Journal articles on the topic 'Dockerina'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Dockerina.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pinheiro, Benedita A., Harry J. Gilbert, Kazutaka Sakka, et al. "Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum." Biochemical Journal 424, no. 3 (2009): 375–84. http://dx.doi.org/10.1042/bj20091152.
Full textCameron, Kate, Victor D. Alves, Pedro Bule, Luís M. A. Ferreira, Carlos M. G. A. Fontes, and Shabir Najmudin. "Purification, crystallization and preliminary X-ray characterization of the third ScaB cohesin in complex with an ScaA X-dockerin fromAcetivibrio cellulolyticus." Acta Crystallographica Section F Structural Biology Communications 70, no. 5 (2014): 656–58. http://dx.doi.org/10.1107/s2053230x1400750x.
Full textRincon, Marco T., Tadej Čepeljnik, Jennifer C. Martin, et al. "Unconventional Mode of Attachment of the Ruminococcus flavefaciens Cellulosome to the Cell Surface." Journal of Bacteriology 187, no. 22 (2005): 7569–78. http://dx.doi.org/10.1128/jb.187.22.7569-7578.2005.
Full textRincon, Marco T., Shi-You Ding, Sheila I. McCrae, et al. "Novel Organization and Divergent Dockerin Specificities in the Cellulosome System of Ruminococcus flavefaciens." Journal of Bacteriology 185, no. 3 (2003): 703–13. http://dx.doi.org/10.1128/jb.185.3.703-713.2003.
Full textCaspi, Jonathan, Yoav Barak, Rachel Haimovitz, et al. "Effect of Linker Length and Dockerin Position on Conversion of a Thermobifida fusca Endoglucanase to the Cellulosomal Mode." Applied and Environmental Microbiology 75, no. 23 (2009): 7335–42. http://dx.doi.org/10.1128/aem.01241-09.
Full textPark, Jae-Seon, Yutaka Matano, and Roy H. Doi. "Cohesin-Dockerin Interactions of Cellulosomal Subunits of Clostridium cellulovorans." Journal of Bacteriology 183, no. 18 (2001): 5431–35. http://dx.doi.org/10.1128/jb.183.18.5431-5435.2001.
Full textXu, Qi, Edward A. Bayer, Milana Goldman, Rina Kenig, Yuval Shoham, and Raphael Lamed. "Architecture of the Bacteroides cellulosolvens Cellulosome: Description of a Cell Surface-Anchoring Scaffoldin and a Family 48 Cellulase." Journal of Bacteriology 186, no. 4 (2004): 968–77. http://dx.doi.org/10.1128/jb.186.4.968-977.2004.
Full textJeon, Sang Duck, Ji Eun Lee, Su Jung Kim, Sung Hyun Park, Gi-Wook Choi, and Sung Ok Han. "Unique Contribution of the Cell Wall-Binding Endoglucanase G to the Cellulolytic Complex in Clostridium cellulovorans." Applied and Environmental Microbiology 79, no. 19 (2013): 5942–48. http://dx.doi.org/10.1128/aem.01400-13.
Full textKrauss, Jan, Vladimir V. Zverlov, and Wolfgang H. Schwarz. "In VitroReconstitution of the Complete Clostridium thermocellum Cellulosome and Synergistic Activity on Crystalline Cellulose." Applied and Environmental Microbiology 78, no. 12 (2012): 4301–7. http://dx.doi.org/10.1128/aem.07959-11.
Full textMingardon, Florence, Ang�lique Chanal, Ana M. L�pez-Contreras, Cyril Dray, Edward A. Bayer, and Henri-Pierre Fierobe. "Incorporation of Fungal Cellulases in Bacterial Minicellulosomes Yields Viable, Synergistically Acting Cellulolytic Complexes." Applied and Environmental Microbiology 73, no. 12 (2007): 3822–32. http://dx.doi.org/10.1128/aem.00398-07.
Full textXu, Qi, Yoav Barak, Rina Kenig, Yuval Shoham, Edward A. Bayer, and Raphael Lamed. "A Novel Acetivibrio cellulolyticus Anchoring Scaffoldin That Bears Divergent Cohesins." Journal of Bacteriology 186, no. 17 (2004): 5782–89. http://dx.doi.org/10.1128/jb.186.17.5782-5789.2004.
Full textDing, Shi-You, Edward A. Bayer, David Steiner, Yuval Shoham, and Raphael Lamed. "A Novel Cellulosomal Scaffoldin fromAcetivibrio cellulolyticus That Contains a Family 9 Glycosyl Hydrolase." Journal of Bacteriology 181, no. 21 (1999): 6720–29. http://dx.doi.org/10.1128/jb.181.21.6720-6729.1999.
