Dissertations / Theses on the topic 'Domination (Graph theory)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Domination (Graph theory).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
De, Villiers Anton Pierre. "Edge criticality in secure graph domination." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95841.
Full textENGLISH ABSTRACT: The domination number of a graph is the cardinality of a smallest subset of its vertex set with the property that each vertex of the graph is in the subset or adjacent to a vertex in the subset. This graph parameter has been studied extensively since its introduction during the early 1960s and finds application in the generic setting where the vertices of the graph denote physical entities that are typically geographically dispersed and have to be monitored efficiently, while the graph edges model links between these entities which enable guards, stationed at the vertices, to monitor adjacent entities. In the above application, the guards remain stationary at the entities. In 2005, this constraint was, however, relaxed by the introduction of a new domination-related parameter, called the secure domination number. In this relaxed, dynamic setting, each unoccupied entity is defended by a guard stationed at an adjacent entity who can travel along an edge to the unoccupied entity in order to resolve a security threat that may occur there, after which the resulting configuration of guards at the entities is again required to be a dominating set of the graph. The secure domination number of a graph is the smallest number of guards that can be placed on its vertices so as to satisfy these requirements. In this generalised setting, the notion of edge removal is important, because one might seek the cost, in terms of the additional number of guards required, of protecting the complex of entities modelled by the graph if a number of edges in the graph were to fail (i.e. a number of links were to be eliminated form the complex, thereby disqualifying guards from moving along such disabled links). A comprehensive survey of the literature on secure graph domination is conducted in this dissertation. Descriptions of related, generalised graph protection parameters are also given. The classes of graphs with secure domination number 1, 2 or 3 are characterised and a result on the number of defenders in any minimum secure dominating set of a graph without end-vertices is presented, after which it is shown that the decision problem associated with computing the secure domination number of an arbitrary graph is NP-complete. Two exponential-time algorithms and a binary programming problem formulation are presented for computing the secure domination number of an arbitrary graph, while a linear algorithm is put forward for computing the secure domination number of an arbitrary tree. The practical efficiencies of these algorithms are compared in the context of small graphs. The smallest and largest increase in the secure domination number of a graph are also considered when a fixed number of edges are removed from the graph. Two novel cost functions are introduced for this purpose. General bounds on these two cost functions are established, and exact values of or tighter bounds on the cost functions are determined for various infinite classes of special graphs. Threshold information is finally established in respect of the number of possible edge removals from a graph before increasing its secure domination number. The notions of criticality and stability are introduced and studied in this respect, focussing on the smallest number of arbitrary edges whose deletion necessarily increases the secure domination number of the resulting graph, and the largest number of arbitrary edges whose deletion necessarily does not increase the secure domination number of the resulting graph.
AFRIKAANSE OPSOMMING: Die dominasiegetal van ’n grafiek is die kardinaalgetal van ’n kleinste deelversameling van die grafiek se puntversameling met die eienskap dat elke punt van die grafiek in die deelversameling is of naasliggend is aan ’n punt in die deelversameling. Hierdie grafiekparameter is sedert die vroeë 1960s uitvoerig bestudeer en vind toepassing in die generiese situasie waar die punte van die grafiek fisiese entiteite voorstel wat tipies geografies verspreid is en doeltreffend gemonitor moet word, terwyl die lyne van die grafiek skakels tussen hierdie entiteite voorstel waarlangs wagte, wat by die entiteite gebaseer is, naasliggende entiteite kan monitor. In die bogenoemde toepassing, bly die wagte bewegingloos by die fisiese entiteite waar hulle geplaas word. In 2005 is hierdie beperking egter verslap met die daarstelling van ’n nuwe dominasie-verwante grafiekparameter, bekend as die sekure dominasiegetal. In hierdie verslapte, dinamiese situasie word elke punt sonder ’n wag deur ’n wag verdedig wat by ’n naasliggende punt geplaas is en wat langs die verbindingslyn na die leë punt kan beweeg om daar ’n bedreiging te neutraliseer, waarna die gevolglike plasing van wagte weer ’n dominasieversameling van die grafiek moet vorm. Die sekure dominasiegetal van ’n grafiek is die kleinste getal wagte wat op die punte van die grafiek geplaas kan word om aan hierdie vereistes te