Journal articles on the topic 'DNase-seq'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'DNase-seq.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liu, Yongjing, Liangyu Fu, Kerstin Kaufmann, Dijun Chen, and Ming Chen. "A practical guide for DNase-seq data analysis: from data management to common applications." Briefings in Bioinformatics 20, no. 5 (June 4, 2019): 1865–77. http://dx.doi.org/10.1093/bib/bby057.
Full textSun, H., B. Qin, T. Liu, Q. Wang, J. Liu, J. Wang, X. Lin, et al. "CistromeFinder for ChIP-seq and DNase-seq data reuse." Bioinformatics 29, no. 10 (March 18, 2013): 1352–54. http://dx.doi.org/10.1093/bioinformatics/btt135.
Full textZhong, Jianling, Kaixuan Luo, Peter S. Winter, Gregory E. Crawford, Edwin S. Iversen, and Alexander J. Hartemink. "Mapping nucleosome positions using DNase-seq." Genome Research 26, no. 3 (January 15, 2016): 351–64. http://dx.doi.org/10.1101/gr.195602.115.
Full textGao, Weiwu, Wai Lim Ku, Lixia Pan, Jonathan Perrie, Tingting Zhao, Gangqing Hu, Yuzhang Wu, Jun Zhu, Bing Ni, and Keji Zhao. "Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells." Nucleic Acids Research 49, no. 10 (March 8, 2021): e56-e56. http://dx.doi.org/10.1093/nar/gkab102.
Full textNordström, Karl J. V., Florian Schmidt, Nina Gasparoni, Abdulrahman Salhab, Gilles Gasparoni, Kathrin Kattler, Fabian Müller, et al. "Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data." Nucleic Acids Research 47, no. 20 (October 4, 2019): 10580–96. http://dx.doi.org/10.1093/nar/gkz799.
Full textTaing, Len, Gali Bai, Clara Cousins, Paloma Cejas, Xintao Qiu, Zachary T. Herbert, Myles Brown, et al. "CHIPS: A Snakemake pipeline for quality control and reproducible processing of chromatin profiling data." F1000Research 10 (June 30, 2021): 517. http://dx.doi.org/10.12688/f1000research.52878.1.
Full textKoohy, Hashem, Thomas A. Down, Mikhail Spivakov, and Tim Hubbard. "A Comparison of Peak Callers Used for DNase-Seq Data." PLoS ONE 9, no. 5 (May 8, 2014): e96303. http://dx.doi.org/10.1371/journal.pone.0096303.
Full textTarbell, Evan D., and Tao Liu. "HMMRATAC: a Hidden Markov ModeleR for ATAC-seq." Nucleic Acids Research 47, no. 16 (June 14, 2019): e91-e91. http://dx.doi.org/10.1093/nar/gkz533.
Full textCho, Jin Sun, Ira L. Blitz, and Ken W. Y. Cho. "DNase-seq to Study Chromatin Accessibility in Early Xenopus tropicalis Embryos." Cold Spring Harbor Protocols 2019, no. 4 (August 21, 2018): pdb.prot098335. http://dx.doi.org/10.1101/pdb.prot098335.
Full textWang, Jiayin, Liubin Chen, Xuanping Zhang, Yao Tong, and Tian Zheng. "OCRDetector: Accurately Detecting Open Chromatin Regions via Plasma Cell-Free DNA Sequencing Data." International Journal of Molecular Sciences 22, no. 11 (May 28, 2021): 5802. http://dx.doi.org/10.3390/ijms22115802.
Full textQin, B., M. Zhou, Y. Ge, L. Taing, T. Liu, Q. Wang, S. Wang, et al. "CistromeMap: a knowledgebase and web server for ChIP-Seq and DNase-Seq studies in mouse and human." Bioinformatics 28, no. 10 (April 11, 2012): 1411–12. http://dx.doi.org/10.1093/bioinformatics/bts157.
Full textZhou, Weiqiang, Zhicheng Ji, Weixiang Fang, and Hongkai Ji. "Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq." Nucleic Acids Research 47, no. 19 (August 20, 2019): e121-e121. http://dx.doi.org/10.1093/nar/gkz716.
Full textKolmykov, Semyon, Ivan Yevshin, Mikhail Kulyashov, Ruslan Sharipov, Yury Kondrakhin, Vsevolod J. Makeev, Ivan V. Kulakovskiy, Alexander Kel, and Fedor Kolpakov. "GTRD: an integrated view of transcription regulation." Nucleic Acids Research 49, no. D1 (November 24, 2020): D104—D111. http://dx.doi.org/10.1093/nar/gkaa1057.
