Contents
Academic literature on the topic 'Données non identiquement distribuées'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Données non identiquement distribuées.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Données non identiquement distribuées"
Adlouni, Salaheddine El, and Taha B. M. J. Ouarda. "Comparaison des méthodes d’estimation des paramètres du modèle GEV non stationnaire." Revue des sciences de l'eau 21, no. 1 (April 29, 2008): 35–50. http://dx.doi.org/10.7202/017929ar.
Full textAndreoli, Rémi, Benoît Ducarouge, Jonathan Maura, Audrey Leopold, Pierre-Nicolas Mougel, Arnaud Durand, Cyril Marchand, et al. "L'imagerie spatiale à très haute résolution au coeur du dispositif de Geospatial Cloud Computing QëhnelöTM : application aux données Pléiades en Nouvelle-Calédonie." Revue Française de Photogrammétrie et de Télédétection, no. 209 (January 11, 2015): 47–57. http://dx.doi.org/10.52638/rfpt.2015.185.
Full textBreithaupt, Sandrine, and Anne Clerc Georgy. "Que révèlent les situations d’évaluation de la posture en formation des futurs enseignants ?" Mesure et évaluation en éducation 40, no. 2 (February 23, 2018): 57–90. http://dx.doi.org/10.7202/1043568ar.
Full textBocquet, Marc. "Modélisation inverse des sources de pollution atmosphérique accidentelle : progrès récents." Pollution atmosphérique, NS 2 (September 1, 2010): 151–60. http://dx.doi.org/10.54563/pollution-atmospherique.7144.
Full textCHILLIARD, Y., R. VERITE, and A. PFLIMLIN. "Effets de la somatotropine bovine sur les performances des vaches laitières dans les conditions françaises d’élevage." INRAE Productions Animales 2, no. 5 (December 10, 1989): 301–12. http://dx.doi.org/10.20870/productions-animales.1989.2.5.4423.
Full textHeyer, Éric. "Comment expliquer l’évolution de l’emploi salarié depuis la crise Covid ?" Revue de l'OFCE N° 180, no. 1 (March 6, 2024): 179–206. http://dx.doi.org/10.3917/reof.180.0179.
Full textRenaud, François. "Les motivations dans une organisation partisane de circonscription." Articles 14, no. 1 (April 12, 2005): 59–79. http://dx.doi.org/10.7202/055602ar.
Full textDissertations / Theses on the topic "Données non identiquement distribuées"
Hakam, Samir. "Convergences des statistiques d'ordre des variables aléatoires non identiquement distribuées. Convergences des statistiques d'ordre de rang intermédiaire et central." Paris 6, 1991. http://www.theses.fr/1991PA066515.
Full textDabo, Issa-Mbenard. "Applications de la théorie des matrices aléatoires en grandes dimensions et des probabilités libres en apprentissage statistique par réseaux de neurones." Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0021.
Full textThe functioning of machine learning algorithms relies heavily on the structure of the data they are given to study. Most research work in machine learning focuses on the study of homogeneous data, often modeled by independent and identically distributed random variables. However, data encountered in practice are often heterogeneous. In this thesis, we propose to consider heterogeneous data by endowing them with a variance profile. This notion, derived from random matrix theory, allows us in particular to study data arising from mixture models. We are particularly interested in the problem of ridge regression through two models: the linear ridge model and the random feature ridge model. In this thesis, we study the performance of these two models in the high-dimensional regime, i.e., when the size of the training sample and the dimension of the data tend to infinity at comparable rates. To this end, we propose asymptotic equivalents for the training error and the test error associated with the models of interest. The derivation of these equivalents relies heavily on spectral analysis from random matrix theory, free probability theory, and traffic theory. Indeed, the performance measurement of many learning models depends on the distribution of the eigenvalues of random matrices. Moreover, these results enabled us to observe phenomena specific to the high-dimensional regime, such as the double descent phenomenon. Our theoretical study is accompanied by numerical experiments illustrating the accuracy of the asymptotic equivalents we provide
Charbonnier, Camille. "Inférence de réseaux de régulation génétique à partir de données du transcriptome non indépendamment et indentiquement distribuées." Thesis, Evry-Val d'Essonne, 2012. http://www.theses.fr/2012EVRY0022/document.
Full textThis thesis investigates the inference of high-dimensional Gaussian graphical models from non identically and independently distributed transcriptomic data in the objective of recovering gene regulatory networks. In the context of high-dimensional statistics, data heterogeneity paves the way to the definition of structured regularizers in order to improve the quality of the estimator. We first consider heterogeneity at the network level, building upon the assumption that biological networks are organized, which leads to the definition of a weighted l1 regularization. Modelling heterogeneity at the observation level, we provide a consistency analysis of a recent block-sparse regularizer called the cooperative-Lasso designed to combine observations from distinct but close datasets. Finally we address the crucial question of uncertainty, deriving homonegeity tests for high-dimensional linear regression
Fortin, Benoît. "Méthodes conjointes de détection et suivi basé-modèle de cibles distribuées par filtrage non-linéaire dans les données lidar à balayage." Phd thesis, Université du Littoral Côte d'Opale, 2013. http://tel.archives-ouvertes.fr/tel-01021085.
Full text