voldoen. Die beginsel van lynverwydering speel ’n belangrike rol in hierdie veralgemeende situasie, omdat daar gevra mag word na die koste, in terme van die addisionele getal wagte wat vereis word, om die kompleks van entiteite wat deur die grafiek gemodelleer word, te beveilig indien ’n aantal lynfalings in die grafiek plaasvind (m.a.w. indien ’n aantal skakels uit die kompleks van entiteite verwyder word, en wagte dus nie meer langs sulke skakels mag beweeg nie). ’n Omvattende literatuurstudie oor sekure dominasie van grafieke word in hierdie verhandeling gedoen. Beskrywings van verwante, veralgemeende verdedigingsparameters in grafiekteorie word ook gegee. Die klasse van grafieke met sekure dominasiegetal 1, 2 of 3 word gekarakteriseer en ’n resultaat oor die getal verdedigers in enige kleinste sekure dominasieversameling van ’n grafiek sonder endpunte word daargestel, waarna daar getoon word dat die beslissingsprobleem onderliggend aan die berekening van die sekure dominasiegetal van ’n arbitrêre grafiek NP- volledig is. Twee eksponensiële-tyd algoritmes en ’n binêre programmeringsformulering word vir die bepaling van die sekure dominasiegetal van ’n arbitrêre grafiek daargestel, terwyl ’n lineêre algoritme vir die berekening van die sekure dominasiegetal van ’n arbitrêre boom ontwerp word. Die praktiese doeltreffendhede van hierdie algoritmes word vir klein grafieke met mekaar vergelyk. Die kleinste en groostste toename in die sekure dominasiegetal van ’n grafiek word ook oorweeg wanneer ’n vaste getal lyne uit die grafiek verwyder word. Twee nuwe kostefunksies word vir hierdie doel daargestel en algemene grense word op hierdie kostefunksies vir arbitrêre grafieke bepaal, terwyl eksakte waardes van of verbeterde grense op hierdie kostefunksies vir verskeie oneindige klasse van spesiale grafieke bereken word. Drempelinligting word uiteindelik bepaal in terme van die moontlike getal lynverwyderings uit ’n grafiek voordat die sekure dominasiegetal daarvan toeneem. Die konsepte van kritiekheid en stabiliteit word in hierdie konteks bestudeer, met ’n fokus op die kleinste getal arbitrêre lynfalings wat noodwendig die sekure dominasiegetal van die gevolglike grafiek laat toeneem, of die grootste getal arbitrêre lynfalings wat noodwendig die sekure dominasiegetal van die gevolglike grafiek onveranderd laat.
Benecke, Stephen. "Higher order domination of graphs." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16257.
Full textENGLISH ABSTRACT: Motivation for the study of protection strategies for graphs is rooted in antiquity and has evolved as a subdiscipline of graph theory since the early 1990s. Using, as a point of departure, the notions of weak Roman domination and secure domination (where protection of a graph is required against a single attack) an initial framework for higher order domination was introduced in 2002 (allowing for the protection of a graph against an arbitrary finite, or even infinite, number of attacks). In this thesis, the theory of higher order domination in graphs is broadened yet further to include the possibility of an arbitrary number of guards being stationed at a vertex. The thesis firstly provides a comprehensive survey of the combinatorial literature on Roman domination, weak Roman domination, secure domination and other higher order domination strategies, with a view to summarise the state of the art in the theory of higher order graph domination as at the start of 2004. Secondly, a generalised framework for higher order domination is introduced in two parts: the first catering for the protection of a graph against a finite number of consecutive attacks, and the second concerning the perpetual security of a graph (protection of the graph against an infinite number of consecutive attacks). Two types of higher order domination are distinguished: smart domination (requiring the existence of a protection strategy for any sequence of consecutive attacks of a pre–specified length, but leaving it up to a strategist to uncover such a guard movement strategy for a particular instance of the attack sequence), and foolproof domination (requiring that any possible guard movement strategy be a successful protection strategy for the graph in question). Properties of these higher order domination parameters are examined—first by investigating the application of known higher order domination results from the literature, and secondly by obtaining new results, thereby hopefully improving current understanding of these domination parameters. Thirdly, the thesis contributes by (i) establishing higher order domination parameter values for some special graph classes not previously considered (such as complete multipartite graphs, wheels, caterpillars and spiders), by (ii) summarising parameter values for special graph classes previously established (such as those for paths, cycles and selected cartesian products), and by (iii) improving higher order domination parameter bounds previously obtained (in the case of the cartesian product of two cycles). Finally, a clear indication of unresolved problems in higher order graph domination is provided in the conclusion to this thesis, together with some suggestions as to possibly desirable future generalisations of the theory.
