Journal articles on the topic 'Double electron transfer (DET)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Double electron transfer (DET).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mukerjee, Sanjeev, Benjamin William Kaufold, Parisa Nematollahi, et al. "(Invited) Fundamentals of Plasmon-Induced Charge Transfer in Semiconducting Materials: Showcasing OER Catalysis." ECS Meeting Abstracts MA2024-01, no. 35 (2024): 1956. http://dx.doi.org/10.1149/ma2024-01351956mtgabs.
Full textMukerjee, Sanjeev, Benjamin William Kaufold, Sijia Dong, Parisa Nematollahi, Bernardo Barbiellini, and Dirk Lamoen. "(Invited) Plasmonic Enhancement of Electrochemical Reactions Using LSPR Phenomenon." ECS Meeting Abstracts MA2023-01, no. 30 (2023): 1798. http://dx.doi.org/10.1149/ma2023-01301798mtgabs.
Full textMeyer, Gerald J. "(Invited) Reorganization Energies for Interfacial Electron Transfer and PCET in the Electric Double Layer." ECS Meeting Abstracts MA2025-01, no. 53 (2025): 2616. https://doi.org/10.1149/ma2025-01532616mtgabs.
Full textXiao, Yuchen, Shanyue Wei, Xiaowei Wu, and Canzhong Lu. "Two-Dimensional Covalent Organic Frameworks with Carbazole-Embedded Frameworks Facilitate Photocatalytic and Electrocatalytic Processes." Molecules 29, no. 21 (2024): 5071. http://dx.doi.org/10.3390/molecules29215071.
Full textChen, Ling, Yue Lu, Manman Duanmu, et al. "Stably Improving the Catalytic Activity of Oxygen Evolution Reactions via Two-Dimensional Graphene Oxide-Incorporated NiFe-Layered Double Hydroxides." Catalysts 14, no. 4 (2024): 278. http://dx.doi.org/10.3390/catal14040278.
Full textWu, Hsing-Ju, and Cheng-Chung Chang. "Fabrication of Double Emission Enhancement Fluorescent Nanoparticles with Combined PET and AIEE Effects." Molecules 25, no. 23 (2020): 5732. http://dx.doi.org/10.3390/molecules25235732.
Full textWang, Ze, Qianyu Zhou, Yanni Zhu, et al. "NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction." Nanomaterials 12, no. 13 (2022): 2200. http://dx.doi.org/10.3390/nano12132200.
Full textZhang, Zhichao, Jiahao Guo, Yuhan Sun, et al. "Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction." Journal of Composites Science 7, no. 12 (2023): 486. http://dx.doi.org/10.3390/jcs7120486.
Full textChen, Zhuo, Qiang Qu, Xinsheng Li, Katam Srinivas, Yuanfu Chen, and Mingqiang Zhu. "Room-Temperature Synthesis of Carbon-Nanotube-Interconnected Amorphous NiFe-Layered Double Hydroxides for Boosting Oxygen Evolution Reaction." Molecules 28, no. 21 (2023): 7289. http://dx.doi.org/10.3390/molecules28217289.
Full textWiedemeier, Allison M. D., Jan E. Judy-March, Charles H. Hocart, Geoffrey O. Wasteneys, Richard E. Williamson, and Tobias I. Baskin. "Mutant alleles of Arabidopsis RADIALLY SWOLLEN 4 and 7 reduce growth anisotropy without altering the transverse orientation of cortical microtubules or cellulose microfibrils." Development 129, no. 20 (2002): 4821–30. http://dx.doi.org/10.1242/dev.129.20.4821.
Full textSolangi, Muhammad Yameen, Abdul Hanan Samo, Abdul Jaleel Laghari, Umair Aftab, Muhammad Ishaque Abro, and Muhammad Imran Irfan. "MnO2@Co3O4 nanocomposite based electrocatalyst for effective oxygen evolution reaction." Sukkur IBA Journal of Emerging Technologies 5, no. 1 (2022): 32–40. http://dx.doi.org/10.30537/sjet.v5i1.958.
Full textAdachi, Taiki, Yuki Kitazumi, Osamu Shirai, and Kenji Kano. "Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes at Nanostructured Electrodes." Catalysts 10, no. 2 (2020): 236. http://dx.doi.org/10.3390/catal10020236.
