Academic literature on the topic 'DNS simulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'DNS simulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "DNS simulation"

1

Michelassi, V., J. G. Wissink, and W. Rodi. "Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier—Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, no. 4 (2003): 403–11. http://dx.doi.org/10.1243/095765003322315469.

Full text
Abstract:
The unsteady periodic flow in a low-pressure (LP) prismatic turbine vane with incoming wakes is computed by direct numerical simulation (DNS), large eddy simulation (LES) and unsteady Reynolds-averaged Navier—Stokes simulations (URANSs). The results are compared with existing measurements at a Reynolds number Re = 5.18 × 104 which reveal the presence of a large unsteady stalled region on the suction side. Both DNS and LES suggest that the boundary layer separates while being still laminar, with subsequent turbulent reattachment. Several URANSs with and without a transition model and a constrai
APA, Harvard, Vancouver, ISO, and other styles
2

Hami, Khelifa. "Turbulence Modeling a Review for Different Used Methods." International Journal of Heat and Technology 39, no. 1 (2021): 227–34. http://dx.doi.org/10.18280/ijht.390125.

Full text
Abstract:
This contribution represents a critical view of the advantages and limits of the set of mathematical models of the physical phenomena of turbulence. Turbulence models can be grouped into two categories, depending on how turbulent quantities are calculated: direct numerical simulations (DNS) and RANS (Reynolds Averaged Navier-Stokes Equations) models. The disadvantage of these models is that they require enormous computing power, inaccessible, especially for large and complicated geometries. For this reason, hybrid models (combinations between DNS and RANS methods) have been developed, for exam
APA, Harvard, Vancouver, ISO, and other styles
3

Thomas, Lois, Wojciech W. Grabowski, and Bipin Kumar. "Diffusional growth of cloud droplets in homogeneous isotropic turbulence: DNS, scaled-up DNS, and stochastic model." Atmospheric Chemistry and Physics 20, no. 14 (2020): 9087–100. http://dx.doi.org/10.5194/acp-20-9087-2020.

Full text
Abstract:
Abstract. This paper presents a novel methodology to use direct numerical simulation (DNS) to study the impact of isotropic homogeneous turbulence on the condensational growth of cloud droplets. As shown by previous DNS studies, the impact of turbulence increases with the computational domain size, that is, with the Reynolds number, because larger eddies generate higher and longer-lasting supersaturation fluctuations that affect growth of individual cloud droplets. The traditional DNS can only simulate a limited range of scales because of the excessive computational cost that comes from resolv
APA, Harvard, Vancouver, ISO, and other styles
4

Kimmel-Klotzkin, Shari J., and Fadi P. Deek. "Large Eddy Simulation of Rotating Finite Source Convection." Journal of Applied Mechanics 73, no. 1 (2005): 79–87. http://dx.doi.org/10.1115/1.1991859.

Full text
Abstract:
Numerical simulations of turbulent convection under the influence of rotation will help understand mixing in oceanic flows. Though direct numerical simulations (DNS) can accurately model rotating convective flows, this method is limited to small scale and low speed flows. A large eddy simulation (LES) with the Smagorinsky subgrid scale model is used to compute the time evolution of a rotating convection flow generated by a buoyancy source of finite size at a relatively high Rayleigh number. Large eddy simulations with eddy viscosity models have been used successfully for other rotating convect
APA, Harvard, Vancouver, ISO, and other styles
5

Lu, Tianshi, Roman Samulyak, and James Glimm. "Direct Numerical Simulation of Bubbly Flows and Application to Cavitation Mitigation." Journal of Fluids Engineering 129, no. 5 (2006): 595–604. http://dx.doi.org/10.1115/1.2720477.

Full text
Abstract:
The direct numerical simulation (DNS) method has been used to the study of the linear and shock wave propagation in bubbly fluids and the estimation of the efficiency of the cavitation mitigation in the container of the Spallation Neutron Source liquid mercury target. The DNS method for bubbly flows is based on the front tracking technique developed for free surface flows. Our front tracking hydrodynamic simulation code FronTier is capable of tracking and resolving topological changes of a large number of interfaces in two- and three-dimensional spaces. Both the bubbles and the fluid are compr
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xian, Yanqin Shangguan, Naoyuki Onodera, Hiromichi Kobayashi, and Takayuki Aoki. "Direct Numerical Simulation and Large Eddy Simulation on a Turbulent Wall-Bounded Flow Using Lattice Boltzmann Method and Multiple GPUs." Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/742432.