AFRIKAANSE OPSOMMING: Die motivering vir die studie van verdedigingstrategie¨e vir grafieke het sy ontstaan in die antieke wˆereld en het sedert die vroe¨e 1990s as ’n subdissipline in grafiekteorie begin ontwikkel. Deur gebruik te maak van die idee van swak Romynse dominasie en versterkte dominasie (waar verdediging van ’n grafiek teen ’n enkele aanval vereis word) het ’n aanvangsraamwerk vir ho¨er– orde dominasie (wat ’n grafiek teen ’n veelvuldige, of selfs oneindige aantal, aanvalle verdedig) in 2002 die lig gesien. Die teorie van ho¨er–orde dominasie in grafieke word in hierdie tesis verbreed, deur toe te laat dat ’n arbitrˆere aantal wagte by elke punt van die grafiek gestasioneer mag word. Eerstens voorsien die tesis ’n omvangryke oorsig van die kombinatoriese literatuur oor Romynse dominasie, swak Romynse dominasie, versterkte dominasie en ander ho¨er–orde dominasie strategie ¨e, met die doel om die kundigheid betreffende die teorie van ho¨er–orde dominasie, soos aan die begin van 2004, op te som. Tweedens word ’n veralgemeende raamwerk vir ho¨er–orde dominasie bekendgestel, en wel in twee dele. Die eerste deel maak voorsiening vir die verdediging van ’n grafiek teen ’n eindige aantal opeenvolgende aanvalle, terwyl die tweede deel betrekking het op die oneindige sekuriteit van ’n grafiek (verdediging teen ’n oneindige aantal opeenvolgende aanvalle). Daar word tussen twee tipes h¨oer–orde dominasie onderskei: intelligente dominasie (wat slegs die bestaan van ’n verdedigingstrategie vir enige reeks opeenvolgende aanvalle vereis, maar dit aan ’n strateeg oorlaat om ’n suksesvolle bewegingstrategie vir die verdediging teen ’n spesifieke reeks aanvalle te vind), en onfeilbare dominasie (wat vereis dat enige moontlike bewegingstrategie resulteer in ’n suksesvolle verdedigingstrategie vir die betrokke grafiek). Eienskappe van hierdie ho¨er–orde dominasie parameters word ondersoek, deur eerstens die toepasbaarheid van bekende ho¨er–orde dominasie resultate vanuit die literatuur te assimileer, en tweedens nuwe resultate te bekom, in die hoop om die huidige kundigheid met betrekking tot hierdie dominasie parameters te verbreed. Derdens word ’n bydrae gelewer deur (i) ho¨er–orde dominasie parameterwaardes vas te stel vir sommige spesiale klasse grafieke wat nie voorheen ondersoek is nie (soos volledig veelledige grafieke, wiele, ruspers en spinnekoppe), deur (ii) parameterwaardes wat reeds bepaal is (soos byvoorbeeld di´e vir paaie, siklusse en sommige kartesiese produkte) op te som, en deur (iii) bekende ho¨er–orde dominasie parametergrense te verbeter (in die geval van die kartesiese produk van twee siklusse). Laastens word ’n aanduiding van oop probleme in die teorie van ho¨er–orde dominasie in die slothoofstuk van die tesis voorsien, tesame met voorstelle ten opsigte van moontlik sinvolle veralgemenings van die teorie.
Harutyunyan, Ararat. "Probabilistic methods and domination related problems in graphs." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=116070.
Full textWe first study alliances in graphs. There are many results in this area. For example, it is known that every connected n-vertex graph G has a global offensive alliance of size at most 2n/3. Another result is that any global defensive alliance in G has size at least ( 4n+1 - 1)/2. Our study focuses particularly on trees and algorithms for finding alliances in trees. We find the cardinality of a minimum global offensive alliance for complete k-ary trees and the minimum cardinality global defensive alliance for complete binary and ternary trees. Also, we present a linear time algorithm for finding the minimum global offensive alliance in a tree. Additionally, for a general graph, an upper bound is given on the size of a minimum global offensive alliance in terms its degree sequence. The methods that we use in this part of the thesis are mainly algorithmic and deterministic.
Then we study independent dominating sets in graphs. An independent dominating set is a set of mutually nonadjacent vertices which is also a dominating set. This is a well-studied topic (see Haynes, Hedetniemi and Slater [22]). Our main result is to show that every d-regular graph of order n with girth at least 5 and satisfying d = o(1) and d2(log d)3/2 = o(n) contains an independent dominating set of size at most (1 + o(1)) nlogdd . This generalizes the results of Duckworth and Wormald [15] for random regular graphs. We construct the independent dominating set using recent probabilistic methods which resemble Rodl's semi-random method (see for example Alon and Spencer [1]).
Tarr, Jennifer M. "Domination in Graphs." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1786.
Full textGardner, Bradley. "Italian Domination on Ladders and Related Products." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3509.