Full textRatautas, Dalius, and Marius Dagys. "Nanocatalysts Containing Direct Electron Transfer-Capable Oxidoreductases: Recent Advances and Applications." Catalysts 10, no. 1 (2019): 9. http://dx.doi.org/10.3390/catal10010009.
Full textSchachinger, Franziska, Hucheng Chang, Stefan Scheiblbrandner, and Roland Ludwig. "Amperometric Biosensors Based on Direct Electron Transfer Enzymes." Molecules 26, no. 15 (2021): 4525. http://dx.doi.org/10.3390/molecules26154525.
Full textKwek, Lee Koon, Seyed Ehsan Saffari, Heng Hao Tan, Jerry KY Chan, and Sadhana Nadarajah. "Comparison between Single and Double Cleavage-Stage Embryo Transfers, Single and Double Blastocyst Transfers in a South East Asian In Vitro Fertilisation Centre." Annals of the Academy of Medicine, Singapore 47, no. 11 (2018): 451–54. http://dx.doi.org/10.47102/annals-acadmedsg.v47n11p451.
Full textYanase, Takumi, Junko Okuda-Shimazaki, Ryutaro Asano, Kazunori Ikebukuro, Koji Sode, and Wakako Tsugawa. "Development of a Versatile Method to Construct Direct Electron Transfer-Type Enzyme Complexes Employing SpyCatcher/SpyTag System." International Journal of Molecular Sciences 24, no. 3 (2023): 1837. http://dx.doi.org/10.3390/ijms24031837.
Full textSitler, Collin, Michael Lustik, Gary Levy, and Bruce Pier. "Single Embryo Transfer Versus Double Embryo Transfer: A Cost-Effectiveness Analysis in a Non-IVF Insurance Mandated System." Military Medicine 185, no. 9-10 (2020): e1700-e1705. http://dx.doi.org/10.1093/milmed/usaa119.
Full textPoimenidis, Ioannis, Nikandra Papakosta, Panagiotis A. Loukakos, George E. Marnellos, and Michalis Konsolakis. "Highly Efficient Cobalt Sulfide Heterostructures Fabricated on Nickel Foam Electrodes for Oxygen Evolution Reaction in Alkaline Water Electrolysis Cells." Surfaces 6, no. 4 (2023): 493–508. http://dx.doi.org/10.3390/surfaces6040033.
Full textThanh, Tran Ha Lan, Pham Hoang Huy, Do Thi Linh, et al. "Effectiveness of elective single versus double frozen embryo transfer in good prognosis IVF patients." Biomedical Research and Therapy 8, no. 1 (2021): 4203–13. http://dx.doi.org/10.15419/bmrat.v8i1.658.
Full textInukai, Niina, Eiichiro Takamura, Hiroaki Sakamoto, Takenori Satomura, and Shinichiro Suye. "Construction of a Novel Stable Electron Transfer Protein for the Creation of Artificial Direct Electron Transfer Enzymes." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4723. https://doi.org/10.1149/ma2024-02674723mtgabs.
Full textXia, Hongqi, and Jiwu Zeng. "Rational Surface Modification of Carbon Nanomaterials for Improved Direct Electron Transfer-Type Bioelectrocatalysis of Redox Enzymes." Catalysts 10, no. 12 (2020): 1447. http://dx.doi.org/10.3390/catal10121447.
Full textRao, Jinpeng, Feng Qiu, Shen Tian, et al. "Clinical outcomes for Day 3 double cleavage-stage embryo transfers versus Day 5 or 6 single blastocyst transfer in frozen–thawed cycles: a retrospective comparative analysis." Journal of International Medical Research 49, no. 12 (2021): 030006052110624. http://dx.doi.org/10.1177/03000605211062461.
Full textAlves, Daniele, Eithne Dempsey, and Carmel B. Breslin. "Factorial optimisation of CoCuFe- LDH/graphene composites for water splitting." ECS Meeting Abstracts MA2024-02, no. 42 (2024): 2805. https://doi.org/10.1149/ma2024-02422805mtgabs.
Full textAldemir, Oya, Runa Ozelci, Emre Baser, et al. "Impact of Transferring a Poor Quality Embryo Along with a Good Quality Embryo on Pregnancy Outcomes in IVF/ICSI Cycles: a Retrospective Study." Geburtshilfe und Frauenheilkunde 80, no. 08 (2020): 844–50. http://dx.doi.org/10.1055/a-1213-9164.