Full text
Abstract:
Direct numerical simulation (DNS) and large eddy simulation (LES) were performed on the wall-bounded flow atReτ=180using lattice Boltzmann method (LBM) and multiple GPUs (Graphic Processing Units). In the DNS, 8 K20M GPUs were adopted. The maximum number of meshes is6.7×107, which results in the nondimensional mesh size ofΔ+=1.41for the whole solution domain. It took 24 hours for GPU-LBM solver to simulate3×106LBM steps. The aspect ratio of resolution domain was tested to obtain accurate results for DNS. As a result, both the mean velocity and turbulent variables, such as Reynolds stress and v
APA, Harvard, Vancouver, ISO, and other styles
7

CHUNG, D., and D. I. PULLIN. "Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence." Journal of Fluid Mechanics 643 (December 24, 2009): 279–308. http://dx.doi.org/10.1017/s0022112009992801.

Full text
Abstract:
We report direct numerical simulation (DNS) and large-eddy simulation (LES) of statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use an adaptation of the fringe-region technique, which continually supplies the flow with unmixed fluids at two opposite faces of a triply periodic domain in the presence of gravity, effectively maintaining an unstably stratified, but statistically stationary flow. We also develop a new method to solve the governing equations, based on the Helmholtz–Hodge decomposition, that guarantees discrete mass conservation regardless of iteratio
APA, Harvard, Vancouver, ISO, and other styles
8

Viti, Nicolò, Daniel Valero, and Carlo Gualtieri. "Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook." Water 11, no. 1 (2018): 28. http://dx.doi.org/10.3390/w11010028.

Full text
Abstract:
During the past two decades, hydraulic jumps have been investigated using Computational Fluid Dynamics (CFD). The second part of this two-part study is devoted to the state-of-the-art of the numerical simulation of the hydraulic jump. First, the most widely-used CFD approaches, namely the Reynolds-Averaged Navier–Stokes (RANS), the Large Eddy Simulation (LES), the Direct Numerical Simulation (DNS), the hybrid RANS-LES method Detached Eddy Simulation (DES), as well as the Smoothed Particle Hydrodynamics (SPH), are introduced pointing out their main characteristics also in the context of the bes
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Haitao, Feng Wu, Quanyong Xu, and Peng Shan. "Direct Numerical Simulation of Turbine Cascade Flow with Heat Transfer." International Journal of Turbo & Jet-Engines 36, no. 4 (2019): 445–56. http://dx.doi.org/10.1515/tjj-2016-0082.

Full text
Abstract:
Abstract Two- and three-dimensional direct numerical simulation (DNS) of turbine cascade flow at low Reynolds number with heat transfer are performed using high-order finite difference method. Two-dimensional laminar computation which is used to construct the initial flow of three-dimensional DNS fails to predict Stanton number on the second half of suction side where the flow is turbulent in experiment. In three-dimensional DNS, transition is triggered by periodic blow-and-suction disturbances. Numerical experiments show that phase randomness of the disturbance is not necessary to trigger the
APA, Harvard, Vancouver, ISO, and other styles
10

Boguslawski, Andrzej, Artur Tyliszczak, Agnieszka Wawrzak, and Karol Wawrzak. "Numerical simulation of free jets." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 5 (2017): 1056–63. http://dx.doi.org/10.1108/hff-03-2016-0103.

Full text
Abstract:
Purpose The purpose of the paper is to summarize recent achievements and suggest further research directions in numerical studies of round free jets with particular attention on the influence of the inlet parameters (mean velocity, turbulence intensity, length and time scales) on the jet dynamics. Design/methodology/approach The large eddy simulation (LES) and direct numerical simulation (DNS) are regarded as accurate tools which can support expensive and requiring sophisticated measurements techniques experimental studies. In the paper, the authors present challenges and recent findings relat
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "DNS simulation"

1

Leveugle, Benoît. "Simulation DNS de l’interaction flamme-paroi dans les moteurs à allumage commandé." Thesis, Rouen, INSA, 2012. http://www.theses.fr/2012ISAM0021/document.