Full textRubalcaba, Roberto Ramon Johnson Peter D. "Fractional domination, fractional packings, and fractional isomorphisms of graphs." Auburn, Ala., 2005. http://repo.lib.auburn.edu/EtdRoot/2005/SPRING/Mathematics/Dissertation/RUBALCABA_ROBERT_56.pdf.
Full textHarris, Elizabeth Marie. "Global Domination Stable Graphs." Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etd/1476.
Full textChukwukere, Presley. "The 2-Domination Number of a Caterpillar." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3456.
Full textSterling, Christopher Kent. "Liar's Domination in Grid Graphs." Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etd/1415.
Full textCarney, Nicholas. "Roman Domination Cover Rubbling." Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/etd/3617.
Full textCoetzer, Audrey. "Criticality of the lower domination parameters of graphs." Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/1051.
Full textSmithers, Dayna Brown. "Graph Theory for the Secondary School Classroom." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etd/1015.
Full textRussell, Haley D. "Italian Domination in Complementary Prisms." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3429.
Full textEngland, Alyssa. "Trees with Unique Italian Dominating Functions of Minimum Weight." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/etd/3741.
Full textDelgado, Pamela I. "Bipartitions Based on Degree Constraints." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2410.
Full textWhisenant, Christopher. "Parity Domination in Product Graphs." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2522.
Full textJamieson, William. "General Bounds on the Downhill Domination Number in Graphs." Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/honors/107.
Full textCheney, Stephen R. "Domination Numbers of Semi-strong Products of Graphs." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3989.
Full textVaughan, Lamont D. "Double Domination of Complementary Prisms." Digital Commons @ East Tennessee State University, 2008. https://dc.etsu.edu/etd/1983.
Full textJackson, Eugenie Marie. "Explorations in the classification of vertices as good or bad." [Johnson City, Tenn. : East Tennessee State University], 2001. http://etd-submit.etsu.edu/etd/theses/available/etd-0310101-153932/unrestricted/jacksone.pdf.
Full textDautermann, Robert Elmer III. "Vertices in Total Dominating Sets." Digital Commons @ East Tennessee State University, 2000. https://dc.etsu.edu/etd/5.
Full textGründlingh, Werner R. "Two new combinatorial problems involving dominating sets for lottery schemes /." Link to the online version, 2004. http://hdl.handle.net/10019.1/1388.
Full textDesOrmeaux, Wyatt Jules. "Restrained and Other Domination Parameters in Complementary Prisms." Digital Commons @ East Tennessee State University, 2008. https://dc.etsu.edu/etd/1998.
Full textMc, Inerney Fionn. "Jeux de domination et d’identification dans les graphes." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4049.
Full textIn this thesis, 2-player games on graphs and their algorithmic and structural aspects are studied. First, we investigate two dynamic dominating set games: the eternal domination game and its generalization, the spy game. In these two games, a team of guards pursue a fast attacker or spy in a graph with the objective of staying close to him eternally and one wants to calculate the eternal domination number (guard number in the spy game) which is the minimum number of guards needed to do this. Secondly, the metric dimension of digraphs and a sequential version of the metric dimension of graphs are then studied. These two problems are those of finding a minimum subset of vertices that uniquely identify all the vertices of the graph by their distances from the vertices in the subset. In particular, in the latter, one can probe a certain number of vertices per turn which return their distances to a hidden target and the goal is to minimize the number of turns in order to ensure locating the target. These games and problems are studied in particular graph classes and their computational complexities are also studied. Precisely, in Chapter 3, the NP-hardness of the spy game and the guard numbers of paths and cycles are first presented. Then, results for the spy game on trees and grids are presented. Notably, we show an equivalence between the fractional variant and the "integral" version of the spy game in trees which allowed us to use Linear Programming to come up with what we believe to be the first exact algorithm using the fractional variant of a game to solve the "integral" version. In Chapter 4, asymptotic bounds on the eternal domination number of strong grids are presented. In Chapter 5, results on the NP-completeness of the Localization game under different conditions (and a variant of it) and the game in trees are presented. Notably, we show that the problem is NP-complete in trees, but despite this, we come up with a polynomial-time (+1)-approximation algorithm in trees. We consider such an approximation to be rare as we are not aware of any other such approximation in games on graphs. Lastly, in Chapter 6, results on the metric dimension of oriented graphs are presented. In particular, the orientations which maximize the metric dimension are investigated for graphs of bounded degree, tori, and grids
Ho, Yiu Yu. "Global secure sets of trees and grid-like graphs." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4922.
Full textID: 030423421; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 206-210).
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Lachniet, Jason. "Alliance Partitions in Graphs." Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2080.
Full textTalon, Alexandre. "Intensive use of computing resources for dominations in grids and other combinatorial problems." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN079.