Full textMohanty, J., H. Pal, S. K. Nayak, S. Chattopadhyay, and A. V. Sapre. "Photoinduced dissociative electron transfer (DET) interactions in methoxycalixarene–chloroalkane systems." Chemical Physics Letters 370, no. 5-6 (2003): 641–46. http://dx.doi.org/10.1016/s0009-2614(03)00179-9.
Full textHenao-Pabon, Gilberto, Ning Gao, K. Sudhakara Prasad, and XiuJun Li. "Direct Electron Transfer of Glucose Oxidase on Pre-Anodized Paper/Carbon Electrodes Modified through Zero-Length Cross-Linkers for Glucose Biosensors." Biosensors 13, no. 5 (2023): 566. http://dx.doi.org/10.3390/bios13050566.
Full textYan, Xiaomei, Jing Tang, David Tanner, Jens Ulstrup, and Xinxin Xiao. "Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers." Catalysts 10, no. 12 (2020): 1458. http://dx.doi.org/10.3390/catal10121458.
Full textWang, Ruijie, Xiaoshuai Wu, Chang Liu, et al. "Hierarchical Porous Carbon Fibers for Enhanced Interfacial Electron Transfer of Electroactive Biofilm Electrode." Catalysts 12, no. 10 (2022): 1187. http://dx.doi.org/10.3390/catal12101187.
Full textSuzuki, Nanami, Jinhee Lee, Noya Loew, et al. "Engineered Glucose Oxidase Capable of Quasi-Direct Electron Transfer after a Quick-and-Easy Modification with a Mediator." International Journal of Molecular Sciences 21, no. 3 (2020): 1137. http://dx.doi.org/10.3390/ijms21031137.
Full textTakeda, Kota, Makoto Yoshida, Kiyohiko Igarashi, and Nobuhumi Nakamura. "Direct Bioelectrocatalysis of Fungal Pyrroloquinoline Quinone-Dependent Pyranose Dehydrogenase Depending on the Alkyl Chain Lengths of Self-Assembled Monolayers." ECS Meeting Abstracts MA2024-02, no. 54 (2024): 3671. https://doi.org/10.1149/ma2024-02543671mtgabs.
Full textKim, Gyeongho, and Haesik Yang. "(Invited) Electrochemical Biosensor Using Direct Electron Transfer and an Antibody–Aptamer Hybrid Sandwich." ECS Meeting Abstracts MA2024-02, no. 54 (2024): 3704. https://doi.org/10.1149/ma2024-02543704mtgabs.
Full textSuzuki, Yohei, Keisei Sowa, Kenji Kano, Yuki Kitazumi, and Osamu Shirai. "Structural and Electrochemical Discussion on Direct Electron Transfer-Type Bioelectrocatalysis By Membrane-Bound Fructose Dehydrogenase from Gluconobacter Japonicus." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4728. https://doi.org/10.1149/ma2024-02674728mtgabs.
Full textMancuso, A. C., A. E. Sparks, H. E. Duran, B. J. Van Voorhis, and J. Kapfhamer. "Elective single embryo transfer (ESET) versus double embryo transfer (DET) following failed mandatory single embryo transfer (MSET)." Fertility and Sterility 110, no. 4 (2018): e192. http://dx.doi.org/10.1016/j.fertnstert.2018.07.562.
Full textJacquet, Margot, Małgorzata Kiliszek, Silvio Osella, et al. "Molecular mechanism of direct electron transfer in the robust cytochrome-functionalised graphene nanosystem." RSC Advances 11, no. 31 (2021): 18860–69. http://dx.doi.org/10.1039/d1ra02419a.
Full textYaegashi, Yuki, Tong Sheng, Takumi Yanase, et al. "Development of a Direct Electron Transfer-Type Enzymatic Sensor for the Spermine in Saliva, a Marker of Pancreatic Cancer." ECS Meeting Abstracts MA2024-02, no. 54 (2024): 3702. https://doi.org/10.1149/ma2024-02543702mtgabs.
Full textBräuning, H., H. Helm, J. S. Briggs,, and E. Salzborn. "Double electron transfer in H-+ H+collisions." Journal of Physics: Conference Series 88 (November 1, 2007): 012033. http://dx.doi.org/10.1088/1742-6596/88/1/012033.