Full text
Abstract:
Dans le cadre du projet INTERMARC (INTERaction dans les Moteurs à Allumage Commandé), la tâche du CORIA a consisté à produire une base de données à l'échelle RANS (provenant de données DNS) afin de tester, valider et modifier le modèle d'interaction développée par IFPen. Ce modèle vise l'ajout d'une composante d'interaction, phénomène non pris en compte par les lois de paroi actuelles.Ce projet repose sur l'interaction forte entre les différents protagonistes présents. Le CORIA et le CETHIL ont travaillé ensemble à la réalisation d'une base de données pour tester les modèles initiaux proposés
APA, Harvard, Vancouver, ISO, and other styles
2

Rohs, Remo. "Simulation der Strukturbildung und Ligandenbindung von Nukleinsäuren im Raum kollektiver und innerer Variablen." [S.l. : s.n.], 2002. http://www.diss.fu-berlin.de/2003/3/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Streek, Martin Andreas. "Brownian dynamics simulation of migration of DNA in structured microchannels." [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=973641908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ruan, S. "Turbulent partially premixed combustion : DNS analysis and RANS simulation." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244504.

Full text
Abstract:
Increasingly stringent regulation of pollutant emission has motivated the search for cleaner and more efficient combustion devices, which remain the primary means of power generation and propulsion for all kinds of transport. Fuel-lean premixed combustion technology has been identified to be a promising approach, despite many difficulties involve, notably issues concerning flame stability and ignitability. A partially premixed system has been introduced to remedy these problems, however, our understanding on this combustion mode needs to be greatly improved to realise its full potential. This
APA, Harvard, Vancouver, ISO, and other styles
5

Leveugle, Benoît. "Simulation DNS de l'interaction flamme-paroi dans les moteurs à allumage commandé." Phd thesis, INSA de Rouen, 2012. http://tel.archives-ouvertes.fr/tel-00845226.

Full text
Abstract:
Dans le cadre du projet INTERMARC (INTERaction dans les Moteurs à Allumage Commandé), la tâche du CORIA a consisté à produire une base de données à l'échelle RANS (provenant de données DNS) afin de tester, valider et modifier le modèle d'interaction développée par IFPen. Ce modèle vise l'ajout d'une composante d'interaction, phénomène non pris en compte par les lois de paroi actuelles.Ce projet repose sur l'interaction forte entre les différents protagonistes présents. Le CORIA et le CETHIL ont travaillé ensemble à la réalisation d'une base de données pour tester les modèles initiaux proposés
APA, Harvard, Vancouver, ISO, and other styles
6

Znidarcic, Anton. "Un nouvel algoritme pour la simulation DNS et LES des ecoulements cavitants." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0056/document.

Full text
Abstract:
Le couplage diphasique-turbulence est une propriété clé des écoulements cavitants, qui est un frein important à l’amélioration des modèles de cavitation et de turbulence. Réaliser des simulations directes (DNS) est le moyen proposé ici pour s’affranchir du modèle de turbulence et obtenir des informations nouvelles sur les phénomènes mis en jeu. Ce type de simulation est exigeant sur le plan numérique, et requiert le développement d’un solveur spécifique intégrant les spécificités des modèles de cavitation. Cela inclue notamment des schémas de discrétisation d’ordre élevé, un solveur direct, et
APA, Harvard, Vancouver, ISO, and other styles
7

Brändle, de Motta Jorge César. "Simulation des écoulements turbulents avec des particules de taille finie en régime dense." Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0020/document.