Full textOur goal is to prove new results in graph theory and combinatorics thanks to the speed of computers, used with smart algorithms. We tackle four problems.The four-colour theorem states that any map of a world where all countries are made of one part can be coloured with 4 colours such that no two neighbouring countries have the same colour. It was the first result proved using computers, in 1989. We wished to automatise further this proof. We explain the proof and provide a program which proves it again. It also makes it possible to obtain other results with the same method. We give potential leads to automatise the search for discharging rules.We also study the problems of domination in grids. The simplest one is the one of domination. It consists in putting a stone on some cells of a grid such that every cell has a stone, or has a neighbour which contains a stone. This problem was solved in 2011 using computers, to prove a formula giving the minimum number of stones needed depending on the dimensions of the grid. We successfully adapt this method for the first time for variants of the domination problem. We solve partially two other problems and give for them lower bounds for grids of arbitrary size.We also tackled the counting problem for dominating sets. How many dominating sets are there for a given grid? We study this counting problem for the domination and three variants. We prove the existence of asymptotic growths rates for each of these problems. We also give bounds for each of these growth rates.Finally, we study polyominoes, and the way they can tile rectangles. They are objects which generalise the shapes from Tetris: a connected (of only one part) set of squares. We tried to solve a problem which was set in 1989: is there a polyomino of odd order? It consists in finding a polyomino which can tile a rectangle with an odd number of copies, but cannot tile any smaller rectangle. We did not manage to solve this problem, but we made a program to enumerate polyominoes and try to find their orders, discarding those which cannot tile rectangles. We also give statistics on the orders of polyominoes of size up to 18
Gledel, Valentin. "Couverture de sommets sous contraintes." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1130.
Full textThis PhD thesis concerns the problem of covering finite sets in a discrete structure. This very general issue allows numerous approaches and we study some of them. The first chapter introduces the notions that are essentials to the understanding of this thesis and makes a brief state of the art on some covering problems, including the domination problem. The second chapter addresses the power dominating problem, a variation of the dominating problem with a propagation process. We study this problem on triangular grids and square grids of dimension 3. In the third chapter, we come back to the classical domination but in the context of a game, with the Maker-Breaker domination game. We study the complexity of the problem of deciding which player has a winning strategy and the minimum duration of a game if both players play perfectly. We also derive this problem for total domination and for an Avoider-Enforcer version. The fourth chapter is about the strong geodetic number: a problem with the distinctive characteristic that the covering is made by shortest paths in the graph. We study the strong geodetic number of several graph classes and its behaviour for the Cartesian product. Lastly, in the fifth chapter, we leave the realm of graphs to study the identification of points using disks. More than just covering every point of a certain set, the subset of disks covering each point must be unique to that point. We give results on particular configurations, bounds on the general case and we study the complexity of the problem when the radius of the disks is fixed
Grundlingh, Werner R. "Two new combinatorial problems involving dominating sets for lottery schemes." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/1388.
Full textSuppose a lottery scheme consists of randomly selecting an unordered winning n-subset from a universal set of m numbers, while a player participates in the scheme by purchasing a playing set of any number of unordered n-subsets from the same universal set prior to a winning draw, and is awarded a prize if ...
Parreau, Aline. "Problèmes d'identification dans les graphes." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00745054.
Full textPlanche, Léo. "Décomposition de graphes en plus courts chemins et en cycles de faible excentricité." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB224.
Full textIn collaboration with reserchears in biology at Université Pierre et Marie Curie, we study graphs coming from biological data in order to improve our understanding of it. Those graphs come from DNA fragments, named reads. Each read is a vertex and two vertices are linked if the DNA sequences are similar enough. Such graphs have a particuliar structure that we name hub-laminar. A graph is said to be hub-laminar if it may be represented as a (small) set of shortest paths such that every vertex of the graph is close to one of those paths. We first study the case where the graph is composed of an unique shortest path of low eccentricity. This problem was first definied by Dragan 2017. We improve the proof of an approximation algorithm already existing and propose a new one, a 3-approximation running in linear time. Furthermore we show its link with the k-laminar problem defined by Habib 2016, consisting in finding a diameter of low eccentricity. We then define and study the problem of the isometric cycle of minimal eccentricity. We show that this problem is NP-complete and propose two approximation algorithms. We then properly define what is an hub-laminar decomposition and we show an approximation algorithm running in O(nm). We test this algorithm with randomly generated graphs and apply it to our biolgical data. Finaly we show that computing an isometric cycle of low eccentricity allows to embed a graph into a cycle with a low multiplicative distortion. Computing an hub-laminar decomposition allows a compact representation of distances with a low additive distortion
Cattaneo, David. "Modélisation graphique et simulation en traitement d'information quantique." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM076/document.