Full textKlare, William, Theerthankar Das, Amaye Ibugo, Edwina Buckle, Mike Manefield, and Jim Manos. "Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome." Antimicrobial Agents and Chemotherapy 60, no. 8 (May 9, 2016): 4539–51. http://dx.doi.org/10.1128/aac.02919-15.
Full textWinter, D. R., L. Song, S. Mukherjee, T. S. Furey, and G. E. Crawford. "DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types." Genome Research 23, no. 7 (May 8, 2013): 1118–29. http://dx.doi.org/10.1101/gr.150482.112.
Full textMoyerbrailean, Gregory A., Cynthia A. Kalita, Chris T. Harvey, Xiaoquan Wen, Francesca Luca, and Roger Pique-Regi. "Which Genetics Variants in DNase-Seq Footprints Are More Likely to Alter Binding?" PLOS Genetics 12, no. 2 (February 22, 2016): e1005875. http://dx.doi.org/10.1371/journal.pgen.1005875.
Full textJankowski, Aleksander, Jerzy Tiuryn, and Shyam Prabhakar. "Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data." Bioinformatics 32, no. 16 (April 19, 2016): 2419–26. http://dx.doi.org/10.1093/bioinformatics/btw209.
Full textMitra, Sneha, Jianling Zhong, Trung Q. Tran, David M. MacAlpine, and Alexander J. Hartemink. "RoboCOP: jointly computing chromatin occupancy profiles for numerous factors from chromatin accessibility data." Nucleic Acids Research 49, no. 14 (July 13, 2021): 7925–38. http://dx.doi.org/10.1093/nar/gkab553.
Full textHe, Housheng Hansen, Clifford A. Meyer, Sheng'en Shawn Hu, Mei-Wei Chen, Chongzhi Zang, Yin Liu, Prakash K. Rao, et al. "Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification." Nature Methods 11, no. 1 (December 8, 2013): 73–78. http://dx.doi.org/10.1038/nmeth.2762.
Full textChen, Ailing, Daozhen Chen, and Ying Chen. "Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals." Gene 667 (August 2018): 83–94. http://dx.doi.org/10.1016/j.gene.2018.05.033.
Full textFrerichs, Anneke, Julia Engelhorn, Janine Altmüller, Jose Gutierrez-Marcos, and Wolfgang Werr. "Specific chromatin changes mark lateral organ founder cells in the Arabidopsis inflorescence meristem." Journal of Experimental Botany 70, no. 15 (April 30, 2019): 3867–79. http://dx.doi.org/10.1093/jxb/erz181.
Full textSavadel, Savannah D., Thomas Hartwig, Zachary M. Turpin, Daniel L. Vera, Pei-Yau Lung, Xin Sui, Max Blank, et al. "The native cistrome and sequence motif families of the maize ear." PLOS Genetics 17, no. 8 (August 12, 2021): e1009689. http://dx.doi.org/10.1371/journal.pgen.1009689.
Full textChen, Jiaxin, Jian Zhang, Yu Gao, Yanyu Li, Chenchen Feng, Chao Song, Ziyu Ning, et al. "LncSEA: a platform for long non-coding RNA related sets and enrichment analysis." Nucleic Acids Research 49, no. D1 (October 12, 2020): D969—D980. http://dx.doi.org/10.1093/nar/gkaa806.
Full textPiper, Jason, Markus C. Elze, Pierre Cauchy, Peter N. Cockerill, Constanze Bonifer, and Sascha Ott. "Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data." Nucleic Acids Research 42, no. 17 (September 26, 2014): 11272. http://dx.doi.org/10.1093/nar/gku727.
Full textPiper, Jason, Markus C. Elze, Pierre Cauchy, Peter N. Cockerill, Constanze Bonifer, and Sascha Ott. "Wellington: a novel method for the accurate identification of digital genomic footprints from DNase-seq data." Nucleic Acids Research 41, no. 21 (September 25, 2013): e201-e201. http://dx.doi.org/10.1093/nar/gkt850.
Full textGiansanti, Valentina, Ming Tang, and Davide Cittaro. "Fast analysis of scATAC-seq data using a predefined set of genomic regions." F1000Research 9 (May 28, 2020): 199. http://dx.doi.org/10.12688/f1000research.22731.2.
Full textKlein, David C., and Sarah J. Hainer. "Genomic methods in profiling DNA accessibility and factor localization." Chromosome Research 28, no. 1 (November 27, 2019): 69–85. http://dx.doi.org/10.1007/s10577-019-09619-9.