Full text
Abstract:
Un grand nombre d'écoulements naturels et industriels mettent en jeu des particules (sédimentation,lit fluidisé, sprays...). Les écoulements chargés en particules sont bien décrits numériquement sous l'hypothèse des particules plus petites que toutes les échelles de l'écoulement. Cette thèse consiste à simuler numériquement une turbulence homogène et isotrope soutenue chargée en particules dont la taille est supérieure à l'échelle de Kolmogorov. Pour se faire une méthode de simulation a été développée au sein du code Thétis puis validée. L'originalité de cette méthode consiste en l'utilisation
APA, Harvard, Vancouver, ISO, and other styles
8

Chakraborty, Nilanjan. "Fundamental study of turbulent premixed combustion using Direct Numerical Simulation (DNS)." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Larson, Gregory James. "Performance of Algebraic Multigrid for Parallelized Finite Element DNS/LES Solvers." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/784.

Full text
Abstract:
The implementation of a hybrid spectral/finite-element discretization on the unsteady, incompressible, Navier-Stokes equations with a semi-implicit time-stepping method, an explicit treatment of the advective terms, and an implicit treatment of the pressure and viscous terms leads to an algorithm capable of calculating 3D flows over complex 2D geometries. This also results in multiple Fourier mode linear systems which must be solved at every timestep, which naturally leads to two parallelization approaches: Fourier space partitioning, where each processor individually and simultaneously solves
APA, Harvard, Vancouver, ISO, and other styles
10

Le, Martelot Sébastien. "Contribution à la simulation numérique directe de l'ébullition." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4758/document.

Full text
Abstract:
Faisant partie des recherches menées dans le cadre du développement du moteur cryogénique Vinci, prévu pour propulser le dernier étage d'Ariane 6, cette thèse a pour objectif la simulation numérique directe (DNS) de la croissance de bulles de vapeur en paroi.La réalisation de ce type de simulation nécessite que les effets physiques internes aux phases et les interactions entre phases soient correctement modélisés et résolus. Pour cela, des modèles et des schémas numériques adaptés à ce type d'écoulement sont mis au point et ce, couplés à des maillages suffisamment fins pour pouvoir résoudre la
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "DNS simulation"

1

Poland) Workshop on LES and DNS of Ignition Process and Complex Structure Flames with Local Extinction (2008 Częstochowa. LES and DNS of ignition processes and complex-structure flames with local extinction: Proceedings of the international COST conference, Czestochowa, Poland, 20-21 November 2008. Edited by Bogusławski Andrzej, Lacor Chris, Geurts Bernard, and COST Action P20 LESAID (Project). American Institute of Physics, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coquillard, Patrick. Modélisation et simulation d'écosystèmes: Des modèles déterministes aux simulations à événements discrets. Masson, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simulation des Worterkennens. P. Lang, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barnes, A. G. Enhancement of aircraft ground handling simulation capability =: L'amélioration des moyens de simulations des manoeuvres au sol des aéronefs. Agard, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wiedemann, Markus. Simulation des Schwingungsverhaltens spanender Werkzeugmaschinen. Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hänsel, Matthias. Simulation des Bruchverhaltens von Umformwerkzeugen. Springer, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hänsel, Matthias. Simulation des Bruchverhaltens von Umformwerkzeugen. Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-09907-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

W, Eastwood James, ed. Computer simulation using particles. A. Hilger, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dallmeyer, Jörg. Simulation des Straßenverkehrs in der Großstadt. Springer Fachmedien Wiesbaden, 2014. http://dx.doi.org/10.1007/978-3-658-05207-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scheifele, Dieter Michael. Grafisch dynamische Simulation des Bearbeitungsvorganges für Doppelschlittendrehmaschinen. Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "DNS simulation"