Full textGraph States formalism consist in using graphs to model quantum states. This formalism allows us to use notion and tools of graph theory (e.g. flow, domination, probabilistic methods) in quantum information processing. Last years, this combinatorial modelisation had lead to many decisiv breakthroughs, in particular (i) in the comprehension of the quantum entranglement properties (ii) in very promising in term of physical implementation quantum calculus model, and (iii) in the analysis and construction of quantum cryptography protocols. The goal of this thesis is to study the graphic properties emerging of those quantum information processing problematics, especially for quantum simulation. In particular, the properties of causality and locality in graph states, by extanding for exemple the existing notion of causality flows to a notion integring the locality constraints, would allow new perspectives for the quantum system simulation using graphs states. Formal connections with noisy quantum cellular automata would emerge from this study
Muncy, David. "Automated Conjecturing Approach for Benzenoids." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4608.
Full textLang, Julie. "Graphs admitting (1, ≤ 2)-identifying codes." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18260.
Full textDepartment of Mathematics
Sarah Reznikoff
A (1, ≤ 2)-identifying code is a subset of the vertex set C of a graph such that each pair of vertices intersects C in a distinct way. This has useful applications in locating errors in multiprocessor networks and threat monitoring. At the time of writing, there is no simply-stated rule that will indicate if a graph is (1, ≤ 2)-identifiable. As such, we discuss properties that must be satisfied by a valid (1, ≤ 2)-identifying code, characteristics of a graph which preclude the existence of a (1, ≤ 2)-identifying code, and relationships between the maximum degree and order of (1, ≤ 2)-identifiable graphs. Additionally, we show that (1, ≤ 2)-identifiable graphs have no forbidden induced subgraphs and provide a list of (1, ≤ 2)-identifiable graphs with minimum (1, ≤ 2)-identifying codes indicated.
Camby, Eglantine. "Connecting hitting sets and hitting paths in graphs." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209048.
Full textTout d’abord, nous considérons les deux problèmes suivants :le problème de vertex cover et celui de dominating set, deux cas particuliers du problème de hitting set. Un vertex cover est un ensemble de sommets qui rencontrent toutes les arêtes alors qu’un dominating set est un ensemble X de sommets tel que chaque sommet n’appartenant pas à X est adjacent à un sommet de X. La version connexe de ces problèmes demande que les sommets choisis forment un sous-graphe connexe. Pour les deux problèmes précédents, nous examinons le prix de la connexité, défini comme étant le rapport entre la taille minimum d’un ensemble répondant à la version connexe du problème et celle d’un ensemble du problème originel. Nous prouvons la difficulté du calcul du prix de la connexité d’un graphe. Cependant, lorsqu’on exige que le prix de la connexité d’un graphe ainsi que de tous ses sous-graphes induits soit borné par une constante fixée, la situation change complètement. En effet, pour les problèmes de vertex cover et de dominating set, nous avons pu caractériser ces classes de graphes pour de petites constantes.
Ensuite, nous caractérisons en termes de dominating sets connexes les graphes Pk- free, graphes n’ayant pas de sous-graphes induits isomorphes à un chemin sur k sommets. Beaucoup de problèmes sur les graphes sont étudiés lorsqu’ils sont restreints à cette classe de graphes. De plus, nous appliquons cette caractérisation à la 2-coloration dans les hypergraphes. Pour certains hypergraphes, nous prouvons que ce problème peut être résolu en temps polynomial.
Finalement, nous travaillons sur le problème de Pk-hitting set. Un Pk-hitting set est un ensemble de sommets qui rencontrent tous les chemins sur k sommets. Nous développons un algorithme d’approximation avec un facteur de performance de 3. Notre algorithme, basé sur la méthode primal-dual, fournit un Pk-hitting set dont la taille est au plus 3 fois la taille minimum d’un Pk-hitting set.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Levy, Eythan. "Approximation algorithms for covering problems in dense graphs." Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210359.
Full textFinally, we look at the CONNECTED VERTEX COVER (CVC) problem,for which we proposed new approximation results in dense graphs. We first analyze Carla Savage's algorithm, then a new variant of the Karpinski-Zelikovsky algorithm. Our results show that these algorithms provide the same approximation ratios for CVC as the maximal matching heuristic and the Karpinski-Zelikovsky algorithm did for VC. We provide tight examples for the ratios guaranteed by both algorithms. We also introduce a new invariant, the "price of connectivity of VC", defined as the ratio between the optimal solutions of CVC and VC, and showed a nearly tight upper bound on its value as a function of the weak density. Our last chapter discusses software aspects, and presents the use of the GRAPHEDRON software in the framework of approximation algorithms, as well as our contributions to the development of this system.
