Journal articles on the topic 'DNA Substrates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'DNA Substrates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Houlston, C. E., M. Cummings, H. Lindsay, S. Pradhan, and R. L. P. Adams. "DNA substrate specificity of pea DNA methylase." Biochemical Journal 293, no. 3 (1993): 617–24. http://dx.doi.org/10.1042/bj2930617.
Full textLu, Yue, and Piero Bianco. "High-yield purification of exceptional-quality, single-molecule DNA substrates." Journal of Biological Methods 8, no. 1 (2021): e145. http://dx.doi.org/10.14440/jbm.2021.350.
Full textDeng, Chuyun, Wanyun Ma та Jia-Lin Sun. "Fabrication of Highly Rough Ag Nanobud Substrates and Surface-Enhanced Raman Scattering ofλ-DNA Molecules". Journal of Nanomaterials 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/820739.
Full textHsieh, C. L., R. P. McCloskey, E. Radany, and M. R. Lieber. "V(D)J recombination: evidence that a replicative mechanism is not required." Molecular and Cellular Biology 11, no. 8 (1991): 3972–77. http://dx.doi.org/10.1128/mcb.11.8.3972-3977.1991.
Full textHsieh, C. L., R. P. McCloskey, E. Radany, and M. R. Lieber. "V(D)J recombination: evidence that a replicative mechanism is not required." Molecular and Cellular Biology 11, no. 8 (1991): 3972–77. http://dx.doi.org/10.1128/mcb.11.8.3972.
Full textCraggs, Timothy D., Marko Sustarsic, Anne Plochowietz, et al. "Substrate conformational dynamics facilitate structure-specific recognition of gapped DNA by DNA polymerase." Nucleic Acids Research 47, no. 20 (2019): 10788–800. http://dx.doi.org/10.1093/nar/gkz797.
Full textBurke, Cassandra R., and Andrej Lupták. "DNA synthesis from diphosphate substrates by DNA polymerases." Proceedings of the National Academy of Sciences 115, no. 5 (2018): 980–85. http://dx.doi.org/10.1073/pnas.1712193115.
Full textVictorova, Lyubov, Vasily Sosunov, Alexander Skoblov, Alexander Shipytsin, and Alexander Krayevsky. "New substrates of DNA polymerases." FEBS Letters 453, no. 1-2 (1999): 6–10. http://dx.doi.org/10.1016/s0014-5793(99)00615-8.
Full textChiriboga, Matthew, Christopher M. Green, Divita Mathur, et al. "Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates." Methods and Applications in Fluorescence 11, no. 1 (2023): 014003. http://dx.doi.org/10.1088/2050-6120/acb2b4.
Full textAHN, Jinwoo, Vadim S. KRAYNOV, Xuejun ZHONG, Brian G. WERNEBURG та Ming-Daw TSAI. "DNA polymerase β: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes1". Biochemical Journal 331, № 1 (1998): 79–87. http://dx.doi.org/10.1042/bj3310079.
Full textMaekawa, Masashi, and Shigeki Higashiyama. "The Roles of SPOP in DNA Damage Response and DNA Replication." International Journal of Molecular Sciences 21, no. 19 (2020): 7293. http://dx.doi.org/10.3390/ijms21197293.
Full textWhitaker, Neal, Yuqing Chen, Simon J. Jakubowski, Mayukh K. Sarkar, Feng Li, and Peter J. Christie. "The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates." Journal of Bacteriology 197, no. 14 (2015): 2335–49. http://dx.doi.org/10.1128/jb.00189-15.
Full textQi, Mingxuan, Peijun Shi, Xiaokang Zhang, et al. "Reconfigurable DNA triplex structure for pH responsive logic gates." RSC Advances 13, no. 15 (2023): 9864–70. http://dx.doi.org/10.1039/d3ra00536d.
Full textBullard, Desmond R., and Richard P. Bowater. "Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4." Biochemical Journal 398, no. 1 (2006): 135–44. http://dx.doi.org/10.1042/bj20060313.
Full textRaymond, Amy C., Bart L. Staker, and Alex B. Burgin. "Substrate Specificity of Tyrosyl-DNA Phosphodiesterase I (Tdp1)." Journal of Biological Chemistry 280, no. 23 (2005): 22029–35. http://dx.doi.org/10.1074/jbc.m502148200.
Full textJian, Jeffrey Y., and Neil Osheroff. "Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases." International Journal of Molecular Sciences 24, no. 13 (2023): 11199. http://dx.doi.org/10.3390/ijms241311199.
Full textKim, Dongwook, Yixing Sun, Dan Xie, et al. "Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library." Molecules 24, no. 15 (2019): 2764. http://dx.doi.org/10.3390/molecules24152764.
Full textBoule, J. B., and V. A. Zakian. "The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates." Nucleic Acids Research 35, no. 17 (2007): 5809–18. http://dx.doi.org/10.1093/nar/gkm613.