1

Ciofalo, Michele. "Direct Numerical Simulation (DNS)." In UNIPA Springer Series. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81078-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Verstappen, R. W. C. P., and A. E. P. Veldman. "A Comparison of Low-Order DNS, High-Order DNS and LES." In Direct and Large-Eddy Simulation II. Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5624-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Verstappen, R. W. C. P., M. T. Dröge, and A. E. P. Veldman. "Symmetry-Preserving Discretization for DNS." In Direct and Large-Eddy Simulation V. Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2313-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghosh, Rainer, and Somnath Ghosh. "DNS of Compressible Turbulent Flows." In Direct and Large-Eddy Simulation VII. Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3652-0_80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bech, K. H., and H. I. Andersson. "Very-Large-Scale Structures in DNS." In Direct and Large-Eddy Simulation I. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1000-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lechner, Richard, Jörn Sesterhenn, and Rainer Friedrich. "DNS of Turbulent Supersonic Channel Flow." In Direct and Large-Eddy Simulation IV. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1263-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kourta, A., and R. Sauvage. "DNS Study of Supersonic Mixing Layers." In Direct and Large-Eddy Simulation IV. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-1263-7_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wissink, J. G., H. Herlina, S. I. Voropayev, and H. J. S. Fernando. "DNS of a Double Diffusive Instability." In Direct and Large-Eddy Simulation IX. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14448-1_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balcázar, N., O. Antepara, J. Rigola, and A. Oliva. "DNS of Thermocapillary Migration of Deformable Droplets." In Direct and Large-Eddy Simulation XI. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04915-7_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Manhart, Michael, and Rainer Friedrich. "Towards DNS of Separated Turbulent Boundary Layers." In Direct and Large-Eddy Simulation III. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9285-7_36.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "DNS simulation"

1

Sanjay, Balaji Rajendran, and Pushparaj Shetty D. "DNS Amplification & DNS Tunneling Attacks Simulation, Detection and Mitigation Approaches." In 2020 International Conference on Inventive Computation Technologies (ICICT). IEEE, 2020. http://dx.doi.org/10.1109/icict48043.2020.9112413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Mingxuan, Guangyue Xu, Junjie Zhang, and Dae Wook Kim. "Tracking You through DNS Traffic." In MSWiM '17: 20th ACM Int'l Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems. ACM, 2017. http://dx.doi.org/10.1145/3127540.3127567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vervisch, Luc, R. Hauguel, and P. Domingo. "Direct Numerical Simulation (DNS) of Premixed Turbulent V-Flames." In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-4497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Isfahani, Amir, Ju Zhang, and Thomas Jackson. "DNS Simulation of Erosive Burning in Planar Periodic Rockets." In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Warncke, Katharina, Amsini Sadiki, Max Staufer, Christian Hasse, and Johannes Janicka. "Towards Primary Breakup Simulation of a Complete Aircraft Nozzle at Realistic Aircraft Conditions." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-14597.

Full text
Abstract:
Abstract Predicting details of aircraft engine combustion by means of numerical simulations requires reliable information about spray characteristics from liquid fuel injection. However, details of liquid fuel injection are not well documented. Indeed, standard droplet distributions are usually utilized in Euler-Lagrange simulations of combustion. Typically, airblast injectors are employed to atomize the liquid fuel by feeding a thin liquid film in the shear zone between two swirled air flows. Unfortunately, droplet data for the wide range of operating conditions during a flight is not availab
APA, Harvard, Vancouver, ISO, and other styles
6

Muldoon, Frank, and Sumanta Acharya. "Direct Numerical Simulation of a Film Cooling Jet." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53502.

Full text
Abstract:
Direct Numerical Simulation (DNS) of a film cooling jet is presented. In DNS no turbulence models are introduced, and the turbulent length scales in the flow field are fully resolved. Therefore the calculations are expected to provide an accurate representation of reality, and the numerical data can be used to understand the flow physics and to compute turbulence budgets. In this paper, a DNS for an inclined jet at a jet Reynolds number of 3068 is presented. Statistics for the various budgets in the turbulence kinetic energy and dissipation rate equations are computed and presented to provide
APA, Harvard, Vancouver, ISO, and other styles
7

Me´nard, T., P. A. Beau, S. Tanguy, F. X. Demoulin, and A. Berlemont. "Numerical Jet Atomization: Part I — DNS Simulation of Primary Break Up." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98165.

Full text
Abstract:
DNS simulations are carried out to obtain information in the dense zone of a spray where nearly no experimental data are available. Interface tracking is ensured by Level Set method, Ghost Fluid Method (GFM) is used to capture accurately sharp discontinuities for pressure, density and viscosity. Coupling between Level Set and VOF method is used for mass conservation. Fluid motion is predicted with a projection method for incompressible flows. The numerical methods are described and validations are presented. First results are then presented for 3D simulation of the primary break-up of a liquid
APA, Harvard, Vancouver, ISO, and other styles
8

Janjua, M., S. Nudurupati, P. Singh, I. Fischer, and Nadine Aubry. "Direct Numerical Simulation (DNS) of Suspensions in Spatially Varying Electric Fields." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-44094.