/
Nous présentons un ensemble de résultats d'approximation pour plusieurs problèmes de couverture dans les graphes denses. Ces résultats montrent que pour plusieurs problèmes, des algorithmes classiques à facteur d'approximation constant peuvent être analysés de manière plus fine, et garantissent de meilleurs facteurs d'aproximation constants sous certaines contraintes de densité. Nous montrons en particulier que l'heuristique du matching maximal approxime les problèmes VERTEX COVER (VC) et MINIMUM MAXIMAL MATCHING (MMM) avec un facteur constant inférieur à 2 quand la proportion d'arêtes présentes dans le graphe (densité faible) est supérieure à 3/4 ou quand le degré minimum normalisé (densité forte) est supérieur à 1/2. Nous montrons également que ce résultat peut être amélioré par un algorithme de type GREEDY, qui fournit un facteur constant inférieur à 2 pour des densités faibles supérieures à 1/2. Nous donnons également des familles de graphes extrémaux pour nos facteurs d'approximation. Nous nous somme ensuite intéressés à plusieurs algorithmes de la littérature pour les problèmes VC et SET COVER (SC). Nous avons présenté une approche unifiée et critique des algorithmes de Karpinski-Zelikovsky, Imamura-Iwama, et Bar-Yehuda-Kehat, identifiant un schéma général dans lequel s'intègrent ces algorithmes.
Nous nous sommes finalement intéressés au problème CONNECTED VERTEX COVER (CVC), pour lequel nous avons proposé de nouveaux résultats d'approximation dans les graphes denses, au travers de l'algorithme de Carla Savage d'une part, et d'une nouvelle variante de l'algorithme de Karpinski-Zelikovsky d'autre part. Ces résultats montrent que nous pouvons obtenir pour CVC les mêmes facteurs d'approximation que ceux obtenus pour VC à l'aide de l'heuristique du matching maximal et de l'algorithme de Karpinski-Zelikovsky. Nous montrons également des familles de graphes extrémaux pour les ratios garantis par ces deux algorithmes. Nous avons également étudié un nouvel invariant, le coût de connectivité de VC, défini comme le rapport entre les solutions optimales de CVC et de VC, et montré une borne supérieure sur sa valeur en fonction de la densité faible. Notre dernier chapitre discute d'aspects logiciels, et présente l'utilisation du logiciel GRAPHEDRON dans le cadre des algorithmes d'approximation, ainsi que nos contributions au développement du logiciel.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Foucaud, Florent. "Aspects combinatoires et algorithmiques des codes identifiants dans les graphes." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00766138.
Full textDesormeaux, Wyatt Jules. "Total domination in graphs and graph modifications." Thesis, 2012. http://hdl.handle.net/10210/6158.
Full textIn this thesis, our primary objective is to investigate the effects that various graph modifications have on the total domination number of a graph. In Chapter 1, we introduce basic graph theory concepts and preliminary definitions. In Chapters 2 and 3, we investigate the graph modification of edge removal. In Chapter 2, we characterize graphs for which the removal of any arbitrary edge increases the total domination number. We also begin the investigation of graphs for which the removal of any arbitrary edge has no effect on the total domination number. In Chapter 3, we continue this investigation and determine the minimum number of edges required for these graphs. The contents of Chapters 2 and 3 have been published in Discrete Applied Mathematics [15] and [16]. In Chapter 4, we investigate the graph modification of edge addition. In particular, we focus our attention on graphs for which adding an edge between any pair of nonadjacent vertices has no effect on the total domination number. We characterize these graphs, determine a sharp upper bound on their total domination number and determine which combinations of order and total domination number are attainable. 10 11 We also study claw-free graphs which have this property. The contents of this chapter were published in Discrete Mathematics [20]. In Chapter 5, we investigate the graph modification of vertex removal. We characterize graphs for which the removal of any vertex changes the total domination number and find sharp upper and lower bounds on the total domination number of these graphs. We also characterize graphs for which the removal of an arbitrary vertex has no effect on the total domination number and we further show that they have no forbidden subgraphs. The contents of this chapter were published in Discrete Applied Mathematics [14]. In Chapters 6 and 7, we investigate the graph modification of edge lifting. In Chapter 6, we show that there are no trees for which every possible edge lift decreases the domination number, and we characterize trees for which every possible edge lift increases the domination number. The contents of Chapter 6 were published in the journal Quaestiones Mathematicae [17]. In Chapter 7, we show that there are no trees for which every possible edge lift decreases the total domination number and that there are no trees for which every possible edge lift leaves the total domination number unchanged. We characterize trees for which every possible edge lift increases the total domination number. At the time of the writing of this thesis, the contents of Chapter 7 have been published online in the Journal of Combinatorial Optimization [18] and will appear in print in a future issue.