Full textPhitsuwan, Moraïs, Dassa, Henrissat, and Bayer. "The Cellulosome Paradigm in An Extreme Alkaline Environment." Microorganisms 7, no. 9 (2019): 347. http://dx.doi.org/10.3390/microorganisms7090347.
Full textSakka, Kazutaka, Yuka Sugihara, Sadanari Jindou, et al. "Analysis of cohesin-dockerin interactions using mutant dockerin proteins." FEMS Microbiology Letters 314, no. 1 (2010): 75–80. http://dx.doi.org/10.1111/j.1574-6968.2010.02146.x.
Full textDing, Shi-You, Edward A. Bayer, David Steiner, Yuval Shoham, and Raphael Lamed. "A Scaffoldin of the Bacteroides cellulosolvens Cellulosome That Contains 11 Type II Cohesins." Journal of Bacteriology 182, no. 17 (2000): 4915–25. http://dx.doi.org/10.1128/jb.182.17.4915-4925.2000.
Full textWen, Fei, Jie Sun, and Huimin Zhao. "Yeast Surface Display of Trifunctional Minicellulosomes for Simultaneous Saccharification and Fermentation of Cellulose to Ethanol." Applied and Environmental Microbiology 76, no. 4 (2009): 1251–60. http://dx.doi.org/10.1128/aem.01687-09.
Full textLytle, Betsy, and J. H. David Wu. "Involvement of Both Dockerin Subdomains in Assembly of the Clostridium thermocellum Cellulosome." Journal of Bacteriology 180, no. 24 (1998): 6581–85. http://dx.doi.org/10.1128/jb.180.24.6581-6585.1998.
Full textPagès, Sandrine, Anne Bélaïch, Henri-Pierre Fierobe, Chantal Tardif, Christian Gaudin, and Jean-Pierre Bélaïch. "Sequence Analysis of Scaffolding Protein CipC and ORFXp, a New Cohesin-Containing Protein inClostridium cellulolyticum: Comparison of Various Cohesin Domains and Subcellular Localization of ORFXp." Journal of Bacteriology 181, no. 6 (1999): 1801–10. http://dx.doi.org/10.1128/jb.181.6.1801-1810.1999.
Full textBule, Pedro, Vered Ruimy-Israeli, Vânia Cardoso, Edward A. Bayer, Carlos M. G. A. Fontes, and Shabir Najmudin. "Overexpression, crystallization and preliminary X-ray characterization ofRuminococcus flavefaciensscaffoldin C cohesin in complex with a dockerin from an uncharacterized CBM-containing protein." Acta Crystallographica Section F Structural Biology Communications 70, no. 8 (2014): 1061–64. http://dx.doi.org/10.1107/s2053230x14012667.
Full textKarpol, Alon, Yoav Barak, Raphael Lamed, Yuval Shoham, and Edward A. Bayer. "Functional asymmetry in cohesin binding belies inherent symmetry of the dockerin module: insight into cellulosome assembly revealed by systematic mutagenesis." Biochemical Journal 410, no. 2 (2008): 331–38. http://dx.doi.org/10.1042/bj20071193.
Full textLevasseur, Anthony, Sandrine Pagès, Henri-Pierre Fierobe, et al. "Design and Production in Aspergillus niger of a Chimeric Protein Associating a Fungal Feruloyl Esterase and a Clostridial Dockerin Domain." Applied and Environmental Microbiology 70, no. 12 (2004): 6984–91. http://dx.doi.org/10.1128/aem.70.12.6984-6991.2004.
Full textNoach, Ilit, Yoav Barak, Felix Frolow, Raphael Lamed, and Edward A. Bayer. "Homology swapping of intrinsic secondary structural elements between cellulosomal types I and II cohesins and their effect on dockerin binding." Pure and Applied Chemistry 82, no. 1 (2010): 193–204. http://dx.doi.org/10.1351/pac-con-09-02-11.
Full textSalama-Alber, Orly, Maroor K. Jobby, Seth Chitayat, et al. "Atypical Cohesin-Dockerin Complex Responsible for Cell Surface Attachment of Cellulosomal Components." Journal of Biological Chemistry 288, no. 23 (2013): 16827–38. http://dx.doi.org/10.1074/jbc.m113.466672.
Full textMurashima, Koichiro, Chyi-Liang Chen, Akihiko Kosugi, Yutaka Tamaru, Roy H. Doi, and Sui-Lam Wong. "Heterologous Production of Clostridium cellulovorans engB, Using Protease-Deficient Bacillus subtilis, and Preparation of Active Recombinant Cellulosomes." Journal of Bacteriology 184, no. 1 (2002): 76–81. http://dx.doi.org/10.1128/jb.184.1.76-81.2002.
