Biosensors." Sensors 20, no. 23 (2020): 6899. http://dx.doi.org/10.3390/s20236899.
Full textAriga, Katsuhiko, Taizo Mori, Waka Nakanishi, and Jonathan P. Hill. "Solid surface vs. liquid surface: nanoarchitectonics, molecular machines, and DNA origami." Physical Chemistry Chemical Physics 19, no. 35 (2017): 23658–76. http://dx.doi.org/10.1039/c7cp02280h.
Full textHalley, Patrick D., Christopher R. Lucas, Emily M. McWilliams, et al. "DNA Origami: Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model (Small 3/2016)." Small 12, no. 3 (2016): 307. http://dx.doi.org/10.1002/smll.201670014.
Full textLi, Ruixin, Haorong Chen, Hyeongwoon Lee, and Jong Hyun Choi. "Conformational Control of DNA Origami by DNA Oligomers, Intercalators and UV Light." Methods and Protocols 4, no. 2 (2021): 38. http://dx.doi.org/10.3390/mps4020038.
Full textZhou, Lifeng, Alexander E. Marras, Hai-Jun Su, and Carlos E. Castro. "Direct Design of an Energy Landscape with Bistable DNA Origami Mechanisms." Nano Letters 15, no. 3 (2015): 1815–21. http://dx.doi.org/10.1021/nl5045633.
Full textLinko, Veikko, Seppo-Tapio Paasonen, Anton Kuzyk, Päivi Törmä, and J. Jussi Toppari. "Characterization of the Conductance Mechanisms of DNA Origami by AC Impedance Spectroscopy." Small 5, no. 21 (2009): 2382–86. http://dx.doi.org/10.1002/smll.200900683.
Full textKim, Woongbae, Junghwan Byun, Jae-Kyeong Kim, et al. "Bioinspired dual-morphing stretchable origami." Science Robotics 4, no. 36 (2019): eaay3493. http://dx.doi.org/10.1126/scirobotics.aay3493.
Full textRoodhuizen, Job A. L., Philip J. T. M. Hendrikx, Peter A. J. Hilbers, Tom F. A. de Greef, and Albert J. Markvoort. "Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation." ACS Nano 13, no. 9 (2019): 10798–809. http://dx.doi.org/10.1021/acsnano.9b05650.
Full textHalley, Patrick D., Christopher R. Lucas, Emily M. McWilliams, et al. "Daunorubicin-Loaded DNA Origami Nanostructures Circumvent Drug-Resistance Mechanisms in a Leukemia Model." Small 12, no. 3 (2015): 308–20. http://dx.doi.org/10.1002/smll.201502118.
Full textAttali, Ilan, Michael R. Botchan, and James M. Berger. "Structural Mechanisms for Replicating DNA in Eukaryotes." Annual Review of Biochemistry 90, no. 1 (2021): 77–106. http://dx.doi.org/10.1146/annurev-biochem-090120-125407.
Full textZhou, Lifeng, Hai-Jun Su, Alexander E. Marras, Chao-Min Huang, and Carlos E. Castro. "Projection kinematic analysis of DNA origami mechanisms based on a two-dimensional TEM image." Mechanism and Machine Theory 109 (March 2017): 22–38. http://dx.doi.org/10.1016/j.mechmachtheory.2016.11.010.
Full textSheheade, Breveruos, Miran Liber, Mary Popov, et al. "Self‐Assembly of DNA Origami Heterodimers in High Yields and Analysis of the Involved Mechanisms." Small 15, no. 51 (2019): 1902979. http://dx.doi.org/10.1002/smll.201902979.
Full textYu, Meng, Weimin Yang, Yuan Yu, Xiang Cheng, and Zhiwei Jiao. "A Crawling Soft Robot Driven by Pneumatic Foldable Actuators Based on Miura-Ori." Actuators 9, no. 2 (2020): 26. http://dx.doi.org/10.3390/act9020026.
Full textZechner, Ellen L., Silvia Lang, and Joel F. Schildbach. "Assembly and mechanisms of bacterial type IV secretion machines." Philosophical Transactions of the Royal Society B: Biological Sciences 367, no. 1592 (2012): 1073–87. http://dx.doi.org/10.1098/rstb.2011.0207.