Marcon, Alister Justin. "Semitotal domination in graphs." Thesis, 2015. http://hdl.handle.net/10210/13867.
Full textMcCoy, John Patrick. "Paired-domination in graphs." Thesis, 2013. http://hdl.handle.net/10210/8556.
Full textDomination and its variants are now well studied in graph theory. One of these variants, paired-domination, requires that the subgraph induced by the dominating set contains a perfect matching. In this thesis, we further investigate the concept of paired-domination. Chapters 2, 3, 4, and 5 of this thesis have been published in [17], [41], [42], and [43], respectively, while Chapter 6 is under submission; see [44]. In Chapter 1, we introduce the domination parameters we use, as well as the necessary graph theory terminology and notation. We combine the de nition of a paired-dominating set and a locating set to de ne three new sets: locating-paired- dominating sets, di erentiating-paired-dominating sets, and metric-locating-paired- dominating sets. We use these sets in Chapters 3 and 4. In Chapter 2, we investigate the relationship between the upper paired-domination and upper total domination numbers of a graph. In Chapter 3, we study the properties of the three kinds of locating paired-dominating sets we de ned, and in Chapter 4 we give a constructive characterisation of those trees which do not have a di erentiating- paired-dominating set. In Chapter 5, we study the problem of characterising planar graphs with diameter two and paired-domination number four. Lastly, in Chap- ter 6, we establish an upper bound on the size of a graph of given order and paired- domination number and we characterise the extremal graphs that achieve equality in the established bound.
"Stratification and domination in graphs." Thesis, 2006. http://hdl.handle.net/10413/1891.
Full textThesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
Joubert, Ernest. "Aspects of total restrained domination in graphs." Thesis, 2009. http://hdl.handle.net/10210/2354.
Full textSchurch, Mark. "Domination parameters of prisms of graphs." 2005. http://hdl.handle.net/1828/825.
Full textYang, Feiran. "New results on broadcast domination and multipacking." Thesis, 2015. http://hdl.handle.net/1828/6627.
Full textGraduate
Edwards, Michelle. "Vertex-Criticality and Bicriticality for Independent Domination and Total Domination in Graphs." Thesis, 2015. http://hdl.handle.net/1828/6097.
Full textGraduate
0405
michaedwards@gmail.com
Dorfling, Samantha. "Domination in graphs with bounded degrees." Thesis, 2012. http://hdl.handle.net/10210/7284.
Full textLet G be a graph and D a set of vertices such that every vertex in G is in D or adjacent to at least one vertex in D. Then D is called a dominating set of G and the smallest cardinality of such a dominating set of G is known as the domination number of G, denoted by y(G). This short dissertation is a study of the domination number in graphs with bounds on both the minimum and maximum degrees. In Chapter 1 we give all definitions, terminology and references related to the material presented in this thesis. In Chapter 2 we study an article by McCuaig and Shepherd which considers graphs with minimum degree two and gives an upper bound for their domination numbers in terms of their order. This bound is also an improvement of one originally determined by Ore. In Chapter 3 an article by Fisher, Fraughnaugh and Seager is studied. Here the domination number in graphs with maximum degree at most three is discussed. Furthermore au upper bound on the domination number of a graph is given in terms of its order, size and the number of isolated vertices it contains. This result is an extension of a previous result by Reed on domination in graphs with minimum degree three. A set U of vertices of a graph G = (V, E) is k-dominating if each vertex of V — U is adjacent to at least k vertices of U. The k-domination number of G, Yk (G), is the smallest cardinality of a k-dominating set of G. Finally in Chapter 4 we study an article by Cockayne, Gamble and Shepherd which gives an upper bound for the k-domination number of a graph with minimum degree at least k. This result is a generalization of a result by Ore.
Finbow, Stephen. "Generalisations of irredundance in graphs." Thesis, 2003. http://hdl.handle.net/1828/7913.
Full textGraduate
Smithdorf, Vivienne. "Aspects of distance and domination in graphs." Thesis, 1995. http://hdl.handle.net/10413/5142.
Full textThesis (Ph.D.-Mathematics and Applied Mathematics)-University of Natal, 1995.
Smithdorf, Vivienne. "On the integrity of domination in graphs." Thesis, 1993. http://hdl.handle.net/10413/8098.
Full textThesis (M.Sc.)-University of Natal, 1993.