Full textJindou, Sadanari, Shuichi Karita, Emi Fujino та ін. "α-Galactosidase Aga27A, an Enzymatic Component of the Clostridium josui Cellulosome". Journal of Bacteriology 184, № 2 (2002): 600–604. http://dx.doi.org/10.1128/jb.184.2.600-604.2002.
Full textTsai, Shen-Long, Jeongseok Oh, Shailendra Singh, Ruizhen Chen, and Wilfred Chen. "Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production." Applied and Environmental Microbiology 75, no. 19 (2009): 6087–93. http://dx.doi.org/10.1128/aem.01538-09.
Full textMechaly, Adva, Henri-Pierre Fierobe, Anne Belaich, et al. "Cohesin-Dockerin Interaction in Cellulosome Assembly." Journal of Biological Chemistry 276, no. 13 (2001): 9883–88. http://dx.doi.org/10.1074/jbc.m009237200.
Full textHuang, Ya-Hui, Ching-Tsan Huang, and Ruey-Shyang Hseu. "Effects of dockerin domains onNeocallimastix frontalisxylanases." FEMS Microbiology Letters 243, no. 2 (2005): 455–60. http://dx.doi.org/10.1016/j.femsle.2005.01.008.
Full textYao, Xingzhe, Chao Chen, Yefei Wang, et al. "Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules." Science Advances 6, no. 43 (2020): eabd7182. http://dx.doi.org/10.1126/sciadv.abd7182.
Full textDing, Shi-You, Marco T. Rincon, Raphael Lamed, et al. "Cellulosomal Scaffoldin-Like Proteins fromRuminococcus flavefaciens." Journal of Bacteriology 183, no. 6 (2001): 1945–53. http://dx.doi.org/10.1128/jb.183.6.1945-1953.2001.
Full textLiu, Jin-Hao, Brent L. Selinger, Cheng-Fang Tsai, and Kuo-Jaon Cheng. "Characterization of aNeocallimastixpatriciarumxylanase gene and its product." Canadian Journal of Microbiology 45, no. 11 (1999): 970–74. http://dx.doi.org/10.1139/w99-092.
Full textVenditto, Immacolata, Pedro Bule, Andrew Thompson, et al. "Expression, purification, crystallization and preliminary X-ray analysis of CttA, a putative cellulose-binding protein fromRuminococcus flavefaciens." Acta Crystallographica Section F Structural Biology Communications 71, no. 6 (2015): 784–89. http://dx.doi.org/10.1107/s2053230x15008249.
Full textHirano, Katsuaki, Satoshi Nihei, Hiroki Hasegawa, Mitsuru Haruki, and Nobutaka Hirano. "Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed byIn VitroReconstitution of the Clostridium thermocellum Cellulosome." Applied and Environmental Microbiology 81, no. 14 (2015): 4756–66. http://dx.doi.org/10.1128/aem.00772-15.
Full textRincón, Marco T., Jennifer C. Martin, Vincenzo Aurilia, et al. "ScaC, an Adaptor Protein Carrying a Novel Cohesin That Expands the Dockerin-Binding Repertoire of the Ruminococcus flavefaciens 17 Cellulosome." Journal of Bacteriology 186, no. 9 (2004): 2576–85. http://dx.doi.org/10.1128/jb.186.9.2576-2585.2004.
Full textHandelsman, Tal, Yoav Barak, David Nakar, et al. "Cohesin-dockerin interaction in cellulosome assembly: a single Asp-to-Asn mutation disrupts high-affinity cohesin-dockerin binding." FEBS Letters 572, no. 1-3 (2004): 195–200. http://dx.doi.org/10.1016/j.febslet.2004.07.040.
Full textPagès, Sandrine, Anne Bélaïch, Jean-Pierre Bélaïch, et al. "Species-specificity of the cohesin-dockerin interaction betweenClostridium thermocellum andClostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain." Proteins: Structure, Function, and Genetics 29, no. 4 (1997): 517–27. http://dx.doi.org/10.1002/(sici)1097-0134(199712)29:4<517::aid-prot11>3.0.co;2-p.
Full textBule, Pedro, Ana Correia, Kate Cameron, et al. "Overexpression, purification, crystallization and preliminary X-ray characterization of the fourth scaffoldin A cohesin fromAcetivibrio cellulolyticusin complex with a dockerin from a family 5 glycoside hydrolase." Acta Crystallographica Section F Structural Biology Communications 70, no. 8 (2014): 1065–67. http://dx.doi.org/10.1107/s2053230x14013181.
Full textJindou, Sadanari, Akane Soda, Shuichi Karita, et al. "Cohesin-Dockerin Interactions within and betweenClostridium josuiandClostridium thermocellum." Journal of Biological Chemistry 279, no. 11 (2003): 9867–74. http://dx.doi.org/10.1074/jbc.m308673200.
Full textVenditto, Immacolata, Maria S. J. Centeno, Luis M. A. Ferreira, Carlos M. G. A. Fontes, and Shabir Najmudin. "Expression, purification and crystallization of a novel carbohydrate-binding module from theRuminococcus flavefacienscellulosome." Acta Crystallographica Section F Structural Biology Communications 70, no. 12 (2014): 1653–56. http://dx.doi.org/10.1107/s2053230x14024248.
Full textHan, Zhenlin, Bei Zhang, Yi E. Wang, Yi Y. Zuo, and Wei Wen Su. "Self-Assembled Amyloid-Like Oligomeric-Cohesin Scaffoldin for Augmented Protein Display on the Saccharomyces cerevisiae Cell Surface." Applied and Environmental Microbiology 78, no. 9 (2012): 3249–55. http://dx.doi.org/10.1128/aem.07745-11.
Full textXu, Qi, Wenchen Gao, Shi-You Ding, et al. "The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein." Journal of Bacteriology 185, no. 15 (2003): 4548–57. http://dx.doi.org/10.1128/jb.185.15.4548-4557.2003.
Full textMechaly, Adva, Henri-Pierre Fierobe, Anne Belaich, et al. "Cohesin-dockerin interaction in cellulosome assembly. A single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition." Journal of Biological Chemistry 276, no. 22 (2001): 19678. http://dx.doi.org/10.1074/s0021-9258(19)67116-4.
Full textKosugi, Akihiko, Koichiro Murashima, Yutaka Tamaru, and Roy H. Doi. "Cell-Surface-Anchoring Role of N-Terminal Surface Layer Homology Domains of Clostridium cellulovorans EngE." Journal of Bacteriology 184, no. 4 (2002): 884–88. http://dx.doi.org/10.1128/jb.184.4.884-888.2002.
Full textMechaly, Adva, Sima Yaron, Raphael Lamed, et al. "Cohesin-dockerin recognition in cellulosome assembly: Experiment versus hypothesis." Proteins: Structure, Function, and Genetics 39, no. 2 (2000): 170–77. http://dx.doi.org/10.1002/(sici)1097-0134(20000501)39:2<170::aid-prot7>3.0.co;2-h.
Full textWang, He, Xiaomin Jiang, Yongchang Qian, and Lianghong Yin. "Constructing an Efficient Bacillus subtilis Spore Display by Using Cohesin−Dockerin Interactions." Molecules 26, no. 4 (2021): 1186. http://dx.doi.org/10.3390/molecules26041186.
Full textPires, Ana José, Teresa Ribeiro, Andrew Thompson, et al. "Purification and crystallographic studies of a putative carbohydrate-binding module from theRuminococcus flavefaciensFD-1 endoglucanase Cel5A." Acta Crystallographica Section F Structural Biology Communications 71, no. 8 (2015): 958–61. http://dx.doi.org/10.1107/s2053230x15009784.
Full textFierobe, Henri-Pierre, Sandrine Pagès, Anne Bélaïch, Stéphanie Champ, Doris Lexa, and Jean-Pierre Bélaïch. "Cellulosome fromClostridium cellulolyticum: Molecular Study of the Dockerin/Cohesin Interaction†." Biochemistry 38, no. 39 (1999): 12822–32. http://dx.doi.org/10.1021/bi9911740.
Full textStahl, S. W., M. A. Nash, D. B. Fried, et al. "Single-molecule dissection of the high-affinity cohesin-dockerin complex." Proceedings of the National Academy of Sciences 109, no. 50 (2012): 20431–36. http://dx.doi.org/10.1073/pnas.1211929109.
Full textNash, Michael A., Steven P. Smith, Carlos MGA Fontes, and Edward A. Bayer. "Single versus dual-binding conformations in cellulosomal cohesin–dockerin complexes." Current Opinion in Structural Biology 40 (October 2016): 89–96. http://dx.doi.org/10.1016/j.sbi.2016.08.002.
Full textChen, Chao, Hongwu Yang, Jinsong Xuan, Qiu Cui, and Yingang Feng. "Resonance assignments of a cellulosomal double-dockerin from Clostridium thermocellum." Biomolecular NMR Assignments 13, no. 1 (2018): 97–101. http://dx.doi.org/10.1007/s12104-018-9859-7.
Full text