Full textGiansanti, Valentina, Ming Tang, and Davide Cittaro. "Fast analysis of scATAC-seq data using a predefined set of genomic regions." F1000Research 9 (March 20, 2020): 199. http://dx.doi.org/10.12688/f1000research.22731.1.
Full textWoo, Janghee, Sandra Stehling-Sun, H. Joachim Deeg, Thalia Papayannopoulou, Fyodor D. Urnov, and John A. Stamatoyannopoulos. "Regulatory Reprogramming of Erythropoiesis By DNMT3A Mutation." Blood 132, Supplement 1 (November 29, 2018): 4343. http://dx.doi.org/10.1182/blood-2018-99-120110.
Full textHo, Margaret C. W., Porfirio Quintero-Cadena, and Paul W. Sternberg. "Genome-wide discovery of active regulatory elements and transcription factor footprints in Caenorhabditis elegans using DNase-seq." Genome Research 27, no. 12 (October 26, 2017): 2108–19. http://dx.doi.org/10.1101/gr.223735.117.
Full textDegtyareva, Arina O., Elena V. Antontseva, and Tatiana I. Merkulova. "Regulatory SNPs: Altered Transcription Factor Binding Sites Implicated in Complex Traits and Diseases." International Journal of Molecular Sciences 22, no. 12 (June 16, 2021): 6454. http://dx.doi.org/10.3390/ijms22126454.
Full textSong, L., and G. E. Crawford. "DNase-seq: A High-Resolution Technique for Mapping Active Gene Regulatory Elements across the Genome from Mammalian Cells." Cold Spring Harbor Protocols 2010, no. 2 (February 1, 2010): pdb.prot5384. http://dx.doi.org/10.1101/pdb.prot5384.
Full textKaramitros, Timokratis, Vasiliki Pogka, Gethsimani Papadopoulou, Ourania Tsitsilonis, Maria Evangelidou, Styliani Sympardi, and Andreas Mentis. "Dual RNA-Seq Enables Full-Genome Assembly of Measles Virus and Characterization of Host–Pathogen Interactions." Microorganisms 9, no. 7 (July 20, 2021): 1538. http://dx.doi.org/10.3390/microorganisms9071538.
Full textInoue, Kazuki, and Yuuki Imai. "Identification of Novel Transcription Factors in Osteoclast Differentiation Using Genome-wide Analysis of Open Chromatin Determined by DNase-seq." Journal of Bone and Mineral Research 29, no. 8 (July 21, 2014): 1823–32. http://dx.doi.org/10.1002/jbmr.2229.
Full textBehera, Vivek, Perry Evans, Carolyne J. Face, Laavanya Sankaranarayanan, and Gerd A. Blobel. "Deep Mining of Natural Genetic Variation in Erythroid Cells Reveals New Insights about In Vivo Transcription Factor Binding and Chromatin Accessibility." Blood 128, no. 22 (December 2, 2016): 3879. http://dx.doi.org/10.1182/blood.v128.22.3879.3879.
Full textKianmehr, Khazali, Rajabi-Maham, Sharifi-Zarchi, Cuzin, and Rassoulzadegan. "Genome-Wide Distribution of Nascent Transcripts in Sperm DNA, Products of a Late Wave of General Transcription." Cells 8, no. 10 (October 3, 2019): 1196. http://dx.doi.org/10.3390/cells8101196.
Full textRaxwal, Vivek Kumar, Sourav Ghosh, Somya Singh, Surekha Katiyar-Agarwal, Shailendra Goel, Arun Jagannath, Amar Kumar, Vinod Scaria, and Manu Agarwal. "Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana." Journal of Experimental Botany 71, no. 17 (June 11, 2020): 5280–93. http://dx.doi.org/10.1093/jxb/eraa286.
Full textJaroszewicz, Artur, and Jason Ernst. "An integrative approach for fine-mapping chromatin interactions." Bioinformatics 36, no. 6 (November 19, 2019): 1704–11. http://dx.doi.org/10.1093/bioinformatics/btz843.
Full textZhang, Jun, Bing Liu, Dan Gu, Yuan Hao, Mo Chen, Yue Ma, Xiaohui Zhou, David Reverter, Yuanxing Zhang, and Qiyao Wang. "Binding site profiles and N-terminal minor groove interactions of the master quorum-sensing regulator LuxR enable flexible control of gene activation and repression." Nucleic Acids Research 49, no. 6 (March 8, 2021): 3274–93. http://dx.doi.org/10.1093/nar/gkab150.