Full textYoshida, Toru, and Hideaki Tsuge. "Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases." Toxins 13, no. 1 (2021): 40. http://dx.doi.org/10.3390/toxins13010040.
Full textYoshida, Toru, and Hideaki Tsuge. "Common Mechanism for Target Specificity of Protein- and DNA-Targeting ADP-Ribosyltransferases." Toxins 13, no. 1 (2021): 40. http://dx.doi.org/10.3390/toxins13010040.
Full textTakabayashi, Sadao, Shohei Kotani, Juan Flores-Estrada, et al. "Boron-Implanted Silicon Substrates for Physical Adsorption of DNA Origami." International Journal of Molecular Sciences 19, no. 9 (2018): 2513. http://dx.doi.org/10.3390/ijms19092513.
Full textWright, G. E. "Nucleotide probes of DNA polymerases." Acta Biochimica Polonica 43, no. 1 (1996): 115–24. http://dx.doi.org/10.18388/abp.1996_4522.
Full textCiubotaru, Mihai, and David G. Schatz. "Synapsis of Recombination Signal Sequences Located in cis and DNA Underwinding in V(D)J Recombination." Molecular and Cellular Biology 24, no. 19 (2004): 8727–44. http://dx.doi.org/10.1128/mcb.24.19.8727-8744.2004.
Full textHogrefe, H. H., R. I. Hogrefe, R. Y. Walder, and J. A. Walder. "Kinetic analysis of Escherichia coli RNase H using DNA-RNA-DNA/DNA substrates." Journal of Biological Chemistry 265, no. 10 (1990): 5561–66. http://dx.doi.org/10.1016/s0021-9258(19)39397-4.
Full textCsitkovits, Vanessa C., Damir Ðermić, and Ellen L. Zechner. "Concomitant Reconstitution of TraI-catalyzed DNA Transesterase and DNA Helicase Activityin Vitro." Journal of Biological Chemistry 279, no. 44 (2004): 45477–84. http://dx.doi.org/10.1074/jbc.m407970200.
Full textWang, Yaqing, Zhiqiang Sun, Piero R. Bianco, and Yuri L. Lyubchenko. "Atomic force microscopy–based characterization of the interaction of PriA helicase with stalled DNA replication forks." Journal of Biological Chemistry 295, no. 18 (2020): 6043–52. http://dx.doi.org/10.1074/jbc.ra120.013013.
Full textGirotti, S., M. Musiani, P. Pasini, et al. "Application of a low-light imaging device and chemiluminescent substrates for quantitative detection of viral DNA in hybridization reactions." Clinical Chemistry 41, no. 12 (1995): 1693–97. http://dx.doi.org/10.1093/clinchem/41.12.1693.
Full textSidorova, Julia M., and Linda L. Breeden. "Rad53 Checkpoint Kinase Phosphorylation Site Preference Identified in the Swi6 Protein of Saccharomyces cerevisiae." Molecular and Cellular Biology 23, no. 10 (2003): 3405–16. http://dx.doi.org/10.1128/mcb.23.10.3405-3416.2003.
Full textRosa, Marta, Wenming Sun, and Rosa Di Felice. "Interaction of DNA Bases with Gold Substrates." Journal of Self-Assembly and Molecular Electronics 1, no. 1 (2013): 41–68. http://dx.doi.org/10.13052/same2245-4551.112.
Full textPainter, Robert B., and Leon N. Kapp. "Replication intermediates as substrates for DNA rearrangements." Mutation Research Letters 262, no. 1 (1991): 21–23. http://dx.doi.org/10.1016/0165-7992(91)90100-i.
Full textPasquardini, L., L. Lunelli, C. Potrich, et al. "Organo-silane coated substrates for DNA purification." Applied Surface Science 257, no. 24 (2011): 10821–27. http://dx.doi.org/10.1016/j.apsusc.2011.07.112.
Full textWang, Zhenguang, Qingwang Xue, Wenzhi Tian, Lei Wang, and Wei Jiang. "Quantitative detection of single DNA molecules on DNA tetrahedron decorated substrates." Chemical Communications 48, no. 77 (2012): 9661. http://dx.doi.org/10.1039/c2cc35208g.
Full textShiels, Jerome C., Bozidar Jerkovic, Anne M. Baranger, and Philip H. Bolton. "RNA–DNA Hybrids Containing Damaged DNA are Substrates for RNase H." Bioorganic & Medicinal Chemistry Letters 11, no. 19 (2001): 2623–26. http://dx.doi.org/10.1016/s0960-894x(01)00527-3.
Full textCountryman, Preston J., Jiangguo Lin, Parminder Kaur, et al. "Determining the DNA Diffusion Behavior of SA2 on Various DNA Substrates." Biophysical Journal 108, no. 2 (2015): 397a. http://dx.doi.org/10.1016/j.bpj.2014.11.2177.
Full textSchwartz, Rachel A., Seema S. Lakdawala, Heather D. Eshleman, Matthew R. Russell, Christian T. Carson, and Matthew D. Weitzman. "Distinct Requirements of Adenovirus E1b55K Protein for Degradation of Cellular Substrates." Journal of Virology 82, no. 18 (2008): 9043–55. http://dx.doi.org/10.1128/jvi.00925-08.