Full textBollella, Paolo, and Evgeny Katz. "Enzyme-Based Biosensors: Tackling Electron Transfer Issues." Sensors 20, no. 12 (2020): 3517. http://dx.doi.org/10.3390/s20123517.
Full textKelly, Amelia G., Andria G. Besser, Emily Michelle Weidenbaum, Jamie A. Grifo, and Jennifer K. Blakemore. "DOUBLE EMBRYO TRANSFER (DET) WITH MOSAIC EMBRYOS HAVE EQUIVALENT LIVE BIRTH AND MULTIPLE PREGNANCY RATES AS EUPLOID DET." Fertility and Sterility 120, no. 4 (2023): e185. http://dx.doi.org/10.1016/j.fertnstert.2023.08.541.
Full textRamanavicius, Simonas, and Arunas Ramanavicius. "Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells." Nanomaterials 11, no. 2 (2021): 371. http://dx.doi.org/10.3390/nano11020371.
Full textWang, Shixin, Xiaoming Zhang, and Enrico Marsili. "Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied." Molecules 27, no. 16 (2022): 5330. http://dx.doi.org/10.3390/molecules27165330.
Full textSHLEEV, Sergey, Andreas CHRISTENSON, Vladimir SEREZHENKOV, et al. "Electrochemical redox transformations of T1 and T2 copper sites in native Trametes hirsuta laccase at gold electrode." Biochemical Journal 385, no. 3 (2005): 745–54. http://dx.doi.org/10.1042/bj20041015.
Full textHales, Natasha, Thomas J. Schmidt, and Emiliana Fabbri. "Exploring the Synergistic Ni-Fe-W Interplay in Double Perovskites to Understand the Operando Electronic Transformations Driving High Oxygen Evolution Reaction Activity and Stability." ECS Meeting Abstracts MA2024-02, no. 42 (2024): 2795. https://doi.org/10.1149/ma2024-02422795mtgabs.
Full textYamashita, Yuki, Inyoung Lee, Noya Loew, and Koji Sode. "Direct electron transfer (DET) mechanism of FAD dependent dehydrogenase complexes ∼from the elucidation of intra- and inter-molecular electron transfer pathway to the construction of engineered DET enzyme complexes∼." Current Opinion in Electrochemistry 12 (December 2018): 92–100. http://dx.doi.org/10.1016/j.coelec.2018.07.013.
Full textMartinez, A. E., R. Gayet, J. Hanssen, and R. D. Rivarola. "Thomas two-step mechanisms for double electron transfer." Journal of Physics B: Atomic, Molecular and Optical Physics 27, no. 14 (1994): L375—L382. http://dx.doi.org/10.1088/0953-4075/27/14/012.
Full textKelley, S. O. "Electron Transfer Between Bases in Double Helical DNA." Science 283, no. 5400 (1999): 375–81. http://dx.doi.org/10.1126/science.283.5400.375.
Full textDorenbos, P., A. J. J. Bos, and N. R. J. Poolton. "Electron transfer processes in double lanthanide activated YPO4." Optical Materials 33, no. 7 (2011): 1019–23. http://dx.doi.org/10.1016/j.optmat.2010.08.016.
Full textMaie, Kenji, Kazuyuki Miyagi, Tadao Takada, Mitsunobu Nakamura, and Kazushige Yamana. "RNA-Mediated Electron Transfer: Double Exponential Distance Dependence." Journal of the American Chemical Society 131, no. 37 (2009): 13188–89. http://dx.doi.org/10.1021/ja902647j.
Full textTergiman, Y. S., and M. C. Bacchus-Montabonel. "Double-electron capture processes in charge transfer reactions." International Journal of Quantum Chemistry 99, no. 5 (2004): 628–33. http://dx.doi.org/10.1002/qua.10843.
Full textPriyadarshy, Satyam, David N. Beratan, and Steven M. Risser. "DNA double-helix-mediated long-range electron transfer." International Journal of Quantum Chemistry 60, no. 8 (1996): 1789–95. http://dx.doi.org/10.1002/(sici)1097-461x(1996)60:8<1789::aid-qua6>3.0.co;2-u.
Full textPyun, Su-Il. "Thermodynamic and electro-kinetic analyses of direct electron transfer (DET) and mediator-involved electron transfer (MET) with the help of a redox electron mediator." Journal of Solid State Electrochemistry 24, no. 11-12 (2020): 2685–93. http://dx.doi.org/10.1007/s10008-020-04780-2.
Full text