Full textChumsakul, O., K. Nakamura, T. Kurata, T. Sakamoto, J. L. Hobman, N. Ogasawara, T. Oshima, and S. Ishikawa. "High-Resolution Mapping of In vivo Genomic Transcription Factor Binding Sites Using In situ DNase I Footprinting and ChIP-seq." DNA Research 20, no. 4 (April 11, 2013): 325–38. http://dx.doi.org/10.1093/dnares/dst013.
Full textPilon, Andre M., Elliott H. Margulies, Hatice Ozel Abaan, Amy Werner Allen, Tim M. Townes, Abbie M. Frederick, Dewang Zhou, Patrick G. Gallagher, and David M. Bodine. "Genome-Wide Analysis of EKLF Occupancy in Erythroid Chromatin Reveals 5′, 3′ and Intragenic Binding Sites in EKLF Target Genes." Blood 112, no. 11 (November 16, 2008): 283. http://dx.doi.org/10.1182/blood.v112.11.283.283.
Full textMartynova, Elena, Yilin Zhao, Qing Xie, Deyou Zheng, and Ales Cvekl. "Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3." Open Biology 9, no. 12 (December 2019): 190220. http://dx.doi.org/10.1098/rsob.190220.
Full textFerreira, Leonardo M. R., Torsten B. Meissner, Tarjei S. Mikkelsen, William Mallard, Charles W. O’Donnell, Tamara Tilburgs, Hannah A. B. Gomes, et al. "A distant trophoblast-specific enhancer controls HLA-G expression at the maternal–fetal interface." Proceedings of the National Academy of Sciences 113, no. 19 (April 13, 2016): 5364–69. http://dx.doi.org/10.1073/pnas.1602886113.
Full textSieber, Karsten B., Anna Batorsky, Kyle Siebenthall, Kelly L. Hudkins, Jeff D. Vierstra, Shawn Sullivan, Aakash Sur, et al. "Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci." Journal of the American Society of Nephrology 30, no. 3 (February 13, 2019): 421–41. http://dx.doi.org/10.1681/asn.2018030309.
Full textLiu, Jialin, Rebecca R. Viales, Pierre Khoueiry, James P. Reddington, Charles Girardot, Eileen E. M. Furlong, and Marc Robinson-Rechavi. "The hourglass model of evolutionary conservation during embryogenesis extends to developmental enhancers with signatures of positive selection." Genome Research 31, no. 9 (July 15, 2021): 1573–81. http://dx.doi.org/10.1101/gr.275212.121.
Full textShyamsunder, Pavithra, Mahalakshmi Shanmugasundaram, Anand Mayakonda, Weoi Woon Teoh, Lin Han, Mei Chee Lim, Melissa Fullwood, et al. "Identification of a Novel CEBPE Enhancer Essential for Granulocytic Differentiation." Blood 132, Supplement 1 (November 29, 2018): 3834. http://dx.doi.org/10.1182/blood-2018-99-116091.
Full textKean, Thomas, Zhongqi Ge, Yumei Li, Rui Chen, and James Dennis. "Transcriptome-Wide Analysis of Human Chondrocyte Expansion on Synoviocyte Matrix." Cells 8, no. 2 (January 24, 2019): 85. http://dx.doi.org/10.3390/cells8020085.
Full textMartínez-García, Pedro Manuel, Miguel García-Torres, Federico Divina, José Terrón-Bautista, Irene Delgado-Sainz, Francisco Gómez-Vela, and Felipe Cortés-Ledesma. "Genome-wide prediction of topoisomerase IIβ binding by architectural factors and chromatin accessibility." PLOS Computational Biology 17, no. 1 (January 19, 2021): e1007814. http://dx.doi.org/10.1371/journal.pcbi.1007814.
Full textKrsteski, Jovan, Mario Gorenjak, Igor But, Maja Pakiž, and Uroš Potočnik. "Dysregulation of Synaptic Signaling Genes Is Involved in Biology of Uterine Leiomyoma." Genes 12, no. 8 (July 29, 2021): 1179. http://dx.doi.org/10.3390/genes12081179.
Full textFang, Xiangdong, Kai-Hsin Chang, Daniel Bates, Morgan Diegel, Richard Sandstrom, Molly Weaver, Michael O. Dorschner, et al. "Chromatin Profiling of the Globin Loci of Human ES Cells and ES-Derived Erythroid Cells." Blood 114, no. 22 (November 20, 2009): 2535. http://dx.doi.org/10.1182/blood.v114.22.2535.2535.
Full text