Full textInterthal, Heidrun, and James J. Champoux. "Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1." Biochemical Journal 436, no. 3 (2011): 559–66. http://dx.doi.org/10.1042/bj20101841.
Full textLEPSE, CAROL L., RAMESH KUMAR, and DOINA GANEA. "Extrachromosomal Eukaryotic DNA Substrates for Switch Recombination: Analysis of Isotype and Cell Specificity." DNA and Cell Biology 13, no. 12 (1994): 1151–61. http://dx.doi.org/10.1089/dna.1994.13.1151.
Full textMontgomery, G. P., and B. C. Lu. "Involvement of Coprinus endonuclease in preparing substrate for in vitro recombination." Genome 33, no. 1 (1990): 101–8. http://dx.doi.org/10.1139/g90-016.
Full textYakovlev, D. A., A. A. Kuznetsova, O. S. Fedorova, and N. A. Kuznetsov. "Search for Modified DNA Sites with the Human Methyl-CpG-Binding Enzyme MBD4." Acta Naturae 9, no. 1 (2017): 88–98. http://dx.doi.org/10.32607/20758251-2017-9-1-88-98.
Full textJakubowski, Simon J., Eric Cascales, Vidhya Krishnamoorthy, and Peter J. Christie. "Agrobacterium tumefaciens VirB9, an Outer-Membrane-Associated Component of a Type IV Secretion System, Regulates Substrate Selection and T-Pilus Biogenesis." Journal of Bacteriology 187, no. 10 (2005): 3486–95. http://dx.doi.org/10.1128/jb.187.10.3486-3495.2005.
Full textRoss, Jason P., Isao Suetake, Shoji Tajima, and Peter L. Molloy. "Recombinant mammalian DNA methyltransferase activity on model transcriptional gene silencing short RNA–DNA heteroduplex substrates." Biochemical Journal 432, no. 2 (2010): 323–32. http://dx.doi.org/10.1042/bj20100579.
Full textWahls, W. P., L. J. Wallace, and P. D. Moore. "The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture." Molecular and Cellular Biology 10, no. 2 (1990): 785–93. http://dx.doi.org/10.1128/mcb.10.2.785-793.1990.
Full textWahls, W. P., L. J. Wallace, and P. D. Moore. "The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture." Molecular and Cellular Biology 10, no. 2 (1990): 785–93. http://dx.doi.org/10.1128/mcb.10.2.785.
Full textEoff, Robert L., Travis L. Spurling, and Kevin D. Raney. "Chemically Modified DNA Substrates Implicate the Importance of Electrostatic Interactions for DNA Unwinding by Dda Helicase†." Biochemistry 44, no. 2 (2005): 666–74. http://dx.doi.org/10.1021/bi0484926.
Full textLeite, Barbara R., Sofia Duarte, Jesús S. Troncoso, and Filipe O. Costa. "Artificial Seaweed Substrates Complement ARMS in DNA Metabarcoding-Based Monitoring of Temperate Coastal Macrozoobenthos." Diversity 15, no. 5 (2023): 657. http://dx.doi.org/10.3390/d15050657.
Full textVatta, Maritza, Bronwyn Lyons, Kayla A. Heney, Taylor Lidster, and A. Rod Merrill. "Mapping the DNA-Binding Motif of Scabin Toxin, a Guanine Modifying Enzyme from Streptomyces scabies." Toxins 13, no. 1 (2021): 55. http://dx.doi.org/10.3390/toxins13010055.
Full textSymington, L. S., P. Morrison, and R. Kolodner. "Plasmid recombination intermediates generated in a Saccharomyces cerevisiae cell-free recombination system." Molecular and Cellular Biology 5, no. 9 (1985): 2361–68. http://dx.doi.org/10.1128/mcb.5.9.2361-2368.1985.
Full textSymington, L. S., P. Morrison, and R. Kolodner. "Plasmid recombination intermediates generated in a Saccharomyces cerevisiae cell-free recombination system." Molecular and Cellular Biology 5, no. 9 (1985): 2361–68. http://dx.doi.org/10.1128/mcb.5.9.2361.
Full textTsujita, Saori, Mikimasa Tanada, Tomonobu Kataoka, and Shigeki Sasaki. "Equilibrium shift by target DNA substrates for determination of DNA binding ligands." Bioorganic & Medicinal Chemistry Letters 17, no. 1 (2007): 68–72. http://dx.doi.org/10.1016/j.bmcl.2006.09.089.
Full textInterthal, Heidrun, Hong Jing Chen, and James J. Champoux. "Human Tdp1 Cleaves a Broad Spectrum of Substrates, Including Phosphoamide Linkages." Journal of Biological Chemistry 280, no. 43 (2005): 36518–28. http://dx.doi.org/10.1074/jbc.m508898200.
Full text