Full text
Abstract:
We have developed a numerical scheme to simulate the motion of dielectric particles in uniform and nonuniform electric fields. The particles are moved using a direct simulation scheme in which the fundamental equations of motion of fluid and solid particles are solved without the use of models. The motion of particles is tracked using a distributed Lagrange multiplier method (DLM) and the electric force acting on the particles is calculated by integrating the Maxwell stress tensor (MST) over the particle surfaces. One of the key features of the DLM method is that the fluid-particle system is t
APA, Harvard, Vancouver, ISO, and other styles
9

Yamamoto, Ryoichi. "DNS (Direct Numerical Simulation) Approach for the Dynamics of Colloidal Dispersions." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grinstein, Fernando F. "Implicit Large-Eddy Simulation of Transition and Turbulence Decay." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5451.

Full text
Abstract:
Abstract Accurate predictions with quantifiable uncertainties are essential to many practical turbulent flow applications exhibiting extreme geometrical complexity and broad ranges of length and time scales. Under-resolved computer simulations are typically unavoidable in such applications, and implicit large-eddy simulation (ILES) often becomes the effective strategy. We focus on ILES initialized with well-characterized 2563 homogeneous isotropic turbulence datasets generated with direct numerical simulation (DNS). ILES is based on the LANL xRAGE code, and solutions are examined as function o
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "DNS simulation"

1

Fasel, Hermann F., and Richard D. Sandberg. Simulation of Supersonic Base Flows: Numerical Investigations Using DNS, LES, and URANS. Defense Technical Information Center, 2006. http://dx.doi.org/10.21236/ada459372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jameson, L. Direct Numerical Simulation DNS: Maximum Error as a Function of Mode Number. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/793962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Naranjo, Mario Reyes, and Seung Jun Kim. NEK5000 Assessment Milestone Report: Single-Phase Natural Circulation using Direct Numerical Simulation (DNS) & Large Eddy Simulation (LES) Methods. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1499306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haering, S., R. Balakrishnan, and Rao Kotamarthi. Direct Numerical Simulation of Flow Over a WallMounted Cube with the Nek5000 Spectral Element Code: DNS at Reh = 3900. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1810312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Trott, Kevin C. Distributed Interactive Simulation (DIS) For Tactical C3I. Defense Technical Information Center, 1996. http://dx.doi.org/10.21236/ada307188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Floto, Richard. A Real-Time Stochastic MTI Radar Simulation for DIS Application. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada359453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fasel, Hermann F. High Performance Pre- and Post-Processing Equipment for Direct Numerical Simulations (DNS) and Large-Eddy-Simulations of Transitional and Turbulent Flows. Defense Technical Information Center, 1998. http://dx.doi.org/10.21236/ada359445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sauerborn, Geoffrey C. The Distributed Interactive Simulation (DIS) Lethality Communication Server. Volume I: Overview. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada361144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Atwood, N. K., B. J. Winsch, K. A. Quinkert, and C. K. Heiden. Catalog of Training Tools for Use in Distributed Interactive Simulation (DIS) Environments. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada282759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guidati, Gianfranco, and Domenico Giardini. Synthèse conjointe «Géothermie» du PNR «Energie». Swiss National Science Foundation (SNSF), 2020. http://dx.doi.org/10.46446/publication_pnr70_pnr71.2020.4.fr.

Full text
Abstract:
La géothermie de faible profondeur avec des pompes à chaleur correspond à l’état actuel de la technique et est déjà largement répandue en Suisse. Au sein du futur système énergétique, la géothermie de moyenne à grande profondeur (1 à 6 km) devrait également jouer un rôle important, notamment en matière de fourniture de chaleur pour les bâtiments et les process industriels. Cette forme d’utilisation de la chaleur géothermique nécessite un sous-sol bien perméable, permettant à un fluide – généralement de l’eau – d’engranger la chaleur naturellement présente dans la roche et de la transporter jus
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!