Full textDillingham, Mark S. "Superfamily I helicases as modular components of DNA-processing machines." Biochemical Society Transactions 39, no. 2 (2011): 413–23. http://dx.doi.org/10.1042/bst0390413.
Full textIjäs, Heini, Boxuan Shen, Amelie Heuer-Jungemann, et al. "Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release." Nucleic Acids Research 49, no. 6 (2021): 3048–62. http://dx.doi.org/10.1093/nar/gkab097.
Full textKetterer, Philip, Elena M. Willner, and Hendrik Dietz. "Nanoscale rotary apparatus formed from tight-fitting 3D DNA components." Science Advances 2, no. 2 (2016): e1501209. http://dx.doi.org/10.1126/sciadv.1501209.
Full textJohnson, Cotteka N., Nicholas L. Adkins, and Philippe Georgel. "Chromatin remodeling complexes: ATP-dependent machines in action." Biochemistry and Cell Biology 83, no. 4 (2005): 405–17. http://dx.doi.org/10.1139/o05-115.
Full textHo, P. Shing. "Structure of the Holliday junction: applications beyond recombination." Biochemical Society Transactions 45, no. 5 (2017): 1149–58. http://dx.doi.org/10.1042/bst20170048.
Full textSHARMA, AJEET K., and DEBASHISH CHOWDHURY. "TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES." Biophysical Reviews and Letters 07, no. 03n04 (2012): 135–75. http://dx.doi.org/10.1142/s1793048012300083.
Full textDelagoutte, Emmanuelle, and Peter H. von Hippel. "Helicase mechanisms and the coupling of helicases within macromolecular machines Part II: Integration of helicases into cellular processes." Quarterly Reviews of Biophysics 36, no. 1 (2003): 1–69. http://dx.doi.org/10.1017/s0033583502003864.
Full textMurray, Noreen E. "Type I Restriction Systems: Sophisticated Molecular Machines (a Legacy of Bertani and Weigle)." Microbiology and Molecular Biology Reviews 64, no. 2 (2000): 412–34. http://dx.doi.org/10.1128/mmbr.64.2.412-434.2000.
Full textDing, Tao, Ventsislav K. Valev, Andrew R. Salmon, et al. "Light-induced actuating nanotransducers." Proceedings of the National Academy of Sciences 113, no. 20 (2016): 5503–7. http://dx.doi.org/10.1073/pnas.1524209113.
Full textMorgan, Aaron, Sarah LeGresley, and Christopher Fischer. "Remodeler Catalyzed Nucleosome Repositioning: Influence of Structure and Stability." International Journal of Molecular Sciences 22, no. 1 (2020): 76. http://dx.doi.org/10.3390/ijms22010076.
Full textMorris, Daniel L. "DNA-bound metal ions: recent developments." Biomolecular Concepts 5, no. 5 (2014): 397–407. http://dx.doi.org/10.1515/bmc-2014-0021.
Full textRamm, Beatrice, Andriy Goychuk, Alena Khmelinskaia, et al. "A diffusiophoretic mechanism for ATP-driven transport without motor proteins." Nature Physics 17, no. 7 (2021): 850–58. http://dx.doi.org/10.1038/s41567-021-01213-3.
Full textDelagoutte, Emmanuelle, and Peter H. von Hippel. "Helicase mechanisms and the coupling of helicases within macromolecular machines Part I: Structures and properties of isolated helicases." Quarterly Reviews of Biophysics 35, no. 4 (2002): 431–78. http://dx.doi.org/10.1017/s0033583502003852.
Full textMirkin, Ekaterina V., and Sergei M. Mirkin. "Replication Fork Stalling at Natural Impediments." Microbiology and Molecular Biology Reviews 71, no. 1 (2007): 13–35. http://dx.doi.org/10.1128/mmbr.00030-06.
Full textMercier, Romain, Sarah Bautista, Maëlle Delannoy, et al. "The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility inMyxococcus xanthus." Proceedings of the National Academy of Sciences 117, no. 45 (2020): 28366–73. http://dx.doi.org/10.1073/pnas.2002783117.
Full textMelnick, Ari M., Kerin Adelson, and Jonathan D. Licht. "The Theoretical Basis of Transcriptional Therapy of Cancer: Can It Be Put Into Practice?" Journal of Clinical Oncology 23, no. 17 (2005): 3957–70. http://dx.doi.org/10.1200/jco.2005.14.498.
Full textSelvaraj, Chandrabose, and Sanjeev K. Singh. "Computational and Experimental Binding Mechanism of DNA-drug Interactions." Current Pharmaceutical Design 24, no. 32 (2019): 3739–57. http://dx.doi.org/10.2174/1381612824666181106101448.
Full textAriga, Katsuhiko, Michio Matsumoto, Taizo Mori, and Lok Kumar Shrestha. "Materials nanoarchitectonics at two-dimensional liquid interfaces." Beilstein Journal of Nanotechnology 10 (July 30, 2019): 1559–87. http://dx.doi.org/10.3762/bjnano.10.153.
Full textJones, Peter A. "Decoding the Chromatin Code." Blood 120, no. 21 (2012): SCI—4—SCI—4. http://dx.doi.org/10.1182/blood.v120.21.sci-4.sci-4.
Full textIglesias, María Sanromán, and Marek Grzelczak. "Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy." Beilstein Journal of Nanotechnology 11 (January 31, 2020): 263–84. http://dx.doi.org/10.3762/bjnano.11.20.
Full textHarris, Sarah Anne. "Modelling the biomechanical properties of DNA using computer simulation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1849 (2006): 3319–34. http://dx.doi.org/10.1098/rsta.2006.1906.
Full textSundaramoorthy, Ramasubramanian. "Nucleosome remodelling: structural insights into ATP-dependent remodelling enzymes." Essays in Biochemistry 63, no. 1 (2019): 45–58. http://dx.doi.org/10.1042/ebc20180059.
Full textPutnam, Christopher D., Michal Hammel, Greg L. Hura, and John A. Tainer. "X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution." Quarterly Reviews of Biophysics 40, no. 3 (2007): 191–285. http://dx.doi.org/10.1017/s0033583507004635.
Full textVu, Martin, and Henning Fernau. "Adding Matrix Control: Insertion-Deletion Systems with Substitutions III." Algorithms 14, no. 5 (2021): 131. http://dx.doi.org/10.3390/a14050131.
Full textSugiyama, Hiroshi. "2SI-06 Direct Observation of Single Molecular Event in DNA Origami Frame(2SI The art of energetic and functional efficiency in biomoiecular machines on the single molecule level,Symposium,The 50th Annual Meeting of the Biophysical Society of Japan)." Seibutsu Butsuri 52, supplement (2012): S18. http://dx.doi.org/10.2142/biophys.52.s18_2.
Full textPi, Fengmei, Zhengyi Zhao, Venkata Chelikani, Kristine Yoder, Mamuka Kvaratskhelia, and Peixuan Guo. "Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism." Journal of Virology 90, no. 18 (2016): 8036–46. http://dx.doi.org/10.1128/jvi.00508-16.
Full textDatta, Asijit. "(DIS)ABLING BODY AND CONSCIOUSNESS: TECHNOLOGICAL AFTERNESS AND AFTER-HUMANS IN REALIVE AND UPGRADE." Trabalhos em Linguística Aplicada 58, no. 2 (2019): 704–18. http://dx.doi.org/10.1590/010318135360515822019.
Full textHood, David A. "Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscleThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process." Applied Physiology, Nutrition, and Metabolism 34, no. 3 (2009): 465–72. http://dx.doi.org/10.1139/h09-045.
Full textEvans, S. K., and V. Lundblad. "A nuclear tale of two yeasts." Journal of Cell Science 114, no. 10 (2001): 1798–99. http://dx.doi.org/10.1242/jcs.114.10.1798.
Full textGarcía-Río, Luis. "Preface." Pure and Applied Chemistry 81, no. 4 (2009): iv. http://dx.doi.org/10.1351/pac20098104iv.
Full textLouvard, D. "In vitro assays, semi-intact cells, intact cells: what's next for studies of membrane trafficking?" Journal of Cell Science 113, no. 2 (2000): 179–80. http://dx.doi.org/10.1242/jcs.113.2.179.
Full text