To see the other types of publications on this topic, follow the link: Double perovskite.

Journal articles on the topic 'Double perovskite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Double perovskite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Heidari Gourji, Fatemeh, and Dhayalan Velauthapillai. "A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications." Molecules 26, no. 7 (2021): 2010. http://dx.doi.org/10.3390/molecules26072010.

Full text
Abstract:
Despite the progressive enhancement in the flexibility of Pb-based perovskites for optoelectronic applications, regrettably, they are facing two main challenges; (1) instability, which originates from using organic components in the perovskite structure, and (2) toxicity due to Pb. Therefore, new, stable non-toxic perovskite materials are demanded to overcome these drawbacks. The research community has been working on a wide variety of Pb-free perovskites with different molecular formulas and dimensionality. A variety of Pb-free halide double perovskites have been widely explored by different research groups in search for stable, non-toxic double perovskite material. Especially, Cs-based Pb-free halide double perovskite has been in focus recently. Herein, we present a review of theoretical and experimental research on Cs-based Pb-free double halide perovskites of structural formulas Cs2M+M3+X6 (M+ = Ag+, Na+, In+ etc.; M3+= Bi3+, In3+, Sb3+; X = Cl−, Br−, I¯) and Cs2M4+X6 (M4+ = Ti4+, Sn4+, Au4+ etc.). We also present the challenges faced by these perovskite compounds and their current applications especially in photovoltaics alongside the effect of metal dopants on their performance.
APA, Harvard, Vancouver, ISO, and other styles
2

Mitchell, Roger H., Mark D. Welch, and Anton R. Chakhmouradian. "Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition." Mineralogical Magazine 81, no. 3 (2017): 411–61. http://dx.doi.org/10.1180/minmag.2016.080.156.

Full text
Abstract:
AbstractOn the basis of extensive studies of synthetic perovskite-structured compounds it is possible to derive a hierarchy of hettotype structures which are derivatives of the arisotypic cubic perovskite structure (ABX3), exemplified by SrTiO3 (tausonite) or KMgF3 (parascandolaite) by: (1) tilting and distortion of the BX6 octahedra; (2) ordering of A- and B-site cations; (3) formation of A-, B- or X-site vacancies. This hierarchical scheme can be applied to some naturally-occurring oxides, fluorides,hydroxides, chlorides, arsenides, intermetallic compounds and silicates which adopt such derivative crystal structures. Application of this hierarchical scheme to naturally-occurring minerals results in the recognition of a perovskite supergroup which is divided into stoichiometric and non-stoichiometricperovskite groups, with both groups further divided into single ABX3 or double A2BB'X6 perovskites. Subgroups, and potential subgroups, of stoichiometric perovskites include: (1) silicate single perovskites of the bridgmanite subgroup;(2) oxide single perovskites of the perovskite subgroup (tausonite, perovskite, loparite, lueshite, isolueshite, lakargiite, megawite); (3) oxide single perovskites of the macedonite subgroup which exhibit second order Jahn-Teller distortions (macedonite, barioperovskite); (4) fluoride singleperovskites of the neighborite subgroup (neighborite, parascandolaite); (5) chloride single perovskites of the chlorocalcite subgroup; (6) B-site cation ordered double fluoride perovskites of the cryolite subgroup (cryolite, elpasolite, simmonsite); (7) B-site cation orderedoxide double perovskites of the vapnikite subgroup [vapnikite, (?) latrappite]. Non-stoichiometric perovskites include: (1) A-site vacant double hydroxides, or hydroxide perovskites, belonging to the söhngeite, schoenfliesite and stottite subgroups; (2) Anion-deficient perovskitesof the brownmillerite subgroup (srebrodolskite, shulamitite); (3) A-site vacant quadruple perovskites (skutterudite subgroup); (4) B-site vacant single perovskites of the oskarssonite subgroup [oskarssonite]; (5) B-site vacant inverse single perovskites of the coheniteand auricupride subgroups; (6) B-site vacant double perovskites of the diaboleite subgroup; (7) anion-deficient partly-inverse B-site quadruple perovskites of the hematophanite subgroup.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Yan-Long, Dan-Ni Yan, Ming-Wei Zeng, Cheng-Sheng Liao, and Meng-Qiu Cai. "2D and 3D double perovskite with dimensionality-dependent optoelectronic properties: first-principle study on Cs2AgBiBr6 and Cs4AgBiBr8." Journal of Physics: Condensed Matter 34, no. 6 (2021): 065501. http://dx.doi.org/10.1088/1361-648x/ac34ae.

Full text
Abstract:
Abstract Recently, the effect of dimensional control on the optoelectronic performance of two-dimensional (2D)/three-dimensional (3D) single perovskites has been confirmed. However, how the dimensional change affects the photoelectric properties of 2D/3D all-inorganic double perovskites remains unclear. In this study, we present a detailed theoretical research on a comparison between the optoelectronic properties of 3D all-inorganic double perovskite Cs2AgBiBr6 and recently reported 2D all-inorganic double perovskite Cs4AgBiBr8 with Ruddlesden–Popper (RP) structure based on density functional theory calculations. The results demonstrate the charge carrier mobility and absorption coefficients in the visible spectrum of Cs4AgBiBr8 (2D) is poorer than Cs2AgBiBr6 (3D). Moreover, the value of exciton-binding energy for 2D RP all-inorganic double perovskite Cs4AgBiBr8 (720 meV) is 3 times larger than that of 3D all-inorganic double perovskite Cs2AgBiBr6 (240 meV). Our works indicate that Cs4AgBiBr8 (2D) is a promising material for luminescent device, while Cs2AgBiBr6 (3D) may be suitable for photovoltaic applications. This study provides a theoretical guidance for the understanding of 2D RP all-inorganic double perovskite with potential applications in photo-luminescent devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Fan, Ping, Huan-Xin Peng, Zhuang-Hao Zheng, et al. "Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films for Lead-Free Perovskite Solar Cells." Nanomaterials 9, no. 12 (2019): 1760. http://dx.doi.org/10.3390/nano9121760.

Full text
Abstract:
Lead-free double perovskites have been considered as a potential environmentally friendly photovoltaic material for substituting the hybrid lead halide perovskites due to their high stability and nontoxicity. Here, lead-free double perovskite Cs2AgBiBr6 films are initially fabricated by single-source evaporation deposition under high vacuum condition. X-ray diffraction and scanning electron microscopy characterization show that the high crystallinity, flat, and pinhole-free double perovskite Cs2AgBiBr6 films were obtained after post-annealing at 300 °C for 15 min. By changing the annealing temperature, annealing time, and film thickness, perovskite Cs2AgBiBr6 solar cells with planar heterojunction structure of FTO/TiO2/Cs2AgBiBr6/Spiro-OMeTAD/Ag achieve an encouraging power conversion efficiency of 0.70%. Our preliminary work opens a feasible approach for preparing high-quality double perovskite Cs2AgBiBr6 films wielding considerable potential for photovoltaic application.
APA, Harvard, Vancouver, ISO, and other styles
5

Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe, and Raymond Taziwa. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites." Metals 8, no. 9 (2018): 667. http://dx.doi.org/10.3390/met8090667.

Full text
Abstract:
Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.
APA, Harvard, Vancouver, ISO, and other styles
6

Ning, Weihua, Jinke Bao, Yuttapoom Puttisong, et al. "Magnetizing lead-free halide double perovskites." Science Advances 6, no. 45 (2020): eabb5381. http://dx.doi.org/10.1126/sciadv.abb5381.

Full text
Abstract:
Spintronics holds great potential for next-generation high-speed and low–power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.
APA, Harvard, Vancouver, ISO, and other styles
7

Bartel, Christopher J., Christopher Sutton, Bryan R. Goldsmith, et al. "New tolerance factor to predict the stability of perovskite oxides and halides." Science Advances 5, no. 2 (2019): eaav0693. http://dx.doi.org/10.1126/sciadv.aav0693.

Full text
Abstract:
Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, τ, that correctly predicts 92% of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX3 materials (X = O2−, F−, Cl−, Br−, I−) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). τ is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91% accuracy) and is applied to identify 23,314 new double perovskites (A2BB′X6) ranked by their probability of being stable as perovskite. This work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.
APA, Harvard, Vancouver, ISO, and other styles
8

Pantaler, Martina, Christian Fettkenhauer, Hoang L. Nguyen, Irina Anusca, and Doru C. Lupascu. "Deposition routes of Cs2AgBiBr6 double perovskites for photovoltaic applications." MRS Advances 3, no. 32 (2018): 1819–23. http://dx.doi.org/10.1557/adv.2018.151.

Full text
Abstract:
ABSTRACTThe lead free double perovskite Cs2AgBiBr6 is an upcoming alternative to lead based perovskites as absorber material in perovskite solar cells. So far, the majority of investigations on this interesting material have focused on polycrystalline powders and single crystals. We present vapor and solution based approaches for the preparation of Cs2AgBiBr6 thin films. Sequential vapor deposition processes starting from different precursors are shown and their weaknesses are discussed. Single source evaporation of Cs2AgBiBr6 and sequential deposition of Cs3Bi2Br9 and AgBr result in the formation of the double perovskite phase. Additionally, we show the possibility of the preparation of planar Cs2AgBiBr6 thin films by spin coating.
APA, Harvard, Vancouver, ISO, and other styles
9

Grandhi, G., Anastasia Matuhina, Maning Liu, et al. "Lead-Free Cesium Titanium Bromide Double Perovskite Nanocrystals." Nanomaterials 11, no. 6 (2021): 1458. http://dx.doi.org/10.3390/nano11061458.

Full text
Abstract:
Double perovskites are a promising family of lead-free materials that not only replace lead but also enable new optoelectronic applications beyond photovoltaics. Recently, a titanium (Ti)-based vacancy-ordered double perovskite, Cs2TiBr6, has been reported as an example of truly sustainable and earth-abundant perovskite with controversial results in terms of photoluminescence and environmental stability. Our work looks at this material from a new perspective, i.e., at the nanoscale. We demonstrate the first colloidal synthesis of Cs2TiX6 nanocrystals (X = Br, Cl) and observe tunable morphology and size of the nanocrystals according to the set reaction temperature. The Cs2TiBr6 nanocrystals synthesized at 185 °C show a bandgap of 1.9 eV and are relatively stable up to 8 weeks in suspensions. However, they do not display notable photoluminescence. The centrosymmetric crystal structure of Cs2TiBr6 suggests that this material could enable third-harmonic generation (THG) responses. Indeed, we provide a clear evidence of THG signals detected by the THG microscopy technique. As only a few THG-active halide perovskite materials are known to date and they are all lead-based, our findings promote future research on Cs2TiBr6 as well as on other lead-free double perovskites, with stronger focus on currently unexplored nonlinear optical applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Pantaler, Martina, Selina Olthof, Klaus Meerholz, and Doru C. Lupascu. "Bismuth-Antimony mixed double perovskites Cs2AgBi1-xSbxBr6 in solar cells." MRS Advances 4, no. 64 (2019): 3545–52. http://dx.doi.org/10.1557/adv.2019.404.

Full text
Abstract:
AbstractReported conversion efficiencies of lead based perovskite solar cells keep increasing steadily. But next to the demand for high efficiency, the need for analogue non-toxic material systems remains. One promising lead free absorber material is the double perovskite Cs2AgBiBr6. Interest in this and other double perovskites has been increasing in the last three years and several solar cells using different device structures have been reported. However, the efficiency of these solar cells is merely in the range of 2%. To further improve solar cell performance we prepared mixed bismuth-antimony double perovskite Cs2AgBi1-xSbxBr6 where different fractions of antimony (x=0.125, 0.25, 0.375, 0.50) are used. This was motivated by reports of lower bandgap values in these mixed system. After the optimization of preparation of these thin films, we have carefully analysed the effects on the structure, composition, electronic structure, as well as optical properties. Finally, we have fabricated Bi-Sb mixed double perovskite solar cells in a mesoscopic device architecture.
APA, Harvard, Vancouver, ISO, and other styles
11

Bhojak, Vivek, Praveen K. Jain, Deepak Bhatia, et al. "Numerical Investigation of Power Conversion Efficiency of Sustainable Perovskite Solar Cells." Electronics 12, no. 8 (2023): 1762. http://dx.doi.org/10.3390/electronics12081762.

Full text
Abstract:
Perovskite solar cells have been researched for high efficiency only in the last few years. These cells could offer an efficiency increase of about 3% to more than 15%. However, lead-based perovskite materials are very harmful to the environment. So, it is imperative to find lead-free materials and use them in designing solar cells. This research investigates the potential for using a lead-free double-perovskite material, La2NiMnO6, as an absorbing layer in perovskite solar cells to enhance power conversion efficiency (PCE). Given the urgