To see the other types of publications on this topic, follow the link: Domestic wastewater treatment.

Dissertations / Theses on the topic 'Domestic wastewater treatment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Domestic wastewater treatment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Malik, Murtaza. "In-sewer treatment of domestic wastewater." Thesis, University of Newcastle Upon Tyne, 1996. http://hdl.handle.net/10443/363.

Full text
Abstract:
Urban sewerage systems, which are normally used for the transport of wastewater from its origin to a wastewater treatment plant (WWTP), could be used as a treatment facility because (i) they contain heterotrophic bacteria capable of oxidising organic matter both suspended within the body of the flowing wastewater and attached to the surface of the wetted perimeter, and (ii) they provide retention times which are often comparable to those in a conventional activated sludge aeration tank and which, in some cases, may be equal to the hydraulic retention time in a WWTP. Using sewers as a treatment facility could be an economical method of alleviating the load on an existing WWTP or reducing the size of the proposed WWTP. The current study was undertaken to investigate the feasibility of using urban sewerage systems as suspended growth biological reactors for the treatment of domestic wastewater. The flow in a linear gravity sewer was simulated using a batch reactor fed with raw domestic wastewater. A comparison of simulated aerobic and anaerobic gravity transport indicated that aerobic treatment would be the most favoured method of in-sewer biological treatment. The soluble COD (SCOD) removal efficiencies over a retention period of 8 hours averaged 36 and 6% under aerobic and anaerobic conditions, respectively, at an average temperature of 22°C. The corresponding total COD removal averaged 8 and 11%, respectively. When the effluent samples, taken from the batch reactors after a retention period of 6 hours, were settled in a bench-scale settling column for one hour, the average suspended solids removal under aerobic conditions was 29% greater than those under anaerobic conditions. Under aerobic conditions, the removal of soluble organic matter during simulated gravity transport was found to be strongly influenced by the strength of the incoming wastewater. To investigate the effect of wastewater influent soluble COD (SCOD 0) and influent suspended solids (SS ()) on in-sewer aerobic treatment, 27 individual wastewaters collected from the inlets to three wastewater treatment plants were subjected to batch tests at 20°C. The SCOD over a retention period of 8 hours at 20°C averaged 48, 40 and 61% for wastewaters having low SCODo and low SS 0, high SCOD0 and low SS 0, and high SCOD0 and high SSo, respectively . The corresponding soluble BOD5 removal efficiencies averaged 64, 59, and 81%. A statistical analysis of soluble COD data revealed that, over a retention period of one to three hours, the soluble COD removal is only significantly influenced by SSo. At higher retention periods, the soluble COD removal was found to be significantly affected by both SCOD 0 and SSo. Soluble COD removal was found to follow first-order kinetics with respect to time. The oxygen uptake rate of the individual wastewaters varied widely and did not appear to show any clear relation with the SCOD0 or SSo. An increase in the suspended biomass of the wastewater by the addition of activated sludge, at a concentration as low as 100 mg VSS/1, at the inlet of the simulated aerobic gravity sewer resulted in a significant increase in the removal of soluble organic matter. The soluble COD removal in the seeded wastewater was found to increase almost linearly with the increase in seed concentration in the range of 100-1000 mg/l. The effect of seed concentration on soluble COD removal however, appeared to diminish with the increase in retention time. SCOD removal in the seeded wastewater appeared to follow secondorder kinetics with respect to time. At an initial seed concentration of 100-1000 mg/1, the batch reactor's effluent after a retention period of 6 hours showed satisfactory settling characteristics. The oxygen uptake rate of the seeded wastewater did not show any specific trend over time at seed concentrations of 100 and 250 mg/1, while at higher seed concentrations it was similar to that observed in a typical plug flow activated sludge aeration tank. The results of the case study in which the wastewater collected from the inlet of the Greater Amman Siphon (GAS) was maintained aerobic in a batch reactor, showed that by maintaining aerobic conditions in the GAS, average SCUD and soluble BOD 5 removal efficiencies of 60 and 78%, respectively, could be achieved over 8 hours at an average temperature of 25°C. The average oxygen demand of the wastewater was estimated to be 30 mg/l.h. The result of the current study suggest a strong possibility of using urban sewerage systems as an aerobic biological reactor for the removal of soluble organic matter during transit.
APA, Harvard, Vancouver, ISO, and other styles
2

Pan, Xiaodi. "Radioisotopes in Domestic Wastewater and Their Fate in Wastewater Treatment." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1247.

Full text
Abstract:
"Modern medical therapies involving radioisotopes provide radionuclide contamination in wastewater. These radioisotopes present in wastewater increase the possibility of human exposure to radiation. The objective of this work was to study the fate of radionuclides of medical sources in wastewater, and to determine the distribution of various radionuclides in different stages of wastewater treatment. Influent, return activated sludge and effluent samples were collected from four wastewater facilities in Massachusetts. Samples were collected approximately twice a month over 4 months. The radionuclides and their decay products were tested by inductively coupled plasma with mass spectrometry (ICP-MS) and broad energy germanium detector analysis (BEGe). The samples were analyzed to determine the content and radioactivity of each target radionuclide and decay product for three treatment stages (influent, return activated sludge and effluent) from each facility at different sampling times. The results indicated that I-131 is the only radionuclide in wastewater, however many decay products were identified. Recommendations are put forward according to the testing results."
APA, Harvard, Vancouver, ISO, and other styles
3

Cansever, Beyhan Ülkü Semra. "Treatment of domestic wastewater with natural zeolites/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/kimyamuh/T000456.doc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abubakar, Umar Alfa. "A technological model for low energy domestic wastewater treatment." Thesis, Abertay University, 2015. https://rke.abertay.ac.uk/en/studentTheses/51ee0b9e-808f-441e-8420-c2276cccbf48.

Full text
Abstract:
This study evaluated the potential for efficient treatment of domestic wastewater, while satisfying energy efficiency requirements. Various treatment systems and the influences of their physical configurations and operational characteristics on wastewater treatment and energy efficiency were initially considered and evaluated. Review of literature identified high rate anaerobic systems as viable low energy systems for domestic wastewater treatment, with reported high removal of influent chemical oxygen demand (COD) and high net energy balance for the anaerobic baffled reactor (ABR). Low energy recovery is reported in literature as a limitation of anaerobic domestic wastewater treatment, and anaerobic domestic wastewater treatment systems have failed to meet effluent discharge standards, and post-treatment using aerobic processes have been recommended in order to ensure high effluent quality. Therefore, the ABR was selected as a feasible option that can be developed as the first stage of an anaerobic-aerobic low energy domestic wastewater treatment system. The literature review also identified the net energy consumption per cubic metre (m3) of treated wastewater during the treatment process as an energy efficiency evaluation criterion. Energy efficiency for domestic wastewater treatment facilities should be achieved if efficient treatment performance can be sustained at ambient temperature, instead of the fixed mesophilic temperature that is commonly adopted in anaerobic treatment processes. To identify an energy efficient design of the ABR in terms of hydraulic retention time and operational temperature, the performance efficiencies of ABR bench models were monitored at ambient temperature and 37oC at hydraulic retention times (HRT) of 48, 36, 24, 12 and 6 hours, which corresponded to organic loading rates (OLR) of 1.25, 1.67, 2.5, 5.0 and 10.0 kg COD/m3 day. 88.43, 90.00, 84.03, 77.01 and 59.35% of the influent COD (mean = 2479.50 mg/L) were removed at 48, 36, 24, 12 and 6 hour HRTs, respectively, in the 37oC bench reactor, while 70.16, 70.36 and 74.99% of the influent COD were removed at 48, 36 and 24 hour HRTs, respectively, in the ambient temperature bench reactor. Steady state performance, in the form of stable pH values, was not observed in the ambient temperature reactor at 12 hours HRT before the end of the bench experiments. Retention of influent total solids was observed to correlate to hydraulic retention time, with increase retention of total solids corresponding to increase in hydraulic retention time. Furthermore, observed total solids retention in the ambient temperature reactor were less than the total solids retention in the 37oC reactor. Anaerobic reduction of domestic wastewater sludge and the corresponding methane production were also evaluated using bio-chemical methane potential (BMP) batch assays at ambient temperature and compared to a fixed mesophilic temperature of 37oC. Low reduction of volatile solids was observed in the BMP assays, with 40% at ambient temperature compared to 56% at 37oC for primary sludge, and 22% at ambient temperature compared to 38% at 37oC for secondary sludge. Critical limitations of the anaerobic stage at ambient temperature were determined to be the biological reduction and conversion of the organic contaminants to soluble COD and volatile fatty acids (VFA). Also, achieving and maintaining steady state performance required a longer time period at ambient temperature than at 37oC, potentially due to the slow growth of the anaerobic microorganisms at ambient temperature. These limitations indicate the need for long (≥ 24 hours) retention periods for efficient operation at ambient temperature. The ABR bench models were evaluated for energy efficiency with the identified energy efficiency criteria, and the operational condition with the highest energy efficiency was determined to be 12 hours HRT at 37oC. Finally, design criteria for the anaerobic stage of the anaerobic-aerobic system were proproposed, along with a process model as a preliminary step for future process research.
APA, Harvard, Vancouver, ISO, and other styles
5

Cruddas, Peter. "Anaerobic ponds for domestic wastewater treatment in temperate climates." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9265.

Full text
Abstract:
Energy demand, greenhouse gas emissions, and operational costs are continuing to rise year on year in the wastewater treatment sector, with traditional treatment options unable to provide sustainable solutions to increasing volumes and tightening quality standards. Current processes produce inherent fugitive greenhouse gas (GHG) emissions, whilst also generating large quantities of sludge for disposal. Anaerobic ponds (APs) are natural wastewater treatment processes that have traditionally been confined to a pre-treatment stage of larger stabilisation pond systems. Consequently, current standard guidelines are not suited for low temperature, weak strength wastewaters, or for the emerging usage of APs for energy recovery and enhanced organic breakdown. To establish effective guidelines for adapting AP design for this purpose, this thesis explores the fundamental mechanisms with APs, in order to provide design alterations to enhance AP performance for full flow domestic wastewater treatment with a focus on the UK water sector. Initially, a literature review of current AP design guidelines was conducted to determine the current state of the art and understand the fundamental design processes currently adopted. The review found that most APs are currently underloaded, largely to avoid malodour emissions, but this leads to unnecessarily large footprints and inhibits the digestion process through restricting biomass/substrate contact. It was concluded that the current design guidelines are not suitable for recent AP developments and application, such as covering to prevent odour escape, and the use of baffling to improve mixing and enhance organic degradation. A pilot scale study was conducted on UK domestic wastewater to gain insight into the limitations of current AP design for this application and identify areas for optimisation. The pilot trial demonstrated the efficacy of AP usage for low temperature, weak strength wastewaters, even with unoptimised design. Decoupling hydraulic and solids retention time lead to biomass retention and subsequent acclimatisation, and was able to compensate for the low temperatures and weak wastewater. It was concluded that APs can provide an attractive alternative to current primary treatment options, through reducing GHG emissions and providing less frequent desludging requirements. To optimise AP design, the effect of baffle configuration on AP hydrodynamics and the subsequent impact on treatment efficiency was investigated, in order to develop structural designs specifically targeting enhanced anaerobic degradation. Advantages found in baffling APs included improving mixing patterns between baffles, enhancing biomass/substrate contact, and creating an overall plug flow effect through the entire pond enabling the retention of biomass. Furthermore, the removal mechanism with the pond can be manipulated with use of baffles, with different orientations generating different flow patterns and therefore creating conditions preferential for greater solids settlement and capture, or mixing and contact. Following trials on single stage alternate baffling configurations, the development of a novel two stage AP design was trialled, applying knowledge gained from trials of differing baffle orientations to target separate stages of organic breakdown. Further trials were conducted on the staged AP to establish optimal loading rates to be applied to APs in order to maximise performance and reduce physical footprint. These trials led to recommended design improvements including shorter hydraulic retention times (HRTs) to enhance mixing and decrease physical footprint, and improvements to the staged AP design to greater separate the stages of anaerobic digestion and provide optimal conditions for the stages at different points in the AP. Finally, the knowledge gained from experimental work was used to present evidence for the inclusion of APs into decentralised WWT through flowsheet modelling of a proposed AP treatment works compared to a current base case. Advantages were found in decreasing sludge management requirements whilst providing suitable primary treatment, with additional potential benefits in renewable energy generation, which could increase both with improved biogas yields and the option of combining with other renewable technologies. In some circumstances, it may be possible for an AP flowsheet to operate entirely off-grid, eliminating the need for costly infrastructure such as permanent access roads and national electrical grid connection.
APA, Harvard, Vancouver, ISO, and other styles
6

Norström, Anna. "Treatment of domestic wastewater using microbiological processes and hydroponics in Sweden." Doctoral thesis, KTH, School of Biotechnology (BIO), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183.

Full text
Abstract:

Conventional end-of-pipe solutions for wastewater treatment have been criticized from a sustainable view-point, in particular regarding recycling of nutrients. The integration of hydroponic cultivation into a wastewater treatment system has been proposed as an ecological alternative, where nutrients can be removed from the wastewater through plant uptake; however, cultivation of plants in a temperate climate, such as Sweden, implies that additional energy is needed during the colder and darker period. Thus, treatment capacity, additional energy usage and potential value of products are important aspects considering the applicability of hydroponic wastewater treatment in Sweden.

To enable the investigation of hydroponic wastewater treatment, a pilot plant was constructed in a greenhouse located at Överjärva gård, Solna, Sweden. The pilot plant consisted of several steps, including conventional biological processes, hydroponics, algal treatment and sand filters. The system treated around 0.56-0.85 m3 domestic wastewater from the Överjärva gård area per day. The experimental protocol, performed in an average of twice per week over a period of three years, included analysis and measurements of water quality and physical parameters. In addition, two studies were performed when daily samples were analysed during a period of two-three weeks. Furthermore, the removal of pathogens in the system, and the microbial composition in the first hydroponic tank were investigated.

Inflow concentrations were in an average of around 475 mg COD/L, 100 mg Tot-N/L and 12 mg Tot-P/L. The results show that 85-90% of COD was removed in the system. Complete nitrification was achieved in the hydroponic tanks. Denitrification, by means of pre-denitrification, occurred in the first anoxic tank. With a recycle ratio of 2.26, the achieved nitrogen removal in the system was around 72%. Approximately 4% of the removed amount of nitrogen was credited to plant uptake during the active growth period. Phosphorus was removed by adsorption in the anoxic tank and sand filters, natural chemical precipitation in the algal step induced by the high pH, and assimilation in plants, bacteria and algae. The main removal occurred in the algal step. In total, 47% of the amount of phosphorus was removed. Significant recycling of nitrogen and phosphorus through harvested biomass has not been shown. The indicators analysed for pathogen removal showed an achieved effluent quality comparable to, or better than, for conventional secondary treatment. The microbial composition was comparable to other nitrifying biological systems. The most abundant phyla were Betaproteobacteria and Planctomycetes.

In Sweden, a hydroponic system is restricted to greenhouse applications, and the necessary amount of additional energy is related to geographic location. In conclusion, hydroponic systems are not recommended too far north, unless products are identified that will justify the increased energy usage. The potential for hydroponic treatment systems in Sweden lies in small decentralized systems where the greenness of the system and the possible products are considered as advantages for the users.

APA, Harvard, Vancouver, ISO, and other styles
7

Norström, Anna. "Treatment of domestic wastewater using microbiological processes and hydroponics in Sweden /." Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oyama, Noraisha. "Hydroponics system for wastewater treatment and reuse in horticulture." Oyama, Noraisha (2008) Hydroponics system for wastewater treatment and reuse in horticulture. PhD thesis, Murdoch University, 2008. http://researchrepository.murdoch.edu.au/1679/.

Full text
Abstract:
As human population increases, the need for water increases in domestic, agricultural, industrial and urban sectors. Wastewater reuse after treatment is gaining acceptance world wide, as availability of fresh water sources decreases. However, it is also important to point out social and cultural differences that still exist in different pars of the world including those where reuse of wastewater for food production or any domestic use is not yet acceptable. The major concerns with effluent reuse are primarily its impact on human health and environmental risk. As a result, effluent reuse should be undertaken with caution after careful consideration of the potential impacts and risks. This thesis examined the potential to use the hydroponics nutrient film technique to grow commercially important crops using secondary-treated domestic wastewater. The crops chosen were a fruit crop (Lycopersicon esculantum - tomato), a leafy crop (Beta vulgaris ssp. cicla - silver beet) and a flower crop (Dianthus caryophyllus - carnation). Secondary-treated domestic wastewater was chosen because of the reduced risk of pathogen and heavy metal contamination in the crops and due to the guideline requirements for use of treated effluent for food crops. The possibility of using the effluent after the hydroponics treatment for further irrigation was also studied. The ability of secondary-treated effluent to supply adequate nutrients to the crops was assessed relative to a commercially available hydroponics solution (Chapter 3). The amount of time the solution was left in the system (nutrient solution retention time) was dependant on the plant uptake of the solution. The results obtained showed that the nutrients in secondary treated effluent was adequate for the carnations, but not for the food crops. The food crops from both treatments were compared to the produce purchased from a supermarket. The food crops showed signs of nutrient deficiency, particularly nitrogen. Based on the findings of the first experiment, the nutrient solution retention time was amended to 14 days. The carnations were not tested with the shorter nutrient solution retention time (NSRT) because they performed well in the previous trial with the longer nutrient solution retention time. The edible food crops performed better and did not show signs of nutrient deficiency when the nutrient solution retention time was reduced to 14 days. Further statistical analysis was conducted with the data from Chapters 3 and 4. Nutrient and water balances were calculated and the possible reason that the plants grown in the 14-day nutrient solution retention time took up more water, was a result of increased nutrients and better growth. A simple model was constructed to calculate height of the plants using multiple regression. The model was validated against the data collected from this study. The experiment conducted in Chapter 6 determined the nutritional quality of the food crops. The harvests from the wastewater and commercially available hydroponics solution were compared to produce purchased from a supermarket and tested for total caroteniods, total soluble solids and ascorbic acid concentrations. The nutritional quality of the wastewater grown produce was comparable to those grown in the hydroponic solution and those purchased. The risk of pathogen contamination to food crops and the die-off of pathogens in the hydroponic channels were studied in Chapter 7. This was tested by spiking the commercial hydroponic medium with Escherichia coli and Salmonella typhimurium and monitoring bacterial pathogen die-off in the secondary treated domestic wastewater. The pathogen quality of the crop was tested in all treatments as well as on organically grown produce found at a local supermarket. The results of this experiment did not show any contamination on the surface of the food crops or within the food crops. This study demonstrated that growing tomatoes, silver beet and carnations using secondary-treated domestic wastewater was successful when the nutrient solution retention time was adjusted to the optimum level. In arid, developing and remote communities, this system is ideal as it conserves and reuses water for commercially important crops without compromising the health of the environment or of human beings. It can also be implemented in urban areas, as the system can be scaled according to the availability of space. In addition to this, the effluent after going through this system can be used for open irrigation as it meets the World Health Organisation guidelines. However, a number of additional concerns need further investigation. They include the transmission risk of other types of pathogen, which depends on the source of wastewater, and the effects of hormones and antibiotics on food crops and their effect on human health.
APA, Harvard, Vancouver, ISO, and other styles
9

Tran, Thi Viet Nga, and Hoai Son Tran. "The application of A/O-MBR system for domestic wastewater treatment in Hanoi." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-88534.

Full text
Abstract:
The study aims to investigate an appropriate wastewater treatment process to treat domestic wastewater in Hanoi City which contain low-strength for COD (120-200 mg/L) but high in nitrogen content (10-40 mg/L). A lab scale anoxic-oxic system with a hollow fiber-Membrane Separation Bioreactor was operated at a flow rate of 5-10 L/h over a period of 150 days. The reactor was operated at different sludge recirculation rates. The MBR maintained relatively constant transmembrane pressure. During 150 days of reactor operation, treated water quality have COD of around 20 mg/L, NH4-N of less than 1 mg/L, NO3-N of less than 5 mg/L. The system shows good and stable efficiency for organic matter and nitrogen removal without adding an external carbon source and coagulants. The results based on the study indicated that the proposed process configuration has potential to treat the low-strength wastewater in Hanoi
Mục tiêu của nghiên cứu là đề xuất được một công nghệ hiệu quả và phù hợp để xử lý nước thải sinh họat ở các đô thị của Việt nam, là loại nước thải được thu gom từ hệ thống thoát nước chung có nồng độ chất hữu cơ thấp (COD 120-200 mg/l) nhưng hàm lượng chất dinh dưỡng như Nitơ, Phốt pho khá cao (T-N: 10-40 mg/L). Chúng tôi đã nghiên cứu và vận hành chạy thử mô hình xử lý sinh học yếm khí - kỵ khí (AO) kết hợp với màng vi lọc ở quy mô mô hình phòng thí nghiệm (công suất 5-10 L/h) ở các chế độ công suất bùn tuần hoàn khác nhau. Kết quả xử lý trong thời gian 5 tháng vận hành mô hình cho thấy chất lượng nước thải sau xử lý có hàm lượng COD nhỏ hơn 20 mg/L, NH4-N nhỏ hơn 1 mg/L, NO3-N nhỏ hơn 5 mg/L. Hiệu suất xử lý chất hữu cơ và chất dinh dưỡng rất ổn định và hệ thống không phải sử dụng các nguồn bổ sung chất hữu cơ hay các hóa chất trợ lắng như các công nghệ đang áp dụng. Kết quả cho thấy công nghệ AO kết hợp màng vi lọc có khả năng áp dụng thực tế, phù hợp với những nơi có quỹ đất nhỏ, chất lượng nước sau xử lý rất cao có thể phục vụ cho mục đích tái sử dụng
APA, Harvard, Vancouver, ISO, and other styles
10

Valero, Miller Alonso Camargo. "Nitrogen transformation pathways and removal mechanisms in domestic wastewater treatment by maturation ponds." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493562.

Full text
Abstract:
The mechanisms and pathways by which nitrogen in its various forms is removed from waste stabilisation ponds (WSP) have been a subject of much debate for wastewater scientists and engineers. Nitrogen removal in WSP has been attributed to ammonia volatilisation and sedimentation of organic nitrogen via biological uptake. However, researchers have found it difficult to determine whether sedimentation or volatilisation is the dominant mechanism for nitrogen removal because of the very complex interactions in the biochemical pathways involved, although it was thought that volatilisation may dominate during the warm summer months and deposition during the winter.
APA, Harvard, Vancouver, ISO, and other styles
11

Huang, Jie. "Evaluation of the subsurface vegetated bed form of constructed wetlands for domestic wastewater treatment." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-155719/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dick, George H. "Direct Membrane Filtration of Domestic Wastewater: Implications for Coupling with Anaerobic Membrane Bioreactor (DF-AnMBR) for Wastewater Resource Recovery." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5829.

Full text
Abstract:
With the growing use of membranes in the water industry, different methods for using membranes to treat water is still occurring. Enhancing membrane performance is generally performed with extensive pretreatment methods before the feedwater is filtered by the membrane. With the utilization of direct membrane filtration (DF), no pretreatment is performed and the membrane is exposed to raw wastewater. While this may suggest that membrane performance and permeate quality would suffer in the process, DF testing with a 0.03 µm ultrafiltration PVDF membrane showed that relatively high membrane flux was sustained while producing a high quality effluent. Due to the rejection of the membrane, a highly concentrated fraction of the wastewater, which is significantly reduced in volume but high in solids and organic strength, is obtained and can be treated in other ways. A process is proposed to treat municipal wastewater by coupling a DF system with an anaerobic membrane bioreactor (AnMBR). AnMBRs generally treat industrial strength wastewater, which is high in chemical oxygen demand (COD), and may struggle with domestic wastewater, which is generally considered low strength in terms of COD. By coupling the DF with an AnMBR, the DF-AnMBR can be used to treat the low strength domestic wastewater. The DF portion can handle the bulk of the liquid fraction, while the highly concentrated fraction of wastewater is treated by the AnMBR stage, thus improving the energy profile of the AnMBR and enhancing performance. A series of flow and mass balance equations for the combined DF-AnMBR was developed, and used to shed insight on design parameters relevant to this novel treatment process. Since membrane fouling occurs gradually over weeks or months, it is difficult to systematically determine how processes changes may affect membrane performance. Hence, a method to rapidly determine the fouling propensity of wastewater was desired. The modified fouling index (MFI) was previously developed to test the fouling propensity of feedwater for seawater RO desalination, but has not been applied to membrane filtration of wastewater. The MFI method was adapted and used to test the fouling propensity of various treatment streams in the DF-AnMBR system, including raw domestic wastewater, concentrated domestic wastewater (20X by DF), and liquor from an active AnMBR. The effect of powdered activated carbon (PAC) on fouling propensity was also investigated. Raw wastewater had a fouling potential of about 25% of the AnMBR MFI, and with the utilization of PAC the fouling potential was further decreased to nearly 50% of the original fouling potential. The DF concentrated stream had a higher MFI value than liquor from the AnMBR, but presumably some of organics contributing to fouling would be degraded in the AnMBR. This study demonstrated that DF of raw wastewater is feasible, and the combined use of DF and AnMBR is highly promising.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Chengyuan. "Effect of Temperature on Biogas Production in Anaerobic Treatment of Domestic Wastewater UASB System in Hammarby Sjöstadsverk." Thesis, KTH, VA-teknik, Vatten, Avlopp och Avfall, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95415.

Full text
Abstract:
The upflow anaerobic sludge blanket (UASB) reactor is widely used around the world to treat variety of domestic andindustrial wastewater with three main advantages: production of biogas as renewable energy, no need of support structure for development of microorganisms and high rate treatment efficiency with low rate of biomass production. This study evaluates the effect of temperature on biogas production and CODtotal removal in Line 4-UASB system treating domestic wastewater in Hammarby Sjöstadsverk. Eight parameters were examined including the following: Influent and effluent temperature, pH, influent CODtotal, influent rate, effluent CODtotal, volatile fatty acids, biogas production rate and methane concentration. There are eight set temperature and each is stabilized for seven days. The biogas production analysis is focus on UASB 1. Temperature rising from 19°C to 35°C achieves a general benefit result in methane yield rate and CODtotal removal efficiency. The best methane yield rate and CODtotal removal rate are 0.167l/gCODtotal and 56.84% respectively at highest working temperature 33.4°C with OLR 3.072gCODtotal/(l*day) and HRT 4.2h.
Den ökande energiförbrukningen i världen och utsläpp av växthusgaser (GHG) gör det nödvändigt att söka nya hållbara energikällor för att matcha efterfrågan på energi i framtiden. Rötningsteknik med organiskt avfall som förnybar energikälla, ger biogas som i genomsnitt består av 78% CH4, 22% av CO2och spår av H2S (<0.5%), är en idealisk kostnadseffektiv metod. Den Uppåt flödande anaeroba slambäddsreaktorn(UASB) med största fördelarna: biogasproduktion som förnybar energi, hög belastning och hög behandlingseffektivitet med låg produktion av biomassa, inget behov av stödstruktur för utveckling av mikroorganismer, är den viktigaste typen för anaerobt reningssystem. Det finns flera faktorer som påverkar UASB-reaktorns prestanda, såsom temperatur, pH, HRT, Uppåtriktat flödeshastighet, OLR, SRT och VFA. I denna studie är huvudsyftet att med fokus på utvärdering av temperaturpåverkan på biogasproduktion och CODtotal avlägsnat i UASB-systemet Linje 4 som behandlar hushållsspillvatten i Hammarby Sjöstadsverk. Analysen avbiogasproduktionen fokuserades på UASB reaktor 1. Åtta parametrar övervakades för att kontrollera skick inklusive inflöde och utflöde, temperatur, pH, CODtotal inflöde, strömningshastighet för inflöde, CODtotal utflöde, flyktiga fettsyror VFA, biogasproduktionstakt och metankoncentration. Försöken utfördes vid åtta inställda temperaturnivåer och varje nivå stabiliserades i sju dagar. pH och VFA-värde var stabilt under hela försöket. Resultatetvisar att temperaturen har en större inverkan på metanavkastningen och CODtotal avlägsnat än belastningen, OLR. Då temperaturen höjs från 19°C till 35°C erhålls en större metanavkastning och större CODtotal avlägsnat. Den största metanavkastningen och CODtotal avlägsnat är 0,167l/g CODtotal respektive 56.84% vid den högsta arbetstemperaturen 33.4°C med OLR 3.072g CODtotal/(l * dag) och HRT 4.2h. Energibalansen vid olika arbetstemperaturer visaratt det finns en stor skillnad i energibehov för uppvärmning och utbyte avenergi i form av biogas. För att minska klimatpåverkan och nå balans mellan input och output av energi måste energibehovet för uppvärmning reduceras. Energiåtervinning från utflöde till inflöde liksom drift av UASB vid låg temperatur är ämnen som kan studeras vid fortsatt arbete.
APA, Harvard, Vancouver, ISO, and other styles
14

Korkusuz, Asuman Elif. "Domestic Wastewater Treatment In Pilot-scale Constructed Wetlands Implemented In The Middle East Technical University." Phd thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605387/index.pdf.

Full text
Abstract:
To foster the practical development of constructed wetlands used for wastewater treatment in Turkey, a pilot-scale subsurface constructed wetland system (90 m2) was designed to treat the domestic wastewater produced by 60 PE living in the residential area of METU. In summer 2001, two parallel sets of hybrid wetland systems (vertical flow connected with horizontal flow) with identical design configuration, but with different fill media (blast furnace granulated iron slag and gravel) were built on the old sludge-drying bed of the abandoned wastewater treatment plant of METU, which has not been operating since the 1990s. Wetland cells were planted with common reed (Phragmites australis). The main objective of this research was to quantify the effect of different filter media on the removal performance of subsurface flow constructed wetlands in the prevailing climate of Ankara. Thus, slag-filled and gravel-filled vertical flow wetlands were operated identically with pre-settled domestic wastewater (3 m3.d-1) at a hydraulic loading rate of 110 mm.d-1 for 12 months, intermittently. According to the first year results, annual average removal efficiencies for the slag and gravel wetland cells were as follows: TSS (63% &
59%), COD (47% &
44%), NH4+-N (88% &
53%), TN (44% &
39%), PO43--P (44% &
1%) and TP (45% &
4%). The slag-filled vertical flow system removed phosphorus and ammonium efficiently than the gravel-filled system due to the differences in physical structures and chemical compositions of the fill media, and the different aerobic and anaerobic environments within the wetland cells. These results indicated that the well-designed constructed wetlands could also be used for secondary and tertiary treatment in Turkey, successfully.
APA, Harvard, Vancouver, ISO, and other styles
15

Cotterill, Sarah Elizabeth. "Scale up and development of microbial electrolysis cells for domestic wastewater treatment and energy recovery." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3692.

Full text
Abstract:
Microbial Electrolysis Cells (MECs) have the potential to transform wastewater treatment, but many studies have been carried out at a very small scale with implausible temperatures and synthetic substrates. The value of laboratory-scale controlled experiments is not questioned, but these studies do not inform us of the realities and challenges that occur when operating MEC in the real world at realistic scales. Addressing this issue led to the installation and operation of a pilot scale MEC which failed within 6 months. It was consequently dissected and analysed, to systematically understand failure, through fault tree analysis (FTA). This process identified areas for further development to move towards a more robust MEC prototype. Meta-analyses and experiments were used to asses some of the challenges still to be overcome, before the commercialisation of MEC is a realistic prospect. With this knowledge, a re-design led to the successful operation of a second pilot, which moved from the L to the m3 scale, thanks to a 16-fold increase in electrode surface area (1 m2 each) and a 5-hour hydraulic retention time (HRT). After nine months, 0.8 L of H2/d (0.003 L-H2/L-MEC/d) was produced from primary treated domestic wastewater where the wastewater temperature was as low as 5.3 ̊C. The European Urban Wastewater Treatment Directive consent of 125 mg/L was achieved 55% of the time, with 64% of the chemical oxygen demand (COD) removed. To break-even energetically each module would need to produce 4 L-H2/day. This is possible, if hydrogen loss through scavenging can be addressed and improvements to the current density can be achieved. Recommendations for both are proposed. A cost benefit analysis (CBA) and multi criteria assessment (MCA) is used to compare four potential MEC products. The model is based on current and realistic projections of MEC performance, to assess the net present value (NPV) of the technology and the potential savings that could be gained in wastewater treatment.
APA, Harvard, Vancouver, ISO, and other styles
16

Gersten, Benjamin. "A feasibility study in the use of domestic water treatment residuals to remove phosphorus from wastewater." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/103678/.

Full text
Abstract:
There is growing evidence that even low levels of phosphorus (< 0.1mgL-1) entering natural water systems can cause eutrophication. Waste water treatment plants discharge over 23kT of phosphorus into UK surface waters per year. The Water Framework Directive requires that this be greatly reduced. Although many processes have been developed, they are often complex and energy intensive. This thesis aimed to assess how a novel process using dewatered water treatment works residuals (DWTR) could be engineered to maximize phosphorus removal from waste water treatment plant effluents while minimising system complexity and energy use. An extensive yearlong experiment was operated at two sites to investigate how phosphorus removal rates varied over time in relation to DWTR type, phosphorus concentration, hydraulic retention time (HRT) and scale. DWTR from eight different water treatment works were used in 35 experimental models of dimensions 0.1Ø x 1m and two meso scale beds 1x1x0.8m. The most significant factors effecting P removal rate were found to be DWTR type and media particle size. Total P removal varied between 58-95% for the 8 different DWTR over the year. Increasing particle size from 0.6-2 to 6-20mm reduced P adsorption capacity by 30% on average with 6 hours HRT and 5mgL-1 TP input. The key physical and chemical properties of the DWTR were measured to assess the effect of the parameters on the P removal ability of the media. No significant relationship (p < 0.05) between the amount of Al, Fe, Ca or Mg in the media and its P removal ability were found. An idealised adsorption system using DWTR as the media would operate with 2 to 3 beds in series with a minimum HRT of 6 hours and maximum particle size of 6mm and depth of 1m. Computer models of such a system predict >95% TP removal for over two years of operation.
APA, Harvard, Vancouver, ISO, and other styles
17

Nguyen, Thi Van Anh, Xuan Hien Dang, and Duc Toan Nguyen. "Research on model-based calculation of greenhouse gas emissions from domestic wastewater treatment systems in Vietnam." Technische Universität Dresden, 2016. https://tud.qucosa.de/id/qucosa%3A32621.

Full text
Abstract:
There are three important greenhouse gases: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), which are generated from the domestic wastewater treatment systems, including on-site and off-site sources. On-site emission of greenhouse gases occurs during process of wastewater treatment, while the off-site emission of greenhouse gases occurs during energy using and other supporting activities of the treatment system. The research established model to calculate greenhouse gas emissions from the domestic wastewater treatment systems, was named No.0 MTH model. The No.0 MTH model was based on balance equations of substrate and biomass, biochemical reactions and Monod kinetics equations for biological treatment reactors and writen by programing Scalable language. Model was calibrated and applied on the Yen So wastewater treatment plant, Ha Noi and the results were obtained at 22oC as follows: off-site GHG emission is 29,560 kgCO2-eq/day; on-site GHG emission is 13,534 kgCO2-eq/day, and the rate of on-site emission is 2.506 kgCO2-eq/ kg BOD. Maybe using the No.0 MTH model to calculate greenhouse gas emissions from the domestic wastewater treatment systems with similar biological methods.
Có 3 khí nhà kính quan trọng là khí Cacbonic (CO2), khí Mêtan (CH4), và khí Đinitơ monoxit (N2O) được phát sinh từ hệ thống xử lý nước thải sinh hoạt gồm cả nguồn trực tiếp và gián tiếp. Phát thải trực tiếp khí nhà kính (KHK) xảy ra trong suốt quá trình xử lý còn phát thải gián tiếp khí nhà kính xảy ra trong quá trình sử dụng năng lượng và các hoạt động phụ trợ bên ngoài hệ thống xử lý. Nghiên cứu đã thiết lập mô hình tính toán phát thải khí nhà kính từ hệ thống xử lý nước thải sinh hoạt, được đặt tên là mô hình MTH số 0. Mô hình MTH số 0 đã dựa trên các phương trình cân bằng khối lượng cơ chất và sinh khối, các phản ứng hóa sinh và phương trình Monod đối với các thiết bị xử lý sinh học và được viết trên ngôn ngữ lập trình scala. Mô hình đã được hiệu chỉnh và được áp dụng tính toán tại nhà máy xử lý nước thải sinh hoạt Yên Sở, thành phố Hà Nội và kết quả thu được tại 22oC như sau: phát thải KNK gián tiếp là 29.560 kgCO2-tđ/ngày và phát thải KNK trực tiếp là 13.534 kgCO2-tđ/ngày với tỷ lệ phát thải khí nhà kính trực tiếp là 2,506 kgCO2-tđ/ kgBOD. Có thể sử dụng mô hình MTH số 0 để tính toán phát thải khí nhà kính từ hệ thống xử lý nước thải sinh hoạt bằng phương pháp sinh học tương tự.
APA, Harvard, Vancouver, ISO, and other styles
18

Ener, Alptekin Emel. "Anaerobic Treatment Of Dilute Wastewaters." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609461/index.pdf.

Full text
Abstract:
In this study, domestic wastewater was used to determine the anaerobic treatment performances of a dilute wastewater in one-phase upflow anaerobic sludge blanket (UASB) system and two-phase upflow anaerobic filter (UAF) and UASB system. The acidification performances of domestic wastewater were compared in UAF and UASB reactors. The degree of acidification is higher in UAF reactor (31%) compared to UASB reactor (18%) at 2 h hydraulic retention time (HRT) in the anaerobic treatment of domestic wastewaters. The effluent total volatile fatty acid (tVFA) concentration was higher in UAF reactor than that the UASB reactor at 2 h HRT. The total chemical oxygen demand (tCOD) removal is 40% in winter and 53% in summer in UAF reactor at 2 h HRT. The tCOD removals in two-phase UAF and UASB system and one-phase UASB system were 83% and 63%, respectively, in 4 h HRT. The conversion rate of COD removed to methane were between 0.005 and 0.067 Nm3 methane/kg COD removed and between 0.158 and 0.233 Nm3 methane/kg COD removed in the UAF and the UASB reactor of the two-phase system, respectively. The conversion rate of COD removed to methane varied between 0.029 and 0.199 Nm3 methane/kg COD removed in one-phase UASB reactor. The results of this study showed that the two-phase reactor system consisting from UAF and UASB reactors provide a good removal of soluble organics variations in acidification reactor and better methane productions in UASB reactor at temperatures 20°
C and 35°
C through the treatment of domestic wastewater at a HRT of 4 hours.
APA, Harvard, Vancouver, ISO, and other styles
19

Greenberg, Chloe Frances. "Onsite Remediation of Pharmaceuticals and Personal Care Products in Domestic Wastewater using Alternative Systems Including Constructed Wetlands." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/84966.

Full text
Abstract:
Pharmaceuticals, personal care products (PPCPs) and other trace organic contaminants (TOrCs) encompass a diverse group of chemicals that are not currently monitored or regulated in US drinking water or wastewater. Researchers have found low levels of TOrCs in aquatic and terrestrial environments all over the globe, and observed negative effects on impacted biota. The primary source of TOrCs in the environment is domestic wastewater discharges. Centralized wastewater treatment plants present greater risks on a global scale, but on a local scale, onsite treatment systems may have more potent impacts on resources that are invaluable to residents, including groundwater, surface waters, and soils. The objective of this thesis is to identify and characterize promising treatment technologies for onsite TOrC remediation. Receptors who could be impacted by TOrC discharges are assessed, and applications that may require alternative treatment are identified. The best treatment technologies are recognized as those that protect sensitive environmental receptors, provide permanent removal pathways for as many TOrCs as possible, and are not prohibitively expensive to install or maintain. Findings from a pilot study show increased removal of conventional pollutants and TOrCs in an aerobic treatment unit (ATU), two types of biofilter, and a hybrid constructed wetland, all relative to septic tank effluent. The constructed wetland achieved the highest nutrient removals with TN concentrations below 10 mg/L throughout the study. A system with an ATU and peat biofilters achieved the highest removals of persistent pharmaceuticals carbamazepine and lamotrigine (>85% and >95%, respectively).
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
20

Pham, Khanh Huy, and Pham Hong Lien Nguyen. "Study on treatment of domestic wastewater of an area in Tu Liem district, Hanoi, by water hyacinth." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-190387.

Full text
Abstract:
Domestic wastewater is one of the most interested environmental issues in Vietnam, especially in big cities and suburban residential areas. Most of the wastewater was not treated in the right way before discharging to environment. In this research, the author used water hyacinth as a main aquatic plant in aquatic pond model to treat wastewater. The experiment was operated continuously in 1 year with hydraulic retention time (HRT) is 11 and 18 days. Hydraulic loading rate (HRL) is 300 and 500 m3/ha/day, respectively. Treatment efficiency of the model for TSS is 90% (remaining 6 -12mg/l); COD, BOD5 is 63 - 81% (remaining 10 - 48mg/l); TP is 48 – 50% (remaining 3.5 - 9.8mg/l); TKN is 63 - 75% (remaining 8 - 17mg/l). Polluted parameters in effluent were lower than A and B levels of Vietnam standard QCVN 14: 2008/BTNMT and QCVN 40: 2011/BTNMT. The doubling time of water hyacinth in summer is 18days, and in autumn and winter is 28.5 days. Experiment results showed that we can use water hyacinth in aquatic pond to treat domestic wastewater with medium scale. We can apply this natural treatment method for residential areas by utilizing existing natural ponds and abandoned agricultural land with capacity up to 500m3/ha day. However, to get better efficiency we should combine with other aquatic plant species to treat wastewater and improve environmental landscape
Nước thải – xử lý nước thải sinh hoạt hiện đang là một trong những vấn đề môi trường được quan tâm tại Việt Nam nhất là tại các thành phố lớn và các khu dân cư. Hầu hết lượng nước thải chưa được xử lý đúng cách trước khi thải ra môi trường. Trong nghiên cứu này, tác giả sử dụng mô hình hồ thủy sinh và sử dụng cây Bèo lục bình để xử lý nước thải sinh hoạt của một khu dân thuộc huyện Từ Liêm, tại khu vực này nước thải bị thải trực tiếp vào sông Nhuệ. Thực nghiệm đã được tiến hành trong khoảng thời gian một năm, trải qua các mùa của khu vực miền Bắc với hai chế độ vận hành HRT là 18 và 11 ngày, tương ứng với tải trọng thủy lực HRL là 300 và 500 m3/ha/ngày. Kết quả cho thấy mô hình thủy sinh sử dụng cây bèo lục bình cho kết quả tốt, hiệu suất xử lý với các chất ô nhiễm đạt được như sau: chất rắn lơ lửng đạt 90%, COD, BOD5 đạt 63 - 81%, Phốt pho tổng giảm tới 48 -50%, Nitơ tổng giảm tới 63 - 75%. Hàm lượng các chất ô nhiễm trong nước thải đầu ra của mô hình đều thấp hơn ngưỡng A và B của các tiêu chuẩn QCVN 14: 2008/BTNMT và QCVN 40: 2011/BTNMT. Bên cạnh đó tác giả cũng đã xác định định được tốc độ sinh trưởng của cây bèo tại khu vực miền Bắc là 18 ngày vào mùa hè và 28.5 ngày vào mùa thu đông. Kết quả nghiên cứu cho thấy có thể sử dụng bèo lục bình để xử lý nước thải sinh hoạt, với qui mô vừa và nhỏ và nên áp dụng cho các khu vực ven đô, nông thôn nơi có diện tích đất rộng hoặc tại các hồ sinh thái của các khu đô thị. Tuy nhiên, để hiệu quả tốt hơn ta cần kết hợp với nhiều loại thực vật thủy sinh khác để ngoài tác dụng xử lý nước thải mà còn tạo cảnh quan môi trường xung quanh
APA, Harvard, Vancouver, ISO, and other styles
21

Penfield, Tyler. "Microbial communities in an anaerobic membrane bioreactor (AnMBR) treating domestic wastewater at ambient temperatures in a temperate climate." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/38197.

Full text
Abstract:
Master of Science
Department of Civil Engineering
Prathap Parameswaran
The ever-increasing demand for water, food, and energy and the simultaneous diminishment of our planets’ ecosystems wrought by humans have prompted a more sustainable approach to engineering the built environment. Wastewater treatment systems stand at the interface that connects the built and natural environment where potential solutions for resource and environmental issues exist. Wastewater treatment technologies can address issues involving water, food, energy, and environmental regulation when resources are properly captured from the wastewater while it’s being treated. This way of thought allows wastewater to be perceived as a source of valuable products rather than an obligate waste stream. For this reason, anaerobic wastewater treatment is progressively being considered because of its ability to improve energy and resource recovery, while reducing costs and environmental impacts associated with conventional domestic wastewater treatment. More specifically, anaerobic membrane bioreactors (AnMBRs) hold promise to effectively treat wastewater at low temperatures with low energy and nutrient requirements, low sludge production, while having the benefit of generating methane-rich biogas suitable as an energy source and the potential to capture nutrients used to fertilize cropland. But, at low temperatures the microbial communities that control anaerobic digestion (AD) face biochemical obstacles. Elucidating the microbial community dynamics within AnMBRs with respect to seasonal temperatures will give insight on how to efficiently operate AnMBRs with the goal of energy-neutral wastewater treatment. DNA based tools such as advanced high-throughput sequencing was coupled with AnMBR process data to explicate the mechanism of methane production in the suspended biomass of an AnMBR from a mesophilic startup leading into psychrophilic conditions, and then returning to mesophilic temperatures.
APA, Harvard, Vancouver, ISO, and other styles
22

Botequilha, José Ricardo Martins. "Avaliação do desempenho das zonas húmidas construídas: estudo de caso Barroca d'Alva." Master's thesis, ISA, 2013. http://hdl.handle.net/10400.5/6700.

Full text
Abstract:
Mestrado em Engenharia do Ambiente - Instituto Superior de Agronomia
Constructed Wetlands (CW) are suitable for rural areas with high environmental and cost-benefits compared with conventional treatment systems for wastewater due to its high construction cost and need for continuously technical supervision. This alternative technology consists on man-made system that reproduces the processes that occur during the water purification in natural wetlands. The wastewater flows through the porous medium under the surface of the beds which are planted with macrophytes ensuring the removal of pollutants. The present work aimed to study the effect of seasonal variation on the removal of pollutants during spring and summer in CW of Barroca D’Alva. This work also studies the buffering capacity of the wetland after a series of increment of organic loading rate at Barroca D’Alva. In spring the removal efficiencies obtained were 40% for total suspended solids (TSS), 97% for biochemical oxygen demand in 5 days (BOD5), 60% for soluble phosphorus, more than 90% for nitrogen and 99% for pathogen. The summer season showed better results (66.6% for SST, 98% for BOD5, 80% for soluble phosphorus, more than 90% for nitrogen and 99% for pathogen). Despite the over sizing of CW it showed high efficiency in removing pollutants. The concentrations of pollutants in the discharge site were below the Portuguese standards.
APA, Harvard, Vancouver, ISO, and other styles
23

Kendrick, Martin. "Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8944.

Full text
Abstract:
This thesis covers work carried out on algae bioreactors as a tertiary treatment process for wastewater treatment. The process was primarily assessed by the removal of Phosphorus and Nitrogen as an alternative to chemical and bacterial removal. Algal bioreactors would have the added advantage of carbon sequestration and a by-product in the energy rich algal biomass that should be exploited in the existing AD capacity. Laboratory scale bioreactors were run (4.5-30L) using the secondary treated final effluent from the local Loughborough sewage works. In a preliminary series of experiments several different bioreactor designs were tested. These included both batch feed and continuous flow feed configurations. The bioreactors were all agitated to keep the algal cells in suspension. The results demonstrated that the most effective and easy to operate was the batch feed process with the algal biomass by-product harvested by simple gravitational settling. Experiments also compared an artificial light source with natural light in outdoor experiments. Outdoor summer light produced greater growth rates but growth could not be sustained in natural UK winter light. Light intensity is proportional to productivity and algae require a minimum of around 97W/m2 to grow, an overcast winter day (the worst case scenario) was typically around 78W/m2, however this was only available for a few hours per day during Nov-Jan. The process would be better suited to areas of the world that receive year round sunlight. It was shown that phosphorus could be totally removed from wastewater by the algae in less than 24 hours depending on other operating variables. With optimisation and addition of more carbon, a HRT of 10-12 hours was predicted to achieve the EU WFD / UWWTD standard. It was further predicted that the process could be economically and sustainably more attractive than the alternatives for small to medium sized works. Biomass 3 concentrations of between 1-2g/L were found to best achieve these removals and produce the fastest average growth rates of between 125-150mg/L/d. The uptake rates of phosphorus and nitrogen were shown to be dependent on the type of algae present in the bioreactor. Nitrogen removal was shown to be less effective when using filamentous bluegreen algae whilst phosphorus removal was almost completely stopped compared to unicellular green algae that achieved a nitrogen uptake of 5.3mg/L/d and phosphorus uptake of 8mg/L/d. Soluble concentrations of Fe, Ni and Zn were also reduced by 60% in the standard 10 hours HRT. The predominant algae were shown to depend largely on these concentrations of phosphorus and nitrogen, and the strain most suited to that specific nutrient or temperature environment dominated. Nutrient uptake rates were linked to algal growth rates which correlated with the availability of Carbon as CO2. CO2 was shown to be the limiting factor for growth; becoming exhausted within 10 hours and causing the pH to rise to above 10.5. The literature showed this was a common result and the use of CO2 sparging would more than double performance making this process a good candidate for waste CO2 sequestration. Heat generated from combustion or generators with exhaust CO2 would also be ideal to maintain a year round constant temperature of between 20-25°C within the bioreactors. A number of possible uses for the algal biomass generated were examined but currently the most feasible option is wet anaerobic co-digestion. Further economic analysis was recommended on the balance between land area and complementary biomass generation for AD. It was also suggested given the interest as algae as a future fuel source, the process could also be adapted for large scale treatment and algal biomass production in areas of the world where land was available.
APA, Harvard, Vancouver, ISO, and other styles
24

Van, den Berg Francis. "Synthetic domestic wastewater sludge as electron donor in the reduction of sulphate and treatment of acid mine drainage." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/97005.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: Acid mine drainage (AMD) is wastewater generated by mine and industrial activity with typically high heavy metal and sulphur content potentially resulting in toxic wastewater upon exposure to dissolved oxygen, water and micro-organisms. Due to the hazardous consequences of untreated AMD, treatment methods such as semi-passive biotic treatments, including constructive wetlands and microbial bioreactors were developed. Microbial bioreactors rely on suitable carbon sources such as ethanol, grasses and manure and the creation of anaerobic conditions for the reduction of sulphate, chemical oxidizable organic matter (COD) and to neutralise pH. Domestic wastewater sludge has also been identified as an economical and readily available carbon source that allows the treatment of both AMD and domestic wastewater. A synthetic medium simulating the COD and the biological degradable organic matter (BOD) of domestic wastewater sludge was formulated to exclude variations in the evaluation of domestic wastewater sludge as carbon source in the treatment of AMD. Firstly the BOD and COD of anaerobic domestic wastewater sludge was determined and used as parameters in the formulation of the synthetic medium. A ratio of 1:1 AMD: synthetic domestic wastewater sludge (SDWWS) was the optimum ratio in terms of sulphate and COD removal. Secondly, medical drip bags were used as anaerobic bioreactors to determine the microbial diversity in AMD treated with SDWWS using different variables. Data analyses from next generation sequencing showed that Chlorobium spp. dominated the 90 d pioneer trials at relative percentages of 68 % and 76 %. Transmission electron microscopy (TEM) images and the bright green colour of the liquid contents confirmed the data analyses. Sulphates and COD were removed at > 98 % and > 85 %, respectively. A shorter incubation time was investigated in the 30 d pioneer trial. Chlorobium spp. was dominant, followed by Magnetospirillum spp. and Ornithobacterium spp. The liquid content changed to a dark brown colour. COD and sulphate concentrations were reduced by 60.8 % and 96 %, respectively, within 26 d, after which a plateau was reached. The effect of an established biofilm in the bioreactors showed that Chlorobium spp. also dominated approximately 62 %, in comparison to the 36 % in the 30 d pioneer trial. A sulphate and COD reduction of 96 % and 58 %, respectively, was obtained within 26 d and the liquid content was the same colour as in the 30 d pioneer trial. It is possible that brown Green sulphur bacteria were present. Therefore, although Chlorobium spp. was present at a higher percentage as in the 30 d pioneer trial, the removal of COD and sulphate was similar. During the 30 d trials a white precipitant formed at the top of the bioreactors, consisting primarily of sulphate and carbon that was also indicative of the presence of Chlorobium spp. Incubation at reduced temperature reduced sulphates by only 10 % and COD by 12 % after 17 d, followed by a plateau. Ornithobacterium spp. dominated in the first trial and Magnetospirillum spp. in the second trial.
AFRIKAANSE OPSOMMING: Suur mynwater (SMW) is afvalwater wat deur die myn- en industriële bedryf gegenereer word en bevat kenmerklik hoë konsentrasies swaar metale en swawel wat potensieel in toksiese afvalwater omskep kan word indien blootgestel aan opgelosde suurstof, water en mikro-organismes. Die skadelike gevolge wat blootstelling aan onbehandelde SMW mag hê, het gelei tot semi-passiewe behandelinge wat vleilande en mikrobiese bioreaktors insluit. Mikrobiese bioreaktore maak staat op n geskikte koolstofbron soos etanol, grasse en bemesting en die skep van ‘n anaerobiese omgewing vir die verwydering van sulfate en chemies oksideerbare organiese material (CSB), asook die neutralisering van pH. Huishoudelike afvalwaterslyk is ook uitgewys as ‘n ekonomies geskikte en algemeen beskikbare koolstofbron wat die behandeling van beide SMW en huishoudelike afvalwater toelaat. ‘n Sintetiese medium wat die CSB en biologies afbreekbare organiese materiaal (BSB) van huishoudelike afvalwater slyk naboots is geformuleer om die variasies in die evaluasie van huishoudelike afvalwater slyk as koolstofbron vir die behandeling van SMW, uit te sluit. Eerstens is die BSB en die CSB van huishoudelike afvalwater slyk bepaal en gebruik as n maatstaf vir die formulering van die sintetiese medium. ‘n Verhouding van 1:1 sintetiese huishoudelike afvalwater slyk (SDWWS) en SMW is optimaal ratio i.t.v. die verwydering van sulfate en CSB. Tweedens is mediese dripsakkies as anaerobiese bioreaktore gebruik om die mikrobiese diversiteit in SMW, wat met SDWWS behandel is, te bepaal deur verskeie veranderlikes te gebruik. Tweede generasie DNA-volgorde bepalingstegnieke is gebruik en data analises het gewys dat Chlorobium spp. die 90 d pionier toetslopie domineer met relatiewe persentasies van 68 % en 76 %. Transmissie elektron mikroskopie fotos en die helder groen kleur van die dripsakkies se vloeistof inhoud het die data analises bevestig. Die sulfate en CSB inhoud is onderskeidelik met > 98 % en > 85 % verminder. ‘n Korter behandelingstydperk is ondersoek met n 30 d pionier toetslopie. Chlorobium spp. was dominant, gevolg deur Magnetospirillum spp. en Ornithobacterium spp. Die vloeistof inhoud het na ‘n donker bruin kleur verander. Die CSB en sulfaat konsentrasies is met 60.8 % en 96 % onderskeidelik verminder na 26 dae waarna ‘n plato bereik is. Die effek van ‘n reeds bestaande biofilm in die bioreaktore het gewys dat Chlorobium spp. ook gedomineer het teen ‘n relatiewe persentasie van 62 % in vergelyking met die 36 % in die 30 d pionier toetslopie. ‘n Vermindering in sulfate en CSB van 96 % en 58 % is onderskeidelik is bereik binne 26 d en die vloeistofinhoud was dieselfde kleur as die bioreaktore in die 30 d pionier toetslopie. Dit is moontlik dat die bruin Groen swawel bakterieë teenwoordig was. Daarom, ondanks ‘n groter teenwoordigheid van die Chlorobium spp. teen ‘n relatiewe persentasie in vergelying met die 30 d pionier toetslopie, was die verwydering van CSB en sulfate soortgelyk. Tydens die 30 d toetslopies het ‘n wit neerslag aan die bokant van die bioreaktore gevorm wat hoofsaaklik uit sulfaat en koolstof bestaan het wat ook ‘n aanduiding van die teenwoordigheid van Chlorobium spp. is. ‘n Toetslopie wat by laer temperature uitgevoer is kon die sulfate en CSB met slegs 10 % en 12 % onderskeidelik verminder nadat ‘n plato na 17 d bereik is. Ornithobacterium spp. het die eerste toetslopie gedomineer waar Magnetospirillum spp. die tweede toetslopie gedomineer het.
APA, Harvard, Vancouver, ISO, and other styles
25

Crone, Brian C. "Reductions of Mass Transfer Resistance in Membrane Systems used for Dissolved Methane Recovery during Anaerobic Treatment of Domestic Wastewater." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613741131020945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Pham, Khanh Huy, and Pham Hong Lien Nguyen. "Study on treatment of domestic wastewater of an area in Tu Liem district, Hanoi, by water hyacinth: Research article." Technische Universität Dresden, 2014. https://tud.qucosa.de/id/qucosa%3A29082.

Full text
Abstract:
Domestic wastewater is one of the most interested environmental issues in Vietnam, especially in big cities and suburban residential areas. Most of the wastewater was not treated in the right way before discharging to environment. In this research, the author used water hyacinth as a main aquatic plant in aquatic pond model to treat wastewater. The experiment was operated continuously in 1 year with hydraulic retention time (HRT) is 11 and 18 days. Hydraulic loading rate (HRL) is 300 and 500 m3/ha/day, respectively. Treatment efficiency of the model for TSS is 90% (remaining 6 -12mg/l); COD, BOD5 is 63 - 81% (remaining 10 - 48mg/l); TP is 48 – 50% (remaining 3.5 - 9.8mg/l); TKN is 63 - 75% (remaining 8 - 17mg/l). Polluted parameters in effluent were lower than A and B levels of Vietnam standard QCVN 14: 2008/BTNMT and QCVN 40: 2011/BTNMT. The doubling time of water hyacinth in summer is 18days, and in autumn and winter is 28.5 days. Experiment results showed that we can use water hyacinth in aquatic pond to treat domestic wastewater with medium scale. We can apply this natural treatment method for residential areas by utilizing existing natural ponds and abandoned agricultural land with capacity up to 500m3/ha day. However, to get better efficiency we should combine with other aquatic plant species to treat wastewater and improve environmental landscape.
Nước thải – xử lý nước thải sinh hoạt hiện đang là một trong những vấn đề môi trường được quan tâm tại Việt Nam nhất là tại các thành phố lớn và các khu dân cư. Hầu hết lượng nước thải chưa được xử lý đúng cách trước khi thải ra môi trường. Trong nghiên cứu này, tác giả sử dụng mô hình hồ thủy sinh và sử dụng cây Bèo lục bình để xử lý nước thải sinh hoạt của một khu dân thuộc huyện Từ Liêm, tại khu vực này nước thải bị thải trực tiếp vào sông Nhuệ. Thực nghiệm đã được tiến hành trong khoảng thời gian một năm, trải qua các mùa của khu vực miền Bắc với hai chế độ vận hành HRT là 18 và 11 ngày, tương ứng với tải trọng thủy lực HRL là 300 và 500 m3/ha/ngày. Kết quả cho thấy mô hình thủy sinh sử dụng cây bèo lục bình cho kết quả tốt, hiệu suất xử lý với các chất ô nhiễm đạt được như sau: chất rắn lơ lửng đạt 90%, COD, BOD5 đạt 63 - 81%, Phốt pho tổng giảm tới 48 -50%, Nitơ tổng giảm tới 63 - 75%. Hàm lượng các chất ô nhiễm trong nước thải đầu ra của mô hình đều thấp hơn ngưỡng A và B của các tiêu chuẩn QCVN 14: 2008/BTNMT và QCVN 40: 2011/BTNMT. Bên cạnh đó tác giả cũng đã xác định định được tốc độ sinh trưởng của cây bèo tại khu vực miền Bắc là 18 ngày vào mùa hè và 28.5 ngày vào mùa thu đông. Kết quả nghiên cứu cho thấy có thể sử dụng bèo lục bình để xử lý nước thải sinh hoạt, với qui mô vừa và nhỏ và nên áp dụng cho các khu vực ven đô, nông thôn nơi có diện tích đất rộng hoặc tại các hồ sinh thái của các khu đô thị. Tuy nhiên, để hiệu quả tốt hơn ta cần kết hợp với nhiều loại thực vật thủy sinh khác để ngoài tác dụng xử lý nước thải mà còn tạo cảnh quan môi trường xung quanh.
APA, Harvard, Vancouver, ISO, and other styles
27

Prieto, Ana Lucia. "Sequential Anaerobic and Algal Membrane Bioreactor (A2MBR) System for Sustainable Sanitation and Resource Recovery from Domestic Wastewater." Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3296.

Full text
Abstract:
An innovative wastewater treatment technology was developed to recover renewable resources, such as water, energy and nutrients, from sewage. First, a novel synthetic sewage was evaluated for its suitability to serve as an alternative substrate for lab-scale wastewater treatment (WWT) research. Based on granular dried cat food, Complex Organic Particulate Artificial Sewage (COPAS) is a commercially-available, flexible, and easy to preserve feed. Characteristics of COPAS, namely chemical composition, disintegration/dissolution kinetics, and anaerobic biodegradability, were determined. Anaerobic bioassays indicate that COPAS is highly biodegradable at the concentration used to simulate household sewage (1000 mg/L), with more than 72% of the theoretical methane content reached after 30 d of incubation. Results indicate that COPAS is a suitable substrate as a surrogate of domestic sewage. In the second stage of the research, a lab-scale, 10L gas-lift anaerobic membrane bioreactor (Gl-AnMBR) was designed, fabricated and tested. The AnMBR is a hybrid treatment technology that combines anaerobic biological treatment with low-pressure membrane filtration. Although AnMBR has been used in many instances for the treatment of high strength industrial or agricultural wastewater, relatively little has been reported about its application for the treatment of domestic sewage and further conversion and recovery of resources embedded in sewage, such as energy and nutrient enriched water. The 10L column reactor uses a tubular PVDF ultrafiltration membrane (with biogas as sparge gas) for sludge/water separation. COPAS was used as synthetic feed (at 1000 mg/L) to represent household wastewater. The configuration showed excellent removal efficiencies of organic matter (up to 98% and 95% in COD and TOC removal, respectively) while producing energy in the form of methane at quantities suitable for maintaining membrane scrubbing (4.5 L/d of biogas). Soluble nutrients were recovered in the effluent in the forms of NH4, (9.1±4.2 mg/L), NO3 (2.2±0.9 mg/L) and PO4 (20±7.13 mg/L). The energy footprint (net energy) of this reactor was evaluated and the energy requirements per volume of permeate produced was found to be in the range of -1.2 to 0.7 kWh/m3, depending on final conversion of methane to electric or thermal energy respectively. These values could potentially be improved towards energy surplus (-2.3 to -0.5 kWh/m3) if applied to plant scale operation, which would employ more efficient pumps than those used in the lab. Results from this study suggest that the Gl-AnMBR can be applied as a sustainable treatment tool for resource recovery from sewage, which can further be optimized for large scale operation. In the final stage of this research, further resource recovery from sewage was investigated by coupling the Gl-AnMBR with an innovative gas-lift algal photo MBR (APMBR). To our knowledge, this is the first reported application of membranes (in particular gas-lift tubular) for separation of algal cells from effluent in a continuous-flow photobioreactor. Nutrient rich effluent (9 mg/L NH4-N and 20 mg/L PO4-P) from the Gl-AnMBR treating domestic wastewater was used as substrate to grow the biofuel producing microalgae Chlorella sorokiniana (Cs). The initial set of operational conditions tested in this study (HRT of 24 hours, operational flux of 4.5 LMH, air-lift flow rate (Qa) of 0.1 L/min and 0.1 bars of membrane inlet pressure), achieved 100% removal efficiencies for NH4 and PO4. Flux remained constant during the experimental period which demonstrated the efficacy of gas lift as a membrane fouling control strategy for an algae bioreactor. Because the algae is photoautotrophic, little removal of organic carbon was expected nor observed. Further studies are required to better understand the fate and cycling of carbon in the APMBR. Limited information is available in the literature regarding biofuel-producing, algal photo MBRs utilizing anaerobic effluents as feedstock, which makes this study an important step in understanding the design and performance of combined anaerobic/algal biotechnology for large scale application of wastewater resource recovery.
APA, Harvard, Vancouver, ISO, and other styles
28

Lakay, Vanessa Monique. "An analysis of the performance of constructed wetlands in the treatment of domestic wastewater in the Western Cape, South Africa." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/6664.

Full text
Abstract:
Constructed wetlands (CWs) are being introduced in many parts of the world to treat wastewater. CWs offer several advantages over conventional treatment, most notably to save costs and energy. By contrast there are several limitations associated with the use of CWs, such as variability and unpredictability in treatment performance. However the literature focuses largely on the advantages of the CWs with little attention being given to the limitations and impacts on the receiving environment. In South Africa, there are a few studies concerned with the application and performance of CWs, but as yet there are no guidelines for the design and construction of these systems. The aim of this research is to determine the performance of three CWs situated on the periphery of Cape Town, Western Cape, with the intention of contributing to knowledge on the South African CWs performance in general. The research interest was to purposely shift attention to an analysis of the performance of CW systems that could be measured in-situ as opposed to laboratory-based studies where certain variables could be contained or controlled. In this study the focus is on determining the impact that these systems might have on the surrounding environment by analysing the impact from these CWs on surrounding or receiving water bodies. Samples of influent and effluent were collected from various points within the CW and from the surrounding water bodies every two weeks during the winter season when biological activity is least productive. Performance was determined by considering the mean percentage change from influent to effluent, the significance of the difference between influent and effluent and by comparing resultant effluent quality to the Department of Water Affairs' discharge standards. The results of the study indicate a range of performance both within and between systems, but overall the performance was poor, with the exception of NH3 (96%) and E. coli (see below) that was removed at one of the sites, namely, at De Goede Hoop. While PO43- was adsorbed, it was very low at all three sites; 3.8%, 7% and 20% at De Goede Hoop, Wolwedans and Babylonstoren respectively. Furthermore, DWA's effluent standards of 10 mg/l for PO4 3- could not be met at all the sites. Poor PO4 3- removal can be explained either by low O2 concentrations or the choice of substrate that was used in the constuction. When O2 concentrations are low, solubilisation of minerals and subsequent release of dissolved of phosphorus occurs. Mean E. coli removal percentages were considerably lower compared to other studies undertaken elsewhere. E. coli removal was 85% at De Goede Hoop, 39% at Wolwedans and 65% at Babylonstoren. In general, the results indicate that more research on CW systems is required to improve our understanding of these systems. A better understanding of these systems will lead to enhanced design and thus assist in improved treatment performance so as to reduce the impact of CWs on the environment.
APA, Harvard, Vancouver, ISO, and other styles
29

Miriyala, Amulya. "Impact of Recirculating Nitrified Effluent on the Performance of Passive Onsite Hybrid Adsorption and Biological Treatment Systems." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7697.

Full text
Abstract:
Approximately 25% of households in the U.S. treat their wastewater onsite using conventional onsite wastewater treatment systems (OWTS). These systems typically include a septic tank or a series of septic tanks followed by a soil absorption system. They effectively remove biochemical oxygen demand (BOD), total suspended solids (TSS), fats and grease but are not designed to remove significant amounts of nitrogen. High nitrogen loading to coastal and ground waters can be dangerous to aquatic life and public health. Hence, there is a need for advanced onsite wastewater treatment systems that can effectively remove nitrogen. Making enhanced nitrogen removal for OWTS as our primary goal, a laboratory scale Hybrid Adsorption and Biological Treatment Systems (HABiTS) was developed and upon observation of its effective nitrogen removal capacity, a pilot demonstration study with two side-by-side HABiTS, one with recirculation and one without recirculation (only forward flow) were constructed and tested at the Northwest Regional Water Reclamation Facility in Hillsborough County (Florida). HABiTS employ biological nitrogen removal and ion exchange for effective nitrogen removal. HABiTS is a two-stage process which uses nitrification for the oxidation of ammonium to nitrate and ion exchange for ammonium adsorption that helps buffer transient loading and also acts as a biofilm carrier in its stage 1 biofilter and it uses tire-sulfur hybrid adsorption denitrification (T-SHAD) in its stage 2 biofilter. These sulfur pellets help promote sulfur oxidation denitrification (SOD) and tire chips are used for nitrate adsorption during transient loading conditions, as biofilm carriers for denitrifying bacteria, and can also be used as organic carbon source to promote heterotrophic denitrification because they leach organic carbon. For this research, HABiTS without recirculation is considered as the control system and the performance of HABiTS with recirculation was tested for its ability to further enhance nitrogen removal from HABiTS. Nitrified effluent recirculation is a common strategy employed in wastewater treatment for enhanced nitrogen removal. It is the reintroduction of semi-treated wastewater to pass through an anoxic pre-treatment chamber to achieve better quality effluent. Recirculation is said to improve and consistently remove nitrogen at any hydraulic loading rate and/or nitrogen concentration. This is because of the dilution of high BOD septic tank effluent with nitrified effluent which lowers COD:TKN ratio and also improves mass transfer of substrates in the stage 1 biofilter. Recirculation also provides some pre-denitrification in the pre-treatment chamber, thereby reducing nitrogen load on the system. The HABiTS with recirculation (R) was run at 1:1 ratio of nitrified effluent recirculation rate to the influent flow rate for 50 days, and at 3:1 ratio for the remaining period of this research (200 days). The forward flow system (FF) was run under constant conditions throughout the research and comparisons between the two systems were made for different water quality parameters (pH, DO, conductivity, alkalinity, TSS, chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and various nitrogen species). The final effluent ammonium results showed that the system with recirculation removed consistently > 80% NH4+-N during 1:1 and 3:1 recirculation ratios whereas the forward flow system achieved 57% removal. Further, an average of 81% total inorganic nitrogen (TIN) removal from the system influent was seen in the recirculation system’s final effluent when compared to an average of 55% in forward flow system’s final effluent. This research explains in detail, the impact of nitrified effluent recirculation on enhanced nitrogen removal in onsite systems and the results presented in this thesis proved that nitrified effluent recirculation provides promising enhanced nitrogen removal in an onsite wastewater treatment system.
APA, Harvard, Vancouver, ISO, and other styles
30

Vega, De Lille Marisela Ix-chel [Verfasser], and Antonio [Akademischer Betreuer] Delgado. "Modeling, Simulation and Control of Biotechnological Processes in Decentralized Anaerobic Treatment of Domestic Wastewater / Marisela Ix-chel Vega De Lille. Gutachter: Antonio Delgado." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2015. http://d-nb.info/1076165443/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dahlström, Julia. "Avloppsrening från småskalig processindustri." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414710.

Full text
Abstract:
Småskaliga processindustrier är små industrier som genom ett småskaligt, hantverksmässigt eller lokalt förhållningssätt förädlar råvaror genom olika automatiserade processer. Vid förädlingen uppkommer stora mängder processavloppsvatten med stor organisk belastning som måste tas om hand på ett hållbart, resurseffektivt och miljömässigt sätt för att inte skada människa eller miljö. I denna studie undersöktes kvaliteten på processavloppsvatten från småskaliga slakterier, mejerier och bryggerier, samt hur hanteringen av processavloppsvattnet från dessa processindustrier ser ut i Sverige idag. Ytterligare utreddes hur reningstekniker för små avlopp kan användas för rening av processavloppsvatten från småskalig processindustri samt hur marknaden för användande av tekniker för små avlopp för rening av processavloppsvatten ser ut. Studien använde ett flertal metoder, litteraturstudie av småskaliga processindustrier och små avlopp, intervjuer och enkätundersökning av småskaliga slakterier, mejerier och bryggerier, samt intervjuer med tillverkare för tekniker för små avlopp. Resultatet visade att kvaliteten på processavloppsvattnet inte kunde redovisas för majoriteten av processindustrierna från intervjuer och enkätundersökning eftersom kvalitetsanalyser inte alltid verkar ske på processavloppsvattnet, varken före eller efter rening. Litteraturen beskrev vidare att prioriterade parametrar att rena för slakterier, mejerier och bryggerier främst är organiska ämnen (mätt som BOD eller COD), suspenderade ämnen, kväve, fosfor, samt pH. Dessa parametrar varierar mellan de olika typerna av processindustrierna och inom samma typ av processindustri. Variationerna anses utgöra en utmaning att hitta passande reningstekniker som fungerar i alla sammanhang. Angående vilka reningstekniker och avloppslösningar som används av småskaliga processindustrier visade resultatet att en stor andel av processindustrierna har intern rening, och knappt en tredjedel har anslutning till kommunalt avloppsnät. Processindustrier med intern rening vars processavloppsvatten dimensionerades till mindre än 100 personekvivalenter använder till övervägande del tekniker för rening av små avlopp, men andra avloppslösningar såsom gödselbrunn, reningsverk och biogasanläggning förekom även för större avloppsdimensioner. Reningstekniker för små avlopp för rening av processavloppsvatten, samt anpassade tekniker för processavloppsvatten, erbjuds till viss grad på dagens marknad men det finns fortfarande utmaningar för att kunna tillhandahålla lösningar för fler typer av processindustrier. Möjlighet att utjämna avloppsflöden och lösningar med större belastningskapacitet är fortfarande något som behöver utvecklas vidare.
Small-scale process industries are small, sometimes locally or artisanal, industries that produces their product through processing raw materials by using automated processes. Large volumes of wastewater effluent are produced by doing this, and this wastewater is characterized by high organic load and nutrients which must be treated in a sustainable way to not be harmful to humans nor the environment. This study evaluated industrial wastewater treatment from small-scale slaughterhouses, dairies and breweries, including wastewater characteristics of these types of process industries in Sweden today. The study also included an evaluation of decentralized wastewater treatment systems for small-scale industrial wastewater treatment and what the Swedish market can provide regarding small-scale industrial wastewater treatments. Different methods were used to reach this goal; a literature study regarding wastewater characteristics and treatment of industrial wastewater and decentralized wastewater treatment systems, interviews, and surveys of Swedish small-scale process industries, and finally interviews with manufacturers of decentralized wastewater treatment systems. The result showed that wastewater characteristics was not accessible from most of the Swedish small-scale process industries. They mostly do not analyze their wastewater neither before nor after wastewater treatment. Furthermore, it was described that highpriority wastewater characteristics for treatment according to the literature was BOD, COD, suspended solids, nitrogen, phosphorus, and pH. Variations of these characteristics is common both between different types of process industries and in the same type of industry. These variations are challenging in regard to finding suitable wastewater treatment techniques that is adequate in every situation. Wastewater treatment systems used today are mostly local at the site, it is around a third that have connection to municipal wastewater facilities. The most common local wastewater treatment for small process industries (less than 100 population equivalents) is decentralized wastewater treatment systems according to the interviews and surveys. Other wastewater treatments such as dung pits, wastewater treatment plants and biogas plants were also used for larger process industries. Decentralized wastewater treatment systems for industrial wastewater treatment and adapted small-scale industrial wastewater treatments can be found to some extent on the Swedish market today, but there are still some challenges to provide small-scale industrial wastewater treatment for every type of process industry. Solutions to level out intense wastewater flows and capacity to receive high effluent loads need to be further developed.
APA, Harvard, Vancouver, ISO, and other styles
32

Alajmi, Hasan Mubarak. "Effect of physical, chemical and biological treatment on the removal of five pharmaceuticals from domestic wastewater in laboratory-scale reactors and full-scale plant." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2469.

Full text
Abstract:
Pharmaceuticals and their metabolites are known to enter the environment from the effluent of wastewater treatment plants. From statistical analysis on the usage of pharmaceuticals, and their effects on the environment, five pharmaceuticals were selected for this study (Metronidazole, Trimethoprim, Sulphamethoxazole, Paracetamol and Ranitidine). Trace concentrations of pharmaceuticals were determined using a sensitive analytical method, comprising solid phase extraction (SPE) and liquid chromatography with a mass spectrometry detector (LC- MS),operating in selected ion monitoring (SIM) mode. It was found that Metronidazole, Trimethoprim, Sulphamethoxazole, Paracetamol and Ranitidine were detected at the highest levels in the wastewater entering the Sulaibiya WWTP Kuwait, with concentrations of up to 58 ng.L , 1814 ng.L , 1669 ng.L , 2086 ng.L and 2009 -1 ng.L , respectively. High removal efficiencies of these pharmaceuticals were found in the Sulaibiya WWTP. One year study was conducted to investigate the occurrence, persistence and fate of a range of these pharmaceuticals at different sampling points at the Sulaibiya WWTP. The treatment processes consisted of screening, grit removal and diffused air activated sludge treatment (primary and secondary treatment), followed by microfiltration (MF), reverse osmosis (RO), and chlorine oxidation (tertiary treatment). During primary and secondary treatment, Metronidazole, Trimethoprim, Sulphamethoxazole, Paracetamol and Ranitidine were removed efficiently with average removals efficiencies of 83.4%, 86.1%, 77.5%, 97.5% and 77.5%, respectively. The RO system lowered these pharmaceuticals further, giving overall removal efficiencies of 97%, 99%, 99%, 100% and 100% for Metronidazole, Trimethoprim, Sulphamethoxazole, Paracetamol and Ranitidine, respectively. All selected pharmaceuticals were tested in laboratory scale reactors to assess their -1 removal by chlorination and ozonation, and results showed that 10 mg.L of chlorine -1 removed these pharmaceuticals better than 15 mg.L of ozone. Lab-scale aerobic reactors (2 L), seeded with activated sludge inoculum from the Sulaibiya WWTP and fed with different concentrations of pharmaceuticals (0.1, 1 and -1 10 mg.L ), spiked individually into a synthetic wastewater showed that the TOC could be removed efficiently without inhibition by these pharmaceuticals. The fate of Metronidazole, Trimethoprim, Sulphamethoxazole, Paracetamol and Ranitidine was investigated in a membrane bioreactors (MBR), and a sequencing batch reactors (SBR), operating under strictly aerobic, and anoxic/aerobic conditions at different concentrations of a pharmaceutical mixture (PM) of the same -1 -1 -1 pharmaceuticals (1 µg.L , 1 mg.L and 10 mg.L ). The COD and TOC removal -1 efficiency decreased when the PM concentration was increased to 10 mg.L . The removal of Metronidazole and Trimethoprim was moderately effective, and similar in all the reactors. Sulphamethoxazole and Paracetamol were removed efficiently, but -1 this decreased when the PM was increased to 10 mg.L for most of the reactors, whilst Ranitidine experienced high removal rates at all concentrations in all the reactors. Analysis of the microbial diversity in laboratory reactors treating pharmaceuticals wastewater showed decreases in microbial community diversity when the PM concentration was increased. Pure cultures of bacteria isolated on selected pharmaceutical growth media were also detected in the microbial communities of reactor sludge by performing polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE).
APA, Harvard, Vancouver, ISO, and other styles
33

Muanda, Christophe. "Investigation of anaerobic up-flow batch reactor for treatment of greywater in un-sewered settlements." Thesis, Cape Peninsula University of Technology, 2009. http://hdl.handle.net/20.500.11838/1037.

Full text
Abstract:
Masters Thesis
Un-sewered settlements are provided with the basic water and sanitation systems that comprise, in most cases, of dry sanitation and standpipes. Substantial amounts of wastewater (including greywater) generated from households are discarded untreated into streets, open spaces between shacks, streams and rivers due to the lack of adequate disposal or treatment infrastructures. The negative impacts from unsafe disposal of greywater generated in un-sewered settlements affect both human health and the general environment. Several treatment technologies ranging from the simplest to the more sophisticated have been developed and made available for consideration to deal with the adverse impacts caused by the unsafe discharge of greywater. Some of these treatment technologies have been implemented successfully in certain developing countries worldwide. Amongst these is the anaerobic up-flow batch reactor (AnUBR) which was successfully used for the first time to treat greywater from sewered areas in Jordan, Lebanon and Sri Lanka. The AnUBR has emerged as a localised greywater treatment technology alternative to conventional treatment methods in areas not served by sewer networks. This technology holds promise because of its simplicity of design, high pollutant removal efficiency, absence of energy or chemical consumption, ease with which it can be implemented, cost effectiveness, and low operation and maintenance costs. This technology was originally developed for treating sewage and high strength greywater from hotels. Recently it was further pioneered by INWRDAM (Inter-Islamic Network on Water Resources Development and Management) in the treatment of greywater from sewered areas of developing countries. This technology has not been tested in un-sewered settlements of developing countries which are characterised by the lack of disposal infrastructures despite being suitable for tropical countries. This treatment system is able to produce effluent that meets the quality standard for discharge and irrigation. However, new applications of the AnUBR require further investigation in order to ascertain its feasibility and evaluate its performance in the un-sewered settlement context. Given the promising results reported for the AnUBR application for greywater treatment, this study aims to investigate the performance of the AnUBR as an alternative technology for the treatment of greywater generated in un-sewered settlements and its application in developing countries. A laboratory scale plant encompassing the AnUBR was designed, constructed and investigated using influent greywater collected from two selected case study settlements representing sewered and un-sewered areas. The plant was operated for 20 consecutives days using greywater from both selected sites separately. The influent greywater was analysed prior to feeding the plant and fed intermittently by batch as per designed feeding schedule. The performance of the AnUBR was evaluated mainly by analysing the quality of effluent produced, while the typical application was recommended based on the ability of the plant to produce effluent complying with local regulations and ability to treat greywater regardless of its source. The daily characteristics of influent greywater from both sites during the period of investigation were found to be as follows: temperature: 24 – 29ºC, pH: 7.1 – 7.2, TSS: 117.72 – 2,246.6mg/l, TN: 5.66 – 12.29mg/l, TP: 12.27 – 116.46mg/l, COD: 223.17 – 1,135.32mg/l, BOD5: 98.0 – 383.6mg/l, O&G: 52.22 – 475.29mg/l, e-coli: 8.87x104 – 2.17x107cfu/100ml, and Faecal coliform: 1.49x105 – 2.41x107cfu/100ml. The AnUBR managed to treat greywater to a quality that comply with the general standards for discharge into natural water resources. The final effluent showed a significant decrease in the level of pollutants from the initial values presented above to the following: temperature: 27 – 29 ºC, pH: 7.1 – 7.2, TSS: 5.12 – 12.82mg/l, TN 0.91 – 1.09mg/l, TP: 0.93 – 7.47mg/l, COD: 24.67 – 40.45mg/l, BOD5: 8.59 – 16.0mg/l, O&G: 1.15 – 1.72mg/l, e-coli: 213.3 – 1.12x103cfu/100ml, and Faecal coliform: 461.6 – 1.5x103cfu/100ml. Results obtained showed that the quality of influent greywater (from un-sewered settlements) is similar regardless of the water and sanitation technology. Following the operation of the AnUBR, significant removal of pollutants was observed in all processes. The overall removal efficiency averaged 80 to 95% for O&G and TSS respectively and 50 to 85% for TN and TP. The COD and BOD5 removal averaged 70 to 85% while that of micro-organisms averaged 90 to 99%. However, despite the high removal efficiency recorded the AnUBR may still require a post treatment step in order to improve the quality of effluent. It was concluded that the AnUBR is a viable alternative greywater treatment technology for un-sewered settlements, households or businesses such as hotels and restaurants. The AnUBR is able of treating high polluted greywater to effluent of quality that meets the standards for discharge or reuse provided a post treatment to ensure the complete killing of pathogenic organisms. The result of this study confirms the performance of the AnUBR for the treatment of greywater and provides an understanding of its concept as an alternative to conventional treatment and its application in un-sewered settlements based on local practical investigations.
APA, Harvard, Vancouver, ISO, and other styles
34

Goolsby, Matthew Allen. "Viability study of a residential integrated stormwater, graywater, and wastewater treatment system at Florida's Showcase Green Envirohome." Master's thesis, University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4767.

Full text
Abstract:
The subject of water scarcity and the rate of water consumption have become popular over the last few decades. Within the topic of water consumption, there are two separate issues from a residential standpoint. The first concern is the steadily increasing need for viable alternative water sources to be utilized for non-potable applications in an effort to reduce potable water demands. The second concern is the need to significantly reduce of nutrient-laden wastewater effluent discharge from septic systems in order to sustain groundwater quality and prevent adverse ecological impacts. This study addresses both issues with two separate systems integrated into one environmentally functional home that emphasizes low impact development (LID) practices. The first objective of the study is to quantify the performance of the passive treatment Bold & GoldTM reactive filter bed (FDOH classified “innovative system”) for nutrient removal. The second objective is to monitor the water quality of the combined graywater/stormwater cistern for non-potable use and asses all components (green roof, gutters, graywater treatment, AC condensate, well water, stormwater contribution). The performance of the passive innovative system is compared to past studies and regulatory standards. Also, a bench scale model of the OSTDS is constructed at the University of Central Florida (UCF) Stormwater Management Academy Research and Testing Lab (SMART Lab) and tested to provide effluent data at two different residence times. Complex physical, biological, and chemical theories are applied to the analysis of wastewater treatment performance. The data from the OSTDS and stormwater/graywater cistern both systems are also assessed using statistical analysis. The results of the OSTDS are compared to FDOH regulatory requirements for “Secondary Treatment Standards”, and “Advanced Secondary Treatment Standards” with positive results. The bench scale results verify that both biological nutrient removal and physiochemical sorption are occurring within the filter media and quantified the relationship between removal rates and hydraulic residence time (HRT). The combined graywater/stormwater cistern contains acceptable water quality and operates efficiently. The demand on the cistern results in about 50% capacity utilization of the cistern and there is a consistent dependency on the artesian well. The salinity content and high sodium adsorption ratio (SAR) of the cistern water did not produce any noticeable adverse impacts on the home other than scale formation in the toilet. The results of the research determined that the implementation of the integrated system is a viable option at the residential level.
ID: 030646271; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (M.S.Env.E.)--University of Central Florida, 2011.; Includes bibliographical references (p. 124-129).
M.S.Env.E.
Masters
Civil, Environmental and Construction Engineering
Engineering and Computer Science
Environmental Engineering
APA, Harvard, Vancouver, ISO, and other styles
35

Pessotto, Bruno. "Design and performance evaluation of an anaerobic sludge blanket reactor with mechanical mixing system and a high-rate settler treating domestic wastewater." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-15062015-165720/.

Full text
Abstract:
The UASB (Upflow Anaerobic Sludge Blanket) reactor, developed by Prof. Gatze Lettinga and his colleagues in the Netherlands more than thirty years ago, is successfully employed in many sewage treatment plants in countries with tropical and subtropical climate. However, are still reported serious operational issues related to the three-phase separators and problematic aspects involving the complexity of its influent distribution system. The focus of this research was to simplify the introduction and dispersion of the sewage in the reactor as well as enhancing the sludge retention, by replacing the characteristic piping system for a mechanical mixing apparatus and substituting the (conventional) three-phase separators by a high-rate settler, respectively. In essence, it was proposed a system partitioned into two distinct regions: one for reaction (i.e. anaerobic digestion of organic matter), in which the sludge blanket was mechanically mixed through the action of a rotating impeller, and another for the removal of suspended solids by the use of a lamella plate clarifier; a sludge recirculation system was also implanted, to pump the settled biomass back to the digestion compartment. The research was subdivided into three main phases: in the first two phases, bench-scale experiments were performed in order to obtain basic data for the design of the mechanical mixing and sedimentation devices, while the third phase consisted of the application of these technologies in a pilot-scale system with total volume of 20.8 m3 (comprised of a 17.0 m3 digestion chamber and a 3.8 m3 compartment for solids removal), as well as its performance assessment. During the development of the research, domestic sewage was applied to feed the experimental system, which was located at the School of Engineering of São Carlos (Campus I) in São Carlos (São Paulo State, Brazil). Throughout the period of effective operation, which lasted 130 days, four distinct operating modes were tested (characterized by intermittent mixing and varying hydraulic loading rates, ranging between 27.6 and 66.5 m3.d-1) and the system reached maximum removal efficiencies of BOD, COD and TSS at rates of 82%, 72% and 83%, respectively. The high-rate settler presented an impressive efficiency removing suspended solids (rates up to 98%). The research showed that the new \"Anaerobic Activated Sludge Blanket\" system (A2SB) can provide satisfactory performance even operating without the three-phase separator and influent distribution system.
O reator UASB, desenvolvido pelo Prof. Gatze Lettinga e colaboradores na Holanda há mais de trinta anos, é utilizado com sucesso em muitas estações de tratamento de esgoto sanitário em países de clima tropical e subtropical. Entretanto, ainda são relatadas sérias questões operacionais relacionadas aos separadores trifásicos e aspectos problemáticos envolvendo a complexidade de seu sistema de distribuição do esgoto afluente. O foco da presente pesquisa foi o de simplificar a distribuição e dispersão do esgoto no reator, assim como aprimorar a retenção de lodo, mediante substituição do sistema convencional de tubos por misturador mecânico e do (tradicional) separador trifásico por decantador de alta taxa, respectivamente. Em essência, propôs-se reator dividido em duas regiões distintas: uma para reação (i.e. digestão anaeróbia da matéria orgânica), na qual a manta de lodo foi agitada mecanicamente através do movimento rotacional de um impelidor, e outra, para remoção de sólidos suspensos mediante uso de decantador com placas paralelas; um sistema de recirculação do lodo também foi implantado, para bombear a biomassa sedimentada até o compartimento de digestão. A pesquisa foi subdividida em três fases: nas duas primeiras, experimentos em escala de bancada foram realizados visando obtenção de dados básicos para dimensionamento dos sistemas de agitação e de decantação, enquanto que a terceira fase consistiu na aplicação dessas tecnologias em sistema de tratamento, em escala piloto, com volume útil total de 20,8 m3 (composto por uma câmara de digestão de 17,0 m3 e um compartimento de 3,8 m3 para remoção de sólidos), assim como na análise de seu desempenho. Durante a pesquisa, esgoto sanitário foi utilizado para alimentar o sistema experimental, instalado na Escola de Engenharia de São Carlos. Ao longo do período de operação, que durou 130 dias, quatro condições operacionais foram testadas (caracterizadas pela agitação intermitente e diferentes taxas de carregamento hidráulico, que variaram entre 27,6 e 66,5 m3.d-1) e o sistema alcançou eficiências de remoção máxima para DBO, DQO e SST de 82%, 72% e 83%, respectivamente. O decantador de alta taxa apresentou surpreendente eficiência de remoção de sólidos suspensos (taxas de até 98%). A pesquisa demonstrou que o novo sistema A2SB (Anaerobic Activated Sludge Blanket) pode apresentar desempenhos satisfatórios, mesmo operando sem separador trifásico e sistema de distribuição do esgoto afluente.
APA, Harvard, Vancouver, ISO, and other styles
36

Lima, Ana Beatriz Barbosa Vinci. "Pós-tratamento de efluente de reator anaeróbio em sistema seqüencial constituído de ozonização em processo biológico aeróbio." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-19032007-205446/.

Full text
Abstract:
O pós-tratamento apresenta-se como uma forma de adequar o efluente de reatores anaeróbios aos requisitos da legislação ambiental e propiciar a proteção dos corpos receptores. O trabalho foi desenvolvido com a finalidade de avaliar a viabilidade técnica da utilização do processo de ozonização quando aplicado a um sistema combinado composto por reator UASB seguido por biofiltro aerado submerso. No sistema foi avaliada a operação de quatro biofiltros, dois com carvão ativado e dois com anéis de polietileno. Para verificar a influência da oxidação com ozônio na biodegrabilidade somente um dos biofiltros preenchidos por cada material suporte recebeu efluente ozonizado. Os menores valores de concentração de DQO foram encontrados nos filtros preenchidos com carvão ativado granular, com valores de até 14,00 mg/L, para os dois tipos de afluentes, ozonizado e não-ozonizado. Contudo, considerando eficiência de remoção de DQO para todo período de operação os biofiltros preenchidos com anéis de polietileno se mostraram mais eficazes, com eficiência de até 80%. Os resultados evidenciaram a ocorrência de nitrificação em todos os sistemas, uma vez que houve consumo de NTK e de alcalinidade, com queda de pH; produção de nitrato.
The post-treatment is presented as an alternative to adjust the effluent of anaerobic reactors to the requirements of the brazilian environmental legislation. The work was developed with the purpose to evaluate the viability of the use of the ozonization process when applied to a system composed by a reactor UASB followed by submerged aerated biofilter. In the system the operation of four biofilters was evaluated, two fillet with granular activated carbon (GAC) and two with polyethylene rings. To check the influence of the oxidation with ozone in biodegradability, only one of the biofilter with each support material received ozonized effluent. The lowest values of DQO concentration had been found in the filters with GAC, with values of up to 14,00 mg/L, for the two types, ozonized and not-ozonized. However, considering the DQO removal efficiency for all operation periods the biofilters with polyethylene rings were more efficient, with efficiency of up to 80%. The results had evidenced the occurrence of nitrification in all the systems, a time that had NTK and alkalinity consumption, with fall of pH and nitrate production.
APA, Harvard, Vancouver, ISO, and other styles
37

Nunes, Marco Antonio da Silva. "Tratamento combinado de drenagem ácida de minas e esgoto doméstico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/27263.

Full text
Abstract:
Muitos locais de mineração de carvão estão próximos a centros urbanos, coexistindo, nestas regiões, a drenagem ácida de minas (DAM) e os esgotos domésticos, sendo que, ambos os efluentes afetam a qualidade da água dos corpos receptores se ali lançados sem o devido tratamento. A drenagem ácida de minas afeta a qualidade da água baixando o pH, aumentando a acidez e acrescendo quantidades indesejáveis de ferro, manganês, alumínio, sulfatos e outros metais enquanto que o esgoto doméstico caracteriza-se pela presença de alcalinidade, matéria orgânica e microrganismos potencialmente patogênicos. Estudos anteriores demonstraram que a DAM pode ser utilizada como agente coagulante no tratamento físico-químico dos esgotos e, baseado nisto, o objetivo do presente trabalho foi avaliar o tratamento combinado da DAM com o esgoto doméstico de modo que também ocorra a redução dos metais e acidez presentes na DAM. O processo baseia-se no fato de que a alcalinidade do esgoto pode, pelo menos em parte, neutralizar a acidez da DAM, proporcionando uma economia no consumo de reagentes para a correção do pH. Com a elevação do pH, o ferro e o alumínio presentes na DAM sofrem hidrólise e coagulam na forma de hidróxidos dos referidos metais, separando-se da fase líquida na forma de um precipitado gelatinoso que carrea consigo os sólidos suspensos presentes no esgoto constituídos, principalmente, de matéria orgânica e microrganismos patogênicos, fósforo e nitrogênio. Assim, a metodologia do presente trabalho consistiu em realizar o tratamento em laboratório de ambos os efluentes considerando diferentes proporções de mistura. Nas condições empregadas no presente trabalho, obteve-se um efeito coagulante ótimo, em pH próximo a 7,0, para a proporção DAM:esgoto de 1:2, correspondendo a concentrações de Fe e Al acima de 80 mg/L na mistura. Para estas condições a redução de carga orgânica, nutrientes, metais e microrganismos foi elevada. A remoção de carga orgânica em termos de DQO foi 67%, a redução de nitrogênio foi de 40%, a redução de fósforo foi de 90% e a remoção de bactérias do grupo coliforme comparável aos processos convencionais de tratamento de esgoto sanitário. Dos metais presentes na DAM, o Fe e Al sofreram reduções de 99% e o Zn de 95%. O Mn, reduziu apenas 13 % na faixa de pH 7,0 utilizada no trabalho, sendo necessário tratamento adicional para atingir os limites de emissão previstos em legislação.A partir dos resultados obtidos, pode-se concluir que a mistura dos fluxos é uma alternativa para o tratamento combinado dos efluentes DAM e esgoto doméstico, onde coexistam em proporções e características físico-químicas definidas neste trabalho.
Many coal mining places are close to inhabited concentrations, where there are the acid mine drainage (AMD) and domestic sewage and both effluent affect the quality of water bodies if released without proper treatment. The AMD affects water´s quality decreasing pH, increasing acidity and the concentration of undesirable metals such as iron, manganese, aluminum, sulphates and other metals while the domestic sewage is characterized by the presence of alkalinity, organic matter and microorganisms, with possible presence of pathogenic. Previous studies have shown that the AMD can be used as an coagulant agent on physico-chemical treatment of sewage and, based on this, the aim of this work was to study the combined treatment of AMD and domestic sewage so that also occur metals and acidity reduction present in the AMD. The process is based on the fact that the sewage´s alkalinity could neutralize part of the AMD acidity, providing an economy in reagents for pH correction. At the same time, the pH increasing provides that the iron and aluminium present in the AMD, became hydrolyzed in the form of hydroxides of these metals, and provide a coagulation effect separating themselves from the liquid phase like as gelatinous precipitate which carry on suspended solids present in domestic sewage constituted mainly of pathogenic micro-organisms and organic matter, nitrogen and phosphorus. Thus, the methodology of the present work consisted of laboratory experiments considering different proportions of mixtures. Over the conditions employed in this work, the best coagulant effect was obtained with pH value around 7,0 and effluent proportion of 1:2 (DAM:sewage) corresponding to concentrations of Fe and Al above 80 mg/L in the mixture. For these conditions the organic load reduction, nutrients, metals and microorganisms was high. Removal of organic load in terms of COD was 67%, the reduction of nitrogen was 40%, phosphorus was 90% and the removal of bacteria of coliform bacteria group comparable to conventional processes for the treatment of sewage. The metals present in the AMD also was removed; the Fe and Al cut of 99% each and the Zn cut of 95%. The Mn, reduced only 13% in the range of pH 7.0 used at work, and additional treatment is needed to achieve the emission limits laid down in legislation for this metal. It was concluded that the combined treatment of AMD and sewage can be an alternative to reduce the pollutants load in sanitary effluents. From the results obtained, it can be concluded that the mixture flows is an alternative to the combined treatment of domestic sewage and DAM effluents, where they could coexist in the proportions and physico-chemical properties defined in this work.
APA, Harvard, Vancouver, ISO, and other styles
38

Gadotti, Romeu Francisco. "Pós-tratamento de efluente de reator anaeróbio compartimentado por oxidação com ozônio precedendo biofiltro aerado submerso." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-15032016-121120/.

Full text
Abstract:
Este trabalho teve como finalidade a avaliação da viabilidade técnica e econômica da utilização do processo de ozonização seguido de biofiltro aerado submerso, para melhoria da qualidade de efluente de reator anaeróbio compartimentado, para atender a legislação ambiental no que se refere ao padrão de emissão e para o reúso. A pesquisa foi dividida em três etapas. Na primeira etapa avaliou-se a concentração de ozônio aplicada e o seu tempo de contato através de um planejamento experimental, composto por planejamento fatorial e metodologia de superfície de resposta. Na segunda etapa realizou-se ensaios de isotermas utilizados como critério de escolha para o tipo de carvão ativado granular utilizado como meio suporte do biofiltro aerado submerso. Na terceira etapa operou-se o sistema de pós-tratamento composto por ozônio - biofiltro aerado submerso para avaliação de sua eficiência e comparação com os padrões e critérios de reúso. Na primeira etapa foram encontradas duas condições de maior eficiência para dosagens de 10 mg O3/L em 30 minutos e 30 mg O3/L em 10 minutos. A segunda etapa ficou prejudicada em função do efluente ozonizado ter floculado, com isso interferindo no ensaio de isoterma. Na terceira etapa foram construídos dois biofiltros aerados submersos, um com meio suporte de carvão ativado granular e outro com cubos de espuma de poliuretano. Os dois BFs apresentaram efluente com excelente qualidade final. O BFs com meio suporte de CAG demonstrou ser o mais eficiente entre os dois, teve estabilização mais rápida e produziu efluente final com DQO da ordem de 14,3 mg/L e SST de 6,8 mg/L. O custo do pós-tratamento ficou em torno de R$ 0,25 por metro cúbico para população de 10.000 habitantes e de R$ 0,16 para população de 200.000 habitantes, demonstrando com isso que é um processo viável técnica e economicamente. O reúso agrícola torna-se interessante, visto que, o efluente final apresenta fósforo e nitrato que podem ser consumidos pelas plantas.
This work had as purpose the assessment of the technical and economical viability of ozonization process\' use followed by submerged aerated biofilter, for improvement of the quality of effluent of anaerobic baffed reactor, to attend the environmental legislation in what it refers to the emission pattern and reuse guidelines. The research was divided in three faces. In the first face it was evaluated the concentration of ozone applied and its time of contact through a factorial planning and response surface methodology. In the second face, tests of isotherms were made as choice criterion for the type of granulate activated carbon used as material support of the submerged aerated biofilter. In the third face the post-treatment system composed by ozone - submerged aerated biofilter was operated for assessment of your performance and a comparison with the patterns and reuse criteria. In the first face two conductions of greater performance were found: one with 10 mg O3/L and 30 min and other with 30 mg O3/L and 10 min. The second face was prejudiced in function of the effluent ozonizated to have floculated, with that interfering in the isotherm test. In the third faces two submerged aerated biofilters were built, one with granulate activated carbon and other with polyurethane foam as material supports. The BFs presented effluent with excellent final quality. The BFs with GAC demonstrated to be the most efficient among the two, it had faster stabilization and it produced final effluent with COD of the order of 14,3 mg/L and TSS of 6,8 mg/L. The cost of the post-treatment was around in R$ 0,25 for cubic meter for 10.000 persons and R$ 0,16 for 200.000 persons, demonstrating viable technique and economically of process. The agricultural reuse becomes interesting, because the final effluent presents phosphorus and nitrate that can be consumed by the plants.
APA, Harvard, Vancouver, ISO, and other styles
39

Breton, Audrey. "Potentialité de la biomasse végétale pour le traitement des eaux usées domestiques : développement d’un procédé de biofiltration pour l’assainissement non collectif." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0082.

Full text
Abstract:
En France, 13 millions de personnes sont concernées par l’assainissement non collectif (ANC). Un système d’ANC est composé d’un prétraitement, en général une fosse toutes eaux, suivi d’un système de traitement. Les récentes évolutions réglementaires ouvrent un éventail de possibilités quant aux systèmes de traitement possibles pour traiter les eaux usées. L’objectif de ce travail de thèse est de développer un système de traitement des eaux usées à partir de biomasse végétale issue de déchets de l’agriculture. Un suivi analytique de six habitations individuelles a permis l’étude des caractéristiques des eaux usées avant et après leur entrée dans le système de prétraitement. Ces eaux sont caractérisées par une grande variabilité d’une famille à une autre ainsi qu’au sein d’une même habitation. La charge organique par habitant à traiter est en moyenne de 60 gDBO5.j-1 pour un volume d’eau rejeté de 90 L.j-1, soit des effluents deux fois plus concentrés que ce qu’indique la réglementation. Le dimensionnement et le suivi d’un pilote à l’échelle laboratoire ont permis d’évaluer la potentialité de plusieurs milieux végétaux pour le traitement des eaux usées prétraitées. Ils sont comparés à un milieu de référence ayant une efficacité prouvée en traitement des eaux. L’étude des performances épuratoires, pour deux charges volumiques différentes, des différents milieux a été réalisée sur quarante semaines. Cette étude a permis l’élaboration et la mise en place d’un pilote in situ à l’échelle de la maison individuelle. La démarche de l’analyse de cycle de vie a été appliquée au pilote in situ dans le but d’optimiser le procédé mis en place. De plus, l’ACV a permis d’effectuer une comparaison avec différents procédés existants
In France, 13 million people are concerned by on-site wastewater treatment (OSWWT). An OSWWT system consists of pretreatment, usually a septic tank, followed by a treatment system. Recent regulatory developments open up a range of possibilities as to possible treatment systems for wastewater treatment. The objective of this thesis is to develop a system of wastewater treatment based on plant biomass from waste of agriculture. Analytical monitoring of six individual houses allowed the study of the characteristics of the wastewater before and after their entry into the pretreatment system. Waters are characterized by a wide variability from one family to another and from the same house. The organic load per person is treating an average of 60 gDBO5.j-1 for a volume of water discharged 90 L.j-1, that to say effluent two times more concentrated than indicated by the regulations. The design and monitoring of a pilot scale laboratory were used to evaluate the potential of several plant biomass for the treatment of pretreated wastewater. They are compared to a reference medium with proven effectiveness in water treatment. The study of treatment performance for two different volume loads of different backgrounds was performed during forty weeks. This study resulted in the development and implementation of a pilot in situ for single house. The approach of life cycle analysis has been applied to in situ pilot in order to optimize the process in place. In addition, LCA has to make a comparison with different existing OSWWT
APA, Harvard, Vancouver, ISO, and other styles
40

Junior, Orlando de Carvalho. "Aprimoramento de um biofiltro aerado submerso empregado no pós-tratamento do efluente de reator anaeróbio compartimentado." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-04042016-100845/.

Full text
Abstract:
O principal objeto desta pesquisa foi aprimorar a eficiência de remoção de DQO, DBO, SST e conversão de nitrogênio amoniacal de biofiltro aeróbio submerso (BF), aplicado no pós-tratamento do efluente de um reator anaeróbio compartimentado (RAC). O BF, em escala piloto, foi construído em tubos de PVC, com 0,40 m de diâmetro externo e volume útil de 190,6 L. Para a imobilização celular foram utilizadas, como material suporte, matrizes cúbicas de espuma de poliuretano, em um período total de operação de 180 dias e tempos de detenção hidráulica de 6, 4 e 12 horas, respectivamente. O trabalho de investigação foi dividido em duas fases: na fase I o BF operou por 55 dias com TDH de 6 horas, para a transferência de OD para o sistema foi utilizado uma câmara de saturação não pressurizada; na fase II, o BF operou por 28 dias com TDH de 6 horas; por 30 dias com TDH de 4 horas e no período restante por 67 dias com TDH de 12 horas. Nessa fase a câmara de saturação foi inicialmente removida por não atender à demanda de OD necessária para manter condições aeróbias no interior do BF; foi injetado ar comprimido diretamente no sistema. Foram alcançadas eficiências médias de remoção de DQOb, DBOb e SST; na fase I 32,4%, 39,2% e 62% com concentrações médias no efluente bruto de 143,7 mg DQOb/L, 101,2 mg DBOb/L e 25,1 mg SST/L, respectivamente. Nessa fase, não foi detectada eficiência de conversão de nitrogênio amoniacal. Na fase II, operando com TDH de 6 horas, o BF alcançou eficiências médias de remoção de DQOb, DBOb e SST de 74%, 85% e 85% com concentrações médias no efluente bruto de 63 mg DQOb/L, 15 mg DBOb/L e 13 mg SST/L, respectivamente. Nesse período também não foi detectado processo de nitrificação. Para TDH de 4 horas, as eficiências média de remoção de DQOb, DBOb e SST foram 77%, 70% e 71%, com concentrações médias no efluente bruto de 57 mg DQOb/L, 27 mg DBOb/L e 17 mg SST/L, respectivamente. Durante esse período também não ocorreu conversão de nitrogênio amoniacal. Na fase final, em que o BF operou com TDH de 12 horas, foram encontradas eficiências médias de remoção de DQOb, DBOb e SST de 83%, 73% e 86% com concentrações médias no efluente bruto de 42 mg DQOb/L, 36 mg DBOb/L e 9 mg SST/L, respectivamente. Nesse período a eficiência média de conversão de nitrogênio amoniacal foi de 57,8% com concentração média de 10 mg N-amoniacal/L no efluente bruto. A espuma de poliuretano foi adequada para imobilização da biomassa aeróbia, porém, a lavagem do leito foi dificultada pela mesma devido à sua alta capacidade de absorção. A injeção direta de ar no sistema resultou em considerável aumento da eficiência, produzindo efluente bastante clarificado.
The main object of this research was the removal efficiency improvement of COD, BOD, TSS and ammonia nitrogen conversion in a Submerged Aerated Biofilter (BF), used in the effluent post-treatment of an Anaerobic Baffed reactor (ABR). The BF, was built in pilot scale by PVC tubes with 0,40 m of external diameter and useful volume of 190,6 L. Cubic matrices of polyurethane foam with were used as support for cellular immobilization in an operation period of 180 days with HDT of 6, 4 and 12 hours, respectively. The investigations period was shared in two phases: BF in the phase I operated for 55 days with HDT of 6 hours and the oxygen transferring was done using a chamber not pressured; BF in the phase II operated for 28 days with HDT of 6 hours, 30 days with HDT of 4 hours and on the rest of the investigation period (67 days) with HDT of 12 hours. In this phase the chamber was initially removed due to not attending the DO demand necessary to keep aerobic condition into the BF and, compressed air was directly injected at the system. The removal averages efficiencies of CODr, BODr and SST in the phase I were 32,4%, 39,2% and 62% with average concentrations in the raw effluent of 146 mg CODr/L, 101,2 mg BODr/L and 25,1 mg TSS/L, respectively. Ammonia nitrogen conversion efficiency wasn\'t detected in this. In the phase II, operating with HDT of 6 hours, BF reached averages efficiencies of CODr, BODr and SST of 74%, 85% and 85% with averages concentrations in the raw effluent of 63 mg CODr/L, 15 mg BODr/L and 13 mg TSS/L, respectively. Nitrification process wasn\'t detected in this period too. For HDT of 4 hours, the removal averages efficiencies of CODr, BODr and SST were 77%, 70% and 71% with average concentrations in the raw effluent of 57 mg CODr/L, 27 mg BODr/L and 17 mg TSS/L, respectively. During this period ammonia nitrogen conversion also not occurred. In the ending phase, where BF operated with HDT of 12 hours, removal averages efficiencies found of CODr, BODr and TSS were 83%, 73% and 86% with averages concentrations in the raw effluent of 42 mg CODr/L, 36 mg BODr/L and 9 mg TSS/L, respectively. In this period the ammonia nitrogen conversion medium efficiency was 57,8% with medium concentration in the raw effluent of 10 mg N-ammonia/L. The polyurethane foam was appropriated for aerobic biomass immobilization however the bed washing was harmed by the same one due to its high absorption capacity. The direct air injection into the system resulted in a considerable efficiency increase producing a sufficiently clearly effluent.
APA, Harvard, Vancouver, ISO, and other styles
41

Sitônio, Camila Pereira. "Pós-tratamento de efluentes de reatores anaeróbios utilizando biofiltro aerado submerso." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-06022017-100331/.

Full text
Abstract:
O potencial de aplicação do biofiltro aerado submerso (BF) para pós-tratamento de efluentes de um reator anaeróbio compartimentado foi avaliado através de um experimento em escala de laboratório (bancada), visando adequar o efluente tratado aos padrões estabelecidos pela legislação ambiental. Estudou-se a remoção de matéria orgânica e sólidos suspensos no BF, e também a possibilidade de nitrificação no reator. O reator foi construído em coluna de acrílico com 1,30 m de altura, 100 mm de diâmetro e com volume útil de 7,2 L, sendo operado com tempo de detenção hidráulica de 5 horas. Como suporte de imobilização celular, utilizou-se matrizes cúbicas de espuma de poliuretano. Neste trabalho, são apresentados os principais resultados obtidos na operação contínua do reator BF, durante 93 dias consecutivos, divididos em duas fases, devido à variação da carga orgânica volumétrica aplicada (Fase I: 0,99 - 1,87 kg DQO/m3. dia; Fase II: 0,26 - 0,88kg DQO/m3. dia). Durante a fase I de operação, o BF alcançou eficiências médias de remoção de DQO e DBO5 da amostra bruta de 82 e 86%, respectivamente, e de conversão do nitrogênio amoniacal de 81%, com concentração média efluente de 7,5 mg N-amoniacal/L. Na fase final de operação, para remoções médias de 70% de DQOB e 57% de DBO5, o efluente produzido pelo BF apresentava concentrações médias de 30 mg DQOB e 21 mg DBO5/L. Entretanto, o processo de nitrificação nessa fase foi instável, com concentração média de efluente de 25,3 mg N-amoniacal/L. O BF produziu efluente clarificado alcançando valores médios de 3,46 e 2,58 mg/L para SST e SSV, para segunda fase de operação. Este efluente atendeu ao padrão de lançamento do Estado de São Paulo em 100% dos resultados de DBO5, durante todo o período experimental, apresentando bom desempenho na remoção de matéria orgânica, tanto para altas como para baixas cargas orgânicas volumétricas aplicadas. A espuma de poliuretano mostrou-se um suporte adequado para imobilização da biomassa aeróbia e remoção de sólidos suspensos, devida a sua grande capacidade de absorção. Constatou-se, portanto, que o emprego do biofiltro aerado submerso apresenta-se como uma alternativa vantajosa como pós-tratamento de efluentes de reatores anaeróbios, produzindo efluente com excelente quantidade e parcialmente nitrificado.
The potential of application of the submerged aerated biofilter (BF) for post-treatment of effluents of an anaerobic baffed reactor was evaIuated through an experiment on Iaboratory scale to adapt the treated effluent to the established quality standards required by the environmental legislation. The removal of organic matter and suspended solids in BF, and aIso the possibility of nitrification in the reactor were studied. The reactor was a column of acrylic with 1,30 m of height, 100 mm diameter and with a useful volume of 7,2 L, being operated with hydraulic detention time of 5 hours. As a support for celluIar immobilization, cubic matrices of polyurethane foam. In this work, the main results were obtained in the continuous operation of the BF reactor, for 93 consecutive days, divided in two phases due to the variation of the applied organic volumetric loading rate (phase I: 0,99-1,87 kg COD/m3.day; Phase II: 0,26-0,88 kg COD/m3.day). During phase I of the operation, BF reached average removal efficiencies of COD and BOD5 of the raw samples of 82 and 86%, respectively, and of conversion of the ammonia nitrogen of 81%, with average effluent concentration of 7,5 mg N-ammonia/L. In the final phase of operation, for removals of 70% of COD and 57% of BOD5, the effluent produced by BF presented average concentrations of 30 mg COD/L and 21 mg BOD5/L. However, the nitrification process in that phase was unstable, with effluent concentrations of 25,3 mg N-ammonia/L. BF produced a very clarified effluent reaching average values of 3,46 and 2,58 mg/L for SST and SSV, for the second operation phase. This effluent satisfied the qualify standards for its discharge in a stream in the State of São Paulo in 100% of the results of BOD5, during the whole experimental period, presenting good performance in the removaI of organic matter, for high as well as for low organic volumetric loading applied. The polyurethane foam demonstrate to be an appropriate support for immobilization of the aerobic biomass and removaI of suspended solids, due to its great absorption capacity. It was found that the employment of the submerged aerated biofilter offers as an advantageous aIternative as anaerobic eftluent post-treatment, producing effluent with excellent quality and partially nitrified.
APA, Harvard, Vancouver, ISO, and other styles
42

Lopes, Humbelina Silva Siqueira. "Tecnologias limpas aplicadas ao tratamento de águas residuárias domésticas para reuso no semiárido." Universidade Federal Rural do Semi-Árido, 2012. http://bdtd.ufersa.edu.br:80/tede/handle/tede/465.

Full text
Abstract:
Made available in DSpace on 2016-08-31T13:15:07Z (GMT). No. of bitstreams: 1 HumbelinaSSL_DISSERT.pdf: 3127454 bytes, checksum: 33b00e3001eeb7b35be68ce903acff56 (MD5) Previous issue date: 2012-02-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The scarceness of water and the lack of sanitation services in rural environment is a reality of northeastern semi-arid, being indispensable the development of low cost technologies, with easy operation and high efficiency, in addition to being environmentally accepted by society. Considering that, this work intended to analyze the performance of mini-stations of domestic wastewater treatment for reuse in northeastern semi-arid regions. The experiments have been done at UFERSA s experimental areas in Mossoró RN, experiments I with grey water, experiment II with domestic sewage. Some procedures were made to analyze the mini-stations, they were the flow measurement and the characteristic determination: hydrogen-ion potential (pH), electrical conductivity (EC), turbidity (TB), total coliforms (TC), thermotolerant coliforms (ThC), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), suspended solids (SS), total phosphorus (P-total), total nitrogen (N-total), oil and grease (OG) and nitrate (NO3-). The experiments were set in the Completely Randomized Design with four repetitions and four treatments (treatment levels). The analysis of variance was done to 1 and 5 % of probability, the averages were compared using Turkey s test at 5 % of probability. The results evidence that the applied treatment at experiments I caused significant removals of the characteristics TB, TC, ThC, COD, BOD, TS, SS, P-total and OG; and by the average level of 29.22 MJ m-2 d-1 the obtained average removal was 98.82 % at ThC population. At experiments II significant removals occurred of TB, TC, ThC, COD, BOD, SS, P-total, NO3- and OG; and with average solar radiation of 27.81 MJ m-2 d-1, it occurred an average removal in ThC population of 99.98 %. The mini-stations of domestic wastewater treatment enable the effluent the microbiological quality that follows the national guidelines to fertigation of crops when not eaten raw
A escassez de água e a falta de esgotamento sanitário em ambientes rurais é uma realidade do semiárido nordestino, tornando imprescindível o desenvolvimento de tecnologias de baixo custo, fácil operação e alta eficiência, além de serem ambientalmente aceitas pela sociedade. Diante do exposto, o trabalho objetivou analisar o desempenho de miniestações de tratamento de águas residuárias domésticas para reuso em regiões semiáridas do nordeste. Os experimentos foram realizados em áreas experimentais da UFERSA em Mossoró-RN, sendo o experimento I com água cinza e o experimento II com esgoto doméstico. Para avaliação do desempenho das miniestações procedeu-se com a medição de vazão e determinação das características: potencial hidrogeniônico (pH), condutividade elétrica (CE), turbidez (TB), coliformes totais (CT), coliformes termotolerantes (CTe), Demanda Química de Oxigênio (DQO), Demanda Bioquímica de Oxigênio (DBO), sólidos totais (ST), sólidos suspensos (SS), fósforo total (Ptotal), nitrogênio total (Ntotal), oléos e graxas (OG) e nitrato (NO3-). Os experimentos foram montados no Delineamento Inteiramente Casualizado com quatro repetições e quatro tratamentos (níveis de tratamento). Foi realizada a análise de variância a 1 e 5 % de probabilidade, as médias foram comparadas utilizando-se o teste de Turkey à 5 % de probabilidade. Os resultados evidenciaram que o tratamento aplicado no experimento I acarretou remoções significativas das características TB, CT, CTe, DQO, DBO, ST, SS, Ptotal e OG; e mediante nível médio de 29,22 MJ m-2 d-1 foi obtido remoção média de 98,82 % na população de CTe. No experimento II houveram remoções significativas de TB, CT, CTe, DQO, DBO, SS, Ptotal, NO3- e OG; e com radiação solar média de 27,81 MJ m-2 d-1, ocorreu remoção média na população de CTe de 99,98 %. As miniestações de tratamento de águas residuárias domésticas possibilitaram ao efluente qualidade microbiológica que atende as diretrizes nacionais para fertirrigação de cultivos agrícolas não consumidos crus
APA, Harvard, Vancouver, ISO, and other styles
43

Roxendal, Tara. "Designing Sustainable Wastewater Management : A case study at a research farm in Bolivia." Thesis, Institutionen för energi och teknik, Sveriges lantbruksuniversitet, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-174255.

Full text
Abstract:
Sustainable sanitation and wastewater management are of increasing importance around the world while certain resources are becoming scarcer and therefore more valuable. The lack of proper wastewater management causes problems and the degradation of some resources. Increasing urbanization in peri-urban areas puts extra stress on the need for finding and implementing sustainable solutions to prevent ground- and surface water contamination. The study aimed to design a more sustainable wastewater management at the farm Ceasip located in the peri-urban area of Santa Cruz de la Sierra, Bolivia. Due to the lack of proper wastewater management on the farm, Ceasip was a likely contributor to the contamination of the groundwater. Of the farm’s different wastewater sources, this study focused on the domestic wastewater and its possible reuse in agriculture. The prioritized sustainability criteria were to prevent groundwater contamination, reduce water usage and recycle nutrients. First various wastewater management options were identified. Next these were evaluated according to the different sustainability criteria previously mentioned. In order to determine a management option, data and information were collected and processed regarding water flows, water quality, physical conditions as well as sustainability criteria within environment, technology, socio-culture, health and economy. Results of the present conditions for Ceasip showed various characteristics, like small water flows, high nitrogen and fecal coliform concentration and clayey soils, from which suitability of different treatments was determined. Urine separation was deemed appropriate for Ceasip to increase the recycling of nutrients as well as reduce the nitrogen levels in wastewater. Treatment ponds and leach fields were designed as two wastewater treatment alternatives. For Ceasip to implement and manage water and wastewater sustainably through one of the mentioned alternatives could have a positive impact for the farm and environment, as well as serve as an example to employees, visitors and other establishments.
El saneamiento y gestión sostenible de las aguas residuales es de creciente importancia en los tiempos modernos. Los recursos naturales son cada vez más escasos y valiosos. Mas aún, la falta del manejo adecuado de aguas residuales es causa importante de la degradación de los recursos restantes. La creciente urbanización en las zonas periurbanas acentúa la necesidad de encontrar e implementar soluciones sostenibles en el manejo de aguas residuales. En estas zonas dicho manejo (colección y tratamiento de aguas residuales) es deficiente. Como consecuencia se percibe una contaminación continua de las aguas subterráneas en estas condiciones. El objetivo del estudio realizado fue diseñar un sistema de gestión de aguas residuales más sostenible para la granja Ceasip ubicada en la zona periurbana de Santa Cruz de la Sierra, Bolivia. El estudio se enfoca principalmente en el manejo de las aguas residuales domésticas y su posible reutilización en la agricultura. Sin embargo, cabe mencionar que las aguas residuales en la granja Ceasip provienen también de otras actividades. Para el concepto de sostenibilidad de este proyecto, son prioritarios los criterios de prevención de la contaminación del agua subterránea, la reducción del consumo de agua y el reciclaje de nutrientes. La metodología de estudio consistió en varias etapas. Después de una extensa revisión de la literatura existente diferentes opciones de gestión fueron evaluadas de acuerdo con los criterios de sostenibilidad antes mencionados. Para hacer una elección de un tratamiento adecuado, se realizaron compilaciones y procesamiento de datos con respecto a los flujos y la calidad de aguas, las condiciones geomorfológicas, climáticas así como la evaluación de algunos parámetros ambientales, sociales, técnicos, económicos, y de salubridad. En las condiciones actuales, los resultados de las evaluaciones de la granja, resaltaron aspectos críticos sobre los que se propusieron algunos tratamientos alternativos; por ejemplo el aumento en el reciclaje de nutrientes así como la reducción de los niveles de nitrógeno en las aguas residuales. La separación de la orina se consideró de gran importancia para la gestión apropiada de las aguas residuales de Ceasip. Al final se sugirieron dos posibles alternativas para el diseño del tratamiento de aguas, la utilización de lagunas o de lechos filtrantes con arena, cuya contribuiría positivamente tanto como para el entorno local y el personal de la granja así como para la comunidad en general, sirviendo como ejemplo para otros establecimientos.
Hållbar sanitet och avloppsvattenhantering är av ökande vikt runt om i världen. Resurser blir allt knappare och mer värdefulla medan bristen på hållbar hantering även skapar problem och degradering av återstående resurser. På grund av den ökande urbaniseringen är grundvattnet i städernas periferier speciellt utsatt eftersom avloppsvattenhantering saknas där. Syftet med denna studie är att designa en mer hållbar avloppsvattenhantering för gården Ceasip i peri-urbana Santa Cruz de la Sierra, Bolivia. I nuläget saknas en lämplig lösning på gården. Av de olika typerna av avloppsvatten på gården, fokuserar denna studie främst på avloppsvattnet från hushåll och möjligheterna att återanvända det inom jordbruket. För hållbarhetskonceptet i uppsatsen, prioriteras följande kriterier: skydd av grundvattnet, minskning av grundvattenkonsumtion och näringsåtervinning. En litteraturstudie gjordes över olika avloppsvattenhanteringsalternativ som sedan utvärderades enligt hållbarhetskriterierna. För att bestämma det mest lämpliga hanteringsalternativet, samlades data och information om vattenflöden, vattenkvalitéer, klimat, geomorfologi och även för miljö, teknik, hälsa, ekonomi och kultur. Resultaten från sammanställningen visade på olika egenskaper från vilka lämplig hantering bestämdes. För att öka återvinningen av näringsämnen och minska kvävekoncentrationerna i avloppsvattnet, visade det sig vara lämpligt att använda urinsortering. Två behandlingsalternativ designades, och det föreslogs antingen behandlingsdammar eller förstärkta infiltrationsanläggningar. Då någon av dessa alternativ tillämpas på Ceasip skulle man även kunna påverka lokalt och regionalt genom att sätta ett bra exempel.
APA, Harvard, Vancouver, ISO, and other styles
44

Ruiz, Hernan. "Optimisation de la filière Filtre Planté de Roseaux appliquée au traitement des effluents domestiques pour différents niveaux de performances." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0023/document.

Full text
Abstract:
Les limites de rejets deviennent de plus en plus strictes pour les petites collectivités et les zones sensibles à l’eutrophisation. L’objectif est de mettre en conformité les collectivités au titre des nouvelles obligations (jusqu’au 15 mgNGL.L⁻¹ et 2 mgPtot.L⁻¹) avec une attention particulière sur l’amélioration du traitement des eaux usées des petites collectivités (< 2000 EH).En France, l'utilisation de stations d’épuration par filtres plantés de roseaux (FPR) pour traiter les effluents domestiques de petites communautés (< 2 000 EH) a suivi une augmentation exponentielle au cours des dernières années. La filière de FPR classique permet de bonnes performances épuratoires en termes de MES, DCO et TKN, néanmoins ce procédé présente de faibles taux de dénitrification (NGL) et d'élimination du phosphore (PTOT).L’objectif de ce travail de thèse a été de développer des solutions innovantes pour le traitement des eaux usées domestiques pour les petites collectivités < 2000 EH en utilisant différentes voies d’intensifications et de combinaison de procédés. Une approche intégrée a été suivie avec des expériences en laboratoire, et une étude sur pilotes en conditions réelles pendant 26 mois. Une comparaison des résultats obtenus sur les pilotes avec des résultats obtenus sur des démonstrateurs de pleine échelle a également été effectuée.L’utilisation de zéolite a permis d’améliorer les performances par l’adsorption de NH4-N, avec des concentrations inférieures à 15 mg.L⁻¹ en été, dans une configuration plus profonde des filtres (95 cm) avec de dispositifs d’aération passive. Cependant, des fluctuations ont été observées à baisses températures.Une configuration basée sur la combinaison de conditions non saturées – saturés pour favoriser la pour l’élimination de NGL a été évaluée. De la même façon, la zéolite a permis d’améliorer l’élimination de NH₄-N et favoriser la nitrification. Les concentrations en sortie ont été de 40 et 52 mgNGL.L⁻¹ pour le filtre de zéolite et gravier respectivement.L'utilisation de la recirculation à pleine échelle a permis d'améliorer les performances dans un seul étage non saturé/saturé. Ces résultats sont toutefois préliminaires dans la mesure où ces stations sont en période de démarrage et de maturation et que peu de Bilan 24h étaient disponibles, ce qui rend difficile la comparaison avec les pilotes
Discharge limits are becoming increasingly stringent for small communities and sensitive eutrophication areas. The objective is to established new community obligations by setting environmental quality targets (up to 15 mgNGL.L⁻¹ and 2 mgPtot.L⁻¹) especially to the improvement of wastewater treatment in small communities (<2000 p.e). In France, the use of Treatment Wetlands to treat domestic wastewater from small communities (<2 000 p.e.) has increased exponentially in recent years. The classical Vertical Flow Treatment Wetland (VFTW) enable very good performances removal in terms of TSS, COD and TKN, nevertheless denitrification (TN) and phosphorus removal (Ptot) are limited. The aim of this work was to develop innovative solutions, allowing the reduction of the footprint and the improvement of the classical French VFTW in terms of nitrogen (N) removal. An integrated approach was followed with pilot scale experiments and full scale systems using real wastewater during 26 months. A comparison between results of pilots and full-scale was also carried out.The use of zeolite allowed to improve the performances by the adsorption of NH₄-N, with lower concentrations in summer (15 mg.L⁻¹), using a compact filter (95 cm) with passive aeration pipes. However, fluctuations were observed at low temperatures decreasing the removal performances.Similarly, a configuration based on the combination of unsaturated-saturated conditions for NGL removal was evaluated. The zeolite was used in the unsaturated layer to improve the NH₄-N removal and nitrification. Indeed, it has been observed that the zeolite improves the purifying performance compared to a filter filled only with gravel. The outlet concentrations were 40 and 52 mgNGL.L⁻¹ for zeolite and gravel filters respectively.The use of recirculation in full scale systems has improved removal performances in unsaturated / saturated single stage. However, these are preliminary results as these stations are in the start-up and maturation period, few 24 h samples were available, which makes the comparison difficult
APA, Harvard, Vancouver, ISO, and other styles
45

Queluz, João Gabriel Thomaz [UNESP]. "Eficiência de alagados construídos para o tratamento de águas residuárias com baixas cargas orgânicas." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144989.

Full text
Abstract:
Submitted by João Gabriel Thomaz Queluz null (queluz13@terra.com.br) on 2016-11-30T18:09:17Z No. of bitstreams: 1 Tese (João Queluz).pdf: 4075935 bytes, checksum: 5e22f8f089d2895be8857e7315e76c88 (MD5)
Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-12-02T15:49:28Z (GMT) No. of bitstreams: 1 queluz_jgt_dr_bot.pdf: 4075935 bytes, checksum: 5e22f8f089d2895be8857e7315e76c88 (MD5)
Made available in DSpace on 2016-12-02T15:49:28Z (GMT). No. of bitstreams: 1 queluz_jgt_dr_bot.pdf: 4075935 bytes, checksum: 5e22f8f089d2895be8857e7315e76c88 (MD5) Previous issue date: 2016-11-08
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
A maioria dos sistemas de tratamento de águas residuárias é complexa, têm construção e manutenção dispendiosas e necessitam de recursos humanos qualificados para operação, características que praticamente inviabilizam sua adoção na zona rural do país. Áreas rurais demandam sistemas de custo reduzido, simples e de fácil operacionalidade, características encontradas em sistemas de alagados construídos. Os objetivos do presente trabalho foram: desenvolver um sistema alagado construído para o tratamento de águas residuárias; avaliar a eficiência do alagado construído utilizando diferentes densidades de macrófitas; verificar a resposta do sistema a diferentes taxas de aplicação de matéria orgânica; e ajustar e modificar modelos hidráulicos que representem a cinética de remoção de matéria orgânica e de coliformes fecais. Foi desenvolvido um sistema de tratamento com três leitos de alagados construídos, compostos por quatro caixas d’água retangulares ligadas em série. As caixas d'água foram preenchidas com o material suporte (brita #0) até a altura de 30 cm e ficaram saturadas com efluente até a altura de 25 cm. Os alagados construídos foram cultivados com diferentes densidades (0, 11,5 e 23 plantas m-2) de taboa (Typha latifólia). Cada leito recebeu 50 litros diários de água residuária doméstica, resultando em 3,2 dias de tempo de detenção hidráulica nominal. A eficiência do sistema foi avaliada pela análise de coliformes fecais, coliformes totais, condutividade elétrica, demanda bioquímica de oxigênio, demanda química de oxigênio, fósforo total, nitrogênio total, pH, potássio, potencial redox, sólidos suspensos totais, temperatura e turbidez. Análise de regressão linear foi realizada para comparar a eficiência dos três alagados construídos na remoção de matéria orgânica e de patógenos. Além disso, os dados de demanda química de oxigênio e de coliformes fecais foram comparados com modelos hidráulicos convencionais (fluxo em pistão e tanques em série) com uso do coeficiente de determinação. Os alagados construídos foram eficientes na remoção de coliformes fecais (99%), demanda bioquímica de oxigênio (72%), demanda química de oxigênio (80%), nitrogênio total (73%), fósforo total (83%), potássio (54%) e sólidos suspensos totais (98%). A densidade de macrófitas não alterou a eficiência de remoção de coliformes fecais e de demanda química de oxigênio nos três alagados construídos. Porém, os alagados cultivados com macrófitas (11,5 e 23 plantas m-2) foram mais eficientes na remoção de nitrogênio, fósforo e potássio. O sistema alagado construído foi sensível às taxas de aplicação de matéria orgânica, havendo correlação linear positiva entre as taxas aplicada e removida de matéria orgânica. Os dados de demanda química de oxigênio e coliformes fecais foram comparados com as estimativas fornecidas pelos modelos hidráulicos de fluxo em pistão e de tanques em série. O modelo hidráulico de fluxo em pistão convencional foi, então, modificado incluindo-se um fator de resistência à degradação (q). O modelo hidráulico de fluxo em pistão modificado representa mais adequadamente a cinética de remoção de matéria orgânica do que os modelos hidráulicos convencionais de fluxo em pistão e de tanques em série. (q = 0,521631, quando a evapotranspiração é considerada e q = 0,479332 quando a evapotranspiração não é considerada). Por outro lado, o modelo modificado não é superior ao modelo convencional em relação à remoção de coliformes fecais. Concluindo, sugere-se que o modelo hidráulico modificado seja utilizado tanto para o dimensionamento quanto para a avaliação da eficiência de remoção de matéria orgânica em alagados construídos.
Most wastewater treatment systems are complex, have expensive cost for both construction and maintenance, and require skilled manpower for operation, features that practically precludes its adoption in rural areas of the country. Rural areas require simple and low-cost systems, characteristics found in constructed wetlands. This study aimed 1) to develop a constructed wetland system for wastewater treatment; 2) to assess the constructed wetlands efficiency using different densities of macrophytes; 3) to check the system response to different organic matter application rates; 4) to adjust and modify hydraulic models which represent the kinetics of organic matter and fecal coliforms removal. It was developed a treatment system with three constructed wetlands beds, composed by four rectangular water storage tanks connected in series. The water tanks were filled with gravel (Ø = 2.4 – 9.5 mm) to a height of 30 cm and were saturated with effluent to a height of 25 cm. The constructed wetlands were cultivated with different cattail (Typha latifolia) densities: 0, 11.5 and 23 plants m-2. Each bed received 50 liters of domestic wastewater per day, resulting in 3.2 days of nominal hydraulic retention time. The system efficiency was evaluated by the analysis of fecal coliforms, total coliforms, electrical conductivity, biochemical oxygen demand, chemical oxygen demand, total phosphorus, total nitrogen, pH, potassium, redox potential, total suspended solids, temperature, and turbidity. Linear regression analysis was performed to compare the efficiency of the three constructed wetlands in the removal of organic matter and pathogens. Furthermore, chemical oxygen demand and fecal coliforms data were compared with conventional hydraulic models using the coefficient of determination. The constructed wetlands were efficient for removing fecal coliforms (99%), biochemical oxygen demand (72%), chemical oxygen demand (80%), total nitrogen (73%), total phosphorus (83%), potassium (54%) and suspended solids (98%). The macrophytes density did not affect the efficiency of the three constructed wetlands for removing fecal coliforms and chemical oxygen demand. However, the beds cultivated with macrophytes presented higher efficiency in the removal of nitrogen, phosphorus and potassium. The constructed wetlands responded to the different organic matter application rates, with positive linear correlation between the applied and removed rates. The chemical oxygen demand and fecal coliforms data were compared with the predicted values provided by the conventional hydraulic models (plug flow and tanks in series). The conventional plug flow model was then modified and a degradation resistance factor (q) was included. The modified plug flow model showed better fit to the organic matter data than the conventional hydraulic models (whether or not evapotranspiration was considered: q = 0.521631 and q = 0.479332). On the other hand, the modified plug flow model did not show better fit to the fecal coliforms data than the conventional plug flow models. In conclusion, it is suggested that the modified plug flow hydraulic model should be used for the design and the assessment of organic matter removal efficiency in constructed wetlands.
FAPESP: 2014/05997-6
APA, Harvard, Vancouver, ISO, and other styles
46

Mendonça, Luciana Coêlho. "Microbiologia e cinética de sistema de lodos ativados como pós-tratamento de efluente de reator anaeróbio de leito expandido." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-07042003-143948/.

Full text
Abstract:
Os principais objetivos deste trabalho foram analisar o desempenho de sistema combinado (escala piloto), constituído por reator anaeróbio de leito expandido (Ralex) seguido por sistema de lodos ativados, utilizado no tratamento de esgoto sanitário, correlacionar as características da microbiota do sistema de lodos ativados com os resultados físico-químicos e determinar a cinética de consumo de substrato no sistema de lodos ativados. O desempenho do sistema combinado quanto à remoção de DQO total e DQO filtrada foi de 82% e 80%, respectivamente. No sistema combinado, a remoção de nitrogênio total foi de 65% e a remoção de fósforo foi de 35%. A população de protozoários foi bem diversificada, sendo condizente com as características operacionais do sistema de lodos ativados. Arqueas metanogênicas foram capazes de sobreviver no tanque de aeração, porém em número reduzido. O modelo cinético que melhor representou a degradação de DQO filtrada, no sistema de lodos ativados, foi o de primeira ordem com residual. A constante aparente específica média foi de 0,05L/gSSV.dia. Nas condições estudadas, não ficou evidenciado o efeito da temperatura na cinética, provavelmente devido à resistência de transferência de massa.
The major objectives of this study were: (i) to evaluate the performance of a combined system (pilot scale) treating wastewater, composed by an expanded bed anaerobic reactor and an activated sludge system; (ii) to correlate microorganisms characteristics of the activated sludge system with the physical-chemical results; and (iii) to determinate the substrate consumption kinetics of the activated sludge system. The performance of the combined system in terms of total and filtrated COD was 82% and 80% respectively. Total nitrogen removal was 65% and total phosphorous removal was 35%, in the combined system. Protozoa populations were well diversified, according to operational characteristics of activated sludge. Methanogenics archeas survived into aeration tank, but in a reduced number. First order with residual kinetic model represented the filtered COD degradation, in the activated sludge system. The mean apparent specific constant was 0,05L/gVSS.day. In this study, the effect of temperature on kinetics was not evident, probably due to mass transfer resistance.
APA, Harvard, Vancouver, ISO, and other styles
47

Soares, Leonardo Vieira. "Pós-tratamento de esgoto sanitário tratado em reator anaeróbio compartimentado utilizando biofiltro aerado submerso." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-17112016-114657/.

Full text
Abstract:
Nesta pesquisa, estudou-se a aplicação do biofiltro aerado submerso (BF) para pós-tratamento de esgoto sanitário tratado em reator anaeróbio compartimentado (ABR), visando adequar o efluente aos padrões estabelecidos pela legislação ambiental. A pesquisa foi dividida em duas etapas experimentais diferenciadas, principalmente, pela escala do biofiltro. Na primeira etapa, foi utilizado um biofiltro aerado submerso (BF1), em escala de laboratório, com volume útil de 7,82 L, sendo operado com tempo de detenção hidráulica de 3 horas, durante 117 dias. Na segunda etapa, foi empregado um biofiltro aerado submerso (BF2), em escala piloto, com volume útil de 178 L, sendo operado com tempo de detenção hidráulica de 6 horas, durante 47 dias. Em ambas as etapas, foram utilizadas matrizes cúbicas de espumas de poliuretano como meio suporte para imobilização celular e câmara de saturação - semelhante às utilizadas em sistemas de flotação por ar dissolvido - como mecanismo de aeração. O biofiltro BF1 obteve eficiências médias de remoção de DQOB, DBO5 e SST de 78%, 81% e 84%, respectivamente. O efluente apresentou as seguintes características médias: 22 mg DBO5/L, 49 mg DQOB/L e concentrações de SST e SSV inferiores a 20 mg/L em 96% dos valores medidos. A ocorrência do processo de nitrificação foi considerada pequena, atingindo eficiência máxima de conversão igual a 49%. Com relação ao biofiltro BF2, o desempenho do mesmo foi prejudicado pelo arraste do lodo do inóculo durante a primeira retro-lavagem e pelas baixas cargas orgânicas volumétricas aplicadas que dificultaram o crescimento dos microrganismos, não sendo observado se o reator entrou em regime permanente. As eficiências médias de remoção de DQOB, DBO5 e SST foram de 49%, 64% e 51%, respectivamente. . O efluente do biofiltro BF2 apresentou as seguintes médias: 98 mg DQOB/L, 49 mg DBO5/L e 19 mg SST/L. Quanto à inativação de microrganismos patogênicos, os resultados obtidos indicaram a necessidade de uma unidade de desinfecção após o sistema de pós-tratamento. O efluente do biofiltro BF1 apresentou concentrações médias de coliformes totais e fecais de 7,1 x 104 e 1,1 x 105 NMP/100 mL, enquanto para o biofiltro BF2 as concentrações foram de 3 x 106 e 6,4 x 104 NMP/100mL. A espuma de poliuretano comportou-se de forma adequada para imobilização da biomassa aeróbia, bem como para remoção de sólidos suspensos, devida a sua porosidade (90%) e capacidade de absorção. A câmara de saturação mostrou-se eficiente quanto ao processo de saturação de oxigênio e, quando operada com tempos de detenção hidráulica significativos, contribuiu com o processo de tratamento do efluente anaeróbio.
In this research, the application of the submerged aerated biofilter (BF) for post-treatment of domestic wastewater treated in anaerobic baffed reactor (ABR) was studied, seeking to adapt the effluent to established patterns by the environmental legislation. The research was divided in two differentiated experimental stages, mainly, for the scale of the biofilter. In the first stage, a submerged aerated biofilter (BF1), on laboratory scale, with useful volume of 7,82 L, being operated with hydraulic detention time of 3 hours was used for 117 days. In the second stage, a submerged aerated biofilter (BF2), on pilot scale, with useful volume of 178 L, being operated with hydraulic detention time of 6 hours was used for 47 days. In both stages, cubic matrices of polyurethane foam were used as a supports for cellular immobilization and pressure chamber, similar those used then in flotation system for dissolved air, as aeration mechanism. The biofilter BF1 obtained medium efficiencies of removal of BOD5, CODB and TSS 81%, 79% e 84%, respectively. The effluent presented the following medium characteristics: 22 mg BOD5/L, 49 mg CODB/L and concentrations of TSS and VSS lower than 20 mg/L in 96% of the measured values. The occurrence of the nitrification process was considered small, reaching maximum efficiency of conversion of 49%. About the biofilter BF2, its performance was harmed for the lost of sludgeseeding in effluent during the first backwash and for the low applied organic volumetric loads that hindered the growth of the microorganisms, not being observed if the reactor entered in permanent regime. The medium efficiencies of removal of BOD5, CODB and TSS were 64%, 49% and 51%, respectively. The effluent of the biofilter BF2 presented the following medium concentrations: 98 mg CODB/L, 49 mg BOD5/L and 19 mg TSS/L. As a pathogens inactivation, the obtained results indicated the need of a unit of disinfectiafter the post-treatment system. The effluent of the biofilter BF1 presented medium concentrations of total and fecal coliforms of 7,1 x 104 and 1,1 x 105 NMP/100 mL, while for the biofiltro BF2 the concentrations were 3 x 106 and 6,4 x 104 NMP/100mL, respectively. The polyurethane foam behaved in an appropriate way for immobilization of the aerobic biomass, as well as for removal of suspended solids, due its porosity (90%) and absorption capacity. The pressure chamber was shown efficient regarding the process of oxygen saturation, and, when operated with significant hydraulic detention times, it contributed with the process of treatment of the anaerobic effluent.
APA, Harvard, Vancouver, ISO, and other styles
48

Ariano, Gustavo Carneiro. "Coagulação, floculação e flotação do efluente de reatores anaeróbios, tratando esgoto sanitário, com aplicação de diferentes dosagens de coagulante em função da variação da turbidez do esgoto afluente ao longo do dia." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/18/18138/tde-20102009-100748/.

Full text
Abstract:
Este trabalho avaliou a técnica de dosagem variável de coagulante em função da variação da turbidez do esgoto afluente a sistema de pós-tratamento por flotação do efluente de reatores UASB, localizado em Campinas, SP. Utilizou-se equipamento do tipo Flotateste para a flotação em escala de laboratório, sendo fixados os parâmetros: Tmr = 15 s; Gmr = 800 \'S POT.-1\'; Tfloc = 20 min; Gfloc = 90 \'S POT.-1\'; Psat = 5,00 Bar. Foram estudadas quatro velocidades de flotação (Vf), entre 8 à 20 cm/min. Na fase 1 da pesquisa estudou-se os coagulantes \'AL IND.2\'(\'SO IND.4\')\'IND.3\', PAC e \'FE\'Cl IND.3\', sendo determinadas as melhores dosagens para o horário das 12:00 horas. Posteriormente, na segunda fase, foram fixadas as melhores dosagens de cada coagulante e associada dosagens variadas de polímeros catiônico, aniônico e não iônico. Em seguida, na fase 3, foi realizada avaliação temporal, com ensaios realizados em seis diferentes horários do dia, estabelecendo uma razão entre a variação da turbidez afluente com a dosagem de coagulante. Finalmente, na quarta fase, foram aplicados quatro cenários de dosagens em doze horários diferentes ao longo de 24 horas. Para fase 1, verificou-se remoção de SST, DQO e fósforo para as dosagens de \'AL IND.2\'(\'SO IND.4\')\'IND.3\' (11,77mg \'AL IND.2\'O IND.3\'/L), 76,5%; 67,6% e 63,9%; PAC (8,45 mg \'AL IND.2\'O IND.3\'/L), 62,5%; 75,0% e 82,7%; e \'FE\'CL IND.3\' (24,38 mg\'FE\'/L), 60,0%; 55,9% e 90,3%, respectivamente, para Vf = 16 cm/min. Na fase 2, determinou-se como melhor polímero, para ambos coagulantes, o polímero catiônico (PC), sendo associado às melhores dosagens definidas na fase1. Desta maneira na fase 2 verificou-se remoção de SST, DQO e fósforo para as dosagens associadas de \'AL IND.2\'(\'SO IND.4\')\'IND.3\' + PC (11,77 mg\'AL IND.2\'O IND.3\'/L + 1,00 mg PC/L), 94,4%, 88,6% e 70,4%; PAC + PC (8,45 mg\'AL IND.2\'O IND.3\'/L + 1,00 mg PC/L), 94,7%, 62,3% e 88,8%; e \'FE\'CL IND.3\' + PC (24,38 mg\'FE\'/L + 1,00 mg PC/L), 77,3%, 61,6% e 91,6%, respectivamente. O cloreto férrico foi escolhido para ser utilizado nas fases seguintes devido a capacidade de precipitação de sulfeto o qual atingiu concentrações de até 15 mg/L no efluente anaeróbio. Em adição, foram fixadas as dosagens de polímero catiônico em 1,00 mg/L. Assim, para fase 3, a aplicação de dosagem variada entre 12,07 a 25,51 mg\'FE\'/L, para seis diferentes horários resultou em DQO < 50 mg/L e Fósforo < 0,50 mg/L para Vf = 16 cm/min. A aplicação de razão entre a dosagem de \'FE POT.+3\' e a turbidez afluente (RDmT) de 0,463 mg\'FE POT.+3\'/L.UNT (para turbidez < 50 UNT) e 0,244 mg\'FE POT.+3\'/L.UNT (para turbidez >50 UNT) na fase 4, garantiu para todas as velocidades de flotação estudadas turbidez < 15 UNT em 100% dos ensaios. Em adição, ao se realizar correlação entre a concentração de SST no efluente da FAD e a turbidez, chegou-se a conclusão de que este cenário atingiu remoção de lodo próxima a dosagem de \'FE\'CL IND.3\' máxima definidas na fase 3 (74 mg\'FE\'CL IND.3\'/L), com economia de 27,8% no consumo do coagulante.
This study evaluated the variable coagulant dosage technique according to the variation in turbidity of the influent sewage of the post-treatment flotation system of the UASB reactor effluents, located in Campinas, SP. Laboratory scale flotation equipment was used, with fixed parameters: Tmr = 15 s; Gmr = 800 \'S POT.-1\'; Tfloc = 20 min; Gfloc = 90 \'S POT.-1\'; Psat = 5,00 Bar. Four flotation velocities (Vf), between 8 a 20 cm/min, were studied. Phase 1 of the research studied the coagulants \'AL IND.2\'(\'SO IND.4\')\'IND.3\', PAC e \'FE\'CL IND.3\', being determined the best dosages for 12:00 pm. In phase 2 the best dosages of each coagulant were fixed and the associated cationic, anionic and nonionic polymer dosages were varied. In phase 3 experiments were taken at six different periods of the day, establishing a ratio between the variation in influent turbidity and coagulant dosage. In the fourth phase, four different dosage scenarios were applied at twelve different periods during a 24 hour day, to verify the best dosage scenario. In phase 1, the removal of TSS, COD and phosphorus was verified to the dosages of \'AL IND.2\'(\'SO IND.4\')\'IND.3\' (11,77 mg\'AL IND.2\'O IND.3\'/L), 76,5%; 67,6% and 63,9%; PAC (8,45 mg\'AL IND.2\'O IND.3\'/L), 62,5%; 75,0% and 82,7%; and \'FE\'CL IND.3\' (24,38 mg\'FE POT.+3\'/L), 60,0%; 55,9% e 90,3%, respectively, for Vf = 16 cm/min. In phase 2 the cationic polymer (PC) was determined to be the best polymer for both coagulants, when applied to the best dosages determined in phase 1. This way, in phase 2 the removal of TSS, COD and phosphorus was verified to the associated dosages of \'AL IND.2\'(\'SO IND.4\')\'IND.3\' + PC (11,77 mg\'AL IND.2\'O IND.3\'/L + 1,00 mg PC/L), 94,4%, 88,6% and 70,4%; PAC + PC (8,45 mg\'AL IND.2\'O IND.3\'/L + 1,00 mg PC/L), 94,7%, 62,3% and 88,8%; and \'FE\'CL IND.3\' + PC (24,38 mg\'FE POT.+3\'/L + 1,00 mg PC/L), 77,3%, 61,6% e 91,6%, respectively. Ferric chloride was chosen in the following phases due to its sulfide precipitation ability, reaching concentrations of up to 15 mg/L in the anaerobic effluent. In addition, the cationic polymer dosages were fixed to 1,00 mg/L. Thus, in phase 3, the dosage, varying between 12,07 to 25,51 mg\'FE POT.+3\'/L, applied to six different periods resulted, to Vf = 16 cm/min, in COD < 50 mg/L and phosphorus < 0,50 mg/L. The ratio between the dosage of \'FE POT.+3\' and the influent turbidity (RDmT) of 0,463 mg\'FE POT.+3\'/L.UNT (for turbidities < 50 NTU) and 0,244 mg\'FE POT.+3\'/L.UNT (for turbidities \'< OU =\' 50 NTU) when applied in phase 4, ensured, in 100% of the experiments, turbidity < 15 NTU for the studied flotation velocities. In addition, when correlating the concentration of TSS in FAD effluents with the turbidity, the conclusion was that this scenario reached a sludge removal close to that obtained by the maximum \'FE\'CL IND.3\' dosage defined in phase 3 (74 mg\'FE\'CL IND.3\'/L), with an economy of 27,8% in coagulant consumption.
APA, Harvard, Vancouver, ISO, and other styles
49

Leal, Felipe Kruger. "Estudo comparativo de leitos percoladores e banhados construídos de fluxo vertical aplicados à remoção de fósforo em esgoto sanitário." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2009. http://hdl.handle.net/10183/49162.

Full text
Abstract:
A presente pesquisa avaliou duas alternativas para a remoção de fósforo em esgoto sanitário: uso de filtros percoladores com adição de material com potencial de ligação de fósforo e uso de banhados construídos com macrófitas com potencial assimilação de fósforo. Estas tecnologias são apropriadas para pequenas comunidades ou residências unifamiliares e também podem ser utilizadas como etapa no tratamento dos esgotos. Estes sistemas apresentam remoção satisfatória de matéria orgânica e nitrogênio amoniacal, contudo apresentam diminuta eficiência de remoção de fósforo e nitrato. Na presente pesquisa foram estudadas duas técnicas para aumentar a remoção de fósforo: utilização de materiais com potencial de remoção de fósforo nos filtros percoladores, e plantas com alta capacidade de assimilação de fósforo nos banhados construídos. Os materiais adicionados aos leitos percoladores com potencial de remoção de fósforo foram: Cavaco de Usinagem e Escória de Aciaria Elétrica. As frações de materiais adicionados foram: 10%, 20% e 40% em peso em relação ao material suporte. As plantas utilizadas foram a Luziola peruviana, a qual apresenta em sua constituição alta concentração de fósforo e a Typha latifolia, já amplamente utilizada em banhados construídos. Os materiais utilizados como meios suportes foram brita e areia. A adição de materiais com potencial remoção de fósforo auxiliou na remoção do nutriente, a qual foi mais significativa nos leitos contendo Cavaco de Usinagem. Não foi observada diferença de remoção de fósforo para as diferentes frações dos materiais testados para o período de estudo. A utilização da planta Luziola peruviana contribuiu no máximo com 2,11% da remoção de fósforo total, contudo foi observada importante função do sistema radicular no tempo de percolação, contribuindo para maior tempo de contato do efluente com material suporte, especialmente para o caso da brita. O uso de areia de granulometria grossa possibilitou eficiência de remoção de fósforo superior a 85%, entretanto, a massa de fósforo retida por unidade de área no sistema utilizando brita 0 apresentou valores duas vezes superiores aos obtidos para os leitos preenchidos com areia.
This research evaluated two alternatives to phosphorus removal from domestic wastewater: use of intermittent sand filters with materials addition with potential phosphorus binding and use of constructed wetlands with macrophytes potential phosphorus assimilation. These present themselves as technologies suitable for small communities or single family houses and can be used as a intermediate or final stage of wastewater treatment. The systems based on intermittent feed get satisfactory removal of organic matter and ammonia-N, but they have reduced efficiency of phosphorus and nitrate removal. The aim of present study was to evaluate two techniques for phosphorus removal: use of materials with potential removal of phosphorus, in the intermittent sand filters, and plants with capacity for assimilation of phosphorus metabolism, in the vertical flow constructed wetlands. The materials added to the sand filters with the potential removal of phosphorus were the Machine Bit and Electric Arc Furnace Slag. The fractions of materials added were: 10%, 20% and 40% related to material support weight. The plants tested were Luziola peruviana, which has in its constitution a high concentration of phosphorus and Typha latifolia, widely used in constructed wetlands. The support materials tested were gravel and sand. The use of materials with potential removal of phosphorus aid in the removal of phosphorus, which is more significant in the beds with Machine Bit. Difference of phosphorus removal was not observed for the different fractions of the materials tested for the study period. The use of the plant Luziola peruviana contributed at the most with 2,11% of removal of total phosphorus, however important role of the root system was observed in the percolation time, contributing to larger time of contact of wastewater with support materials, especially for use of coarse material, as it the coarse gravel. The use of coarse sand allowed removal efficiency of phosphorus higher than 85%, however, the mass of phosphorus retained per unit area in the system using gravel present values twice higher than obtained to the beds filled with sand.
APA, Harvard, Vancouver, ISO, and other styles
50

Campos, Fabio. "Influência do recebimento de lixiviado de aterro sanitário sobre o tratamento de esgoto em processo de lodo ativado e reator integrado de lodo ativado com biofilme em leito móvel." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/6/6134/tde-13012015-111342/.

Full text
Abstract:
O uso de aterros sanitários como forma de disposição dos resíduos sólidos urbanos constitui-se na alternativa mais usual tanto do ponto de vista econômico, como na correta disposição final do lixo. Entretanto, a geração de lixiviados permanece como uma inevitável consequência do uso de tal tecnologia. Das diversas alternativas de controle desse líquido percolado, destaca-se seu envio para estações de tratamento de esgoto sanitário. No presente estudo, avaliou-se o impacto causado pela introdução de cargas progressivas de lixiviado em conjunto com o esgoto sanitário em dois sistemas pilotos de tratamento: um de lodos ativados convencional e outro, um modelo híbrido do tipo IFAS (Integrated Fixed-Film Activated Sludge). A pesquisa foi dividida em três fases, mantendo-se as mesmas condições operacionais e alterando, em cada fase, a contribuição de lixiviado na composição da carga afluente, em valores de 5 por cento , 10 por cento e 20 por cento em relação à carga de DBO5,20. Os resultados obtidos a partir da investigação experimental permitiram concluir que o aumento progressivo da carga advinda do lixiviado não provocou redução na eficiência de tratamento em ambos os sistemas, em nenhuma fase da pesquisa. Obtiveram-se, para o processo IFAS, índices de remoção de matéria orgânica, expressos em DBO, da ordem de 87 por cento com a contribuição de 5 por cento e 10 por cento de lixiviado e de 80 por cento com 20 por cento de lixiviado; no processo de lodos ativados, tanto com 10 por cento e 20 por cento de carga de lixiviado, a eficiência foi de 80 por cento , os resultados referentes à fase de 5 por cento , nesse processo, foram prejudicados em decorrência de problemas operacionais. Em relação à oxidação de compostos nitrogenados, expressos em termos de NTK, observaram-se para o processo IFAS remoções acima de 90 por cento em todas as fases, indicando que a nitrificação ocorreu de forma satisfatória. No processo de lodos ativados, os índices de remoção foram de 72 por cento com 5 por cento de lixiviado e de 65 por cento com 10 por cento e 20 por cento , indicando um rendimento abaixo do esperado. Estudos relativos à composição da biomassa presente em ambos os processos não revelaram aspectos que as diferenciem significativamente em termos quantitativo; tão poucos indicaram alterações provocadas na microfauna em função da adição da carga de lixiviado. Os coeficientes cinéticos referentes ao metabolismo heterotrófico não apresentaram variações em função do aumento da contribuição do lixiviado, mantendo-se semelhantes aos encontrados na literatura; já os valores obtidos para constante máxima de crescimento (m) das bactérias nitritantes apontaram uma redução em torno de 76 por cento e 41 por cento para os processos de lodos ativados e IFAS, respectivamente, quando comparados com dados relativos à fase preliminar, sem adição de lixiviado; tal fato, contudo, não provocou interrupção ou inibição no rendimento da nitrificação. Ensaios de toxicidade aguda demonstraram significativa redução deste potencial em relação ao afluente, sobretudo, no processo IFAS, sendo que a técnica Microtox® mostrou-se mais sensível do que o teste com microcrustáceo Daphnia similis. Em linhas gerais, o processo IFAS demonstrou um desempenho superior em termos de eficiência de remoção tanto de matéria orgânica como nitrogenada, bem como maior estabilidade operacional.
The utilization of landfills as an urban solid waste management technology constitutes an economically viable alternative of final waste disposal. However, the generation of contaminated leachate remains as an inevitable consequence of this technology. Among various treatment alternatives for that percolated liquid, a major one is sending it to a wastewater treatment plant. The present paper evaluated the impact caused by the introduction of progressive leachate loads together with domestic sewage in two pilot scale treatment plants: an activated sludge plant and a hybrid model type IFAS (Integrated fixed-film activated sludge) plant. The research was divided into 3 phases, maintaining the same operation conditions in both pilot plants and changing at each phase the amount of leachate in the composition of the influent to percent values of 5 per cent , 10 per cent and 20 per cent . Results obtained from the experimental investigation demonstrated that the leachate load did not cause inhibition of the treatment process in both pilots, at any phase of the research. For the IFAS process, removal rates of organic matter in terms of BOD were on the order of 87 per cent with leachate contributions of 5 per cent and 10 per cent , and 80 per cent with 20 per cent of leachate contribution. Regarding the activated sludge process, at both 10 per cent and 20 per cent of leachate load, the BOD removal efficiency was 80 per cent . The results from the 5 per cent leachate contribution phase were not available due to operational problems. Regarding nitrogen removal, in terms of NTK, a removal efficiency over 90 per cent was observed for the IFAS process in all phases, showing that nitrification occurred in a satisfactory way; as for the activated sludge process, the removal rates were 72 per cent with 5 per cent of leachate contribution and 65 per cent with 10 and 20 per cent leachate contributions, results lower than expected. The study of the biomass composition did not show aspects that differ significantly in quantitative terms for both processes; and it did not show any changes in the micro fauna due to the leachate addition. The kinetic coefficients related to the heterotrophic metabolism did not present variation due to the increase of leachate addition, being similar to those found in the literature. On the other hand, the obtained values for the maximum growth rate (m) of nitrifying bacteria pointed to reductions of about 76 per cent and 41 per cent for the activated sludge and IFAS processes, respectively, when compared with data related to the preliminary phase, without leachate addition. This fact, however, did not cause disruption or inhibition to affect the nitrification yield. Acute toxicity assays demonstrated significant reduction of this potential relative to affluent, especially on the IFAS process, and the Microtox® technique appeared to be more sensitive. In a more general way, the IFAS process presented a better performance than the activated sludge process in terms of removal efficiencies of organic and nitrogenous matter, as well as higher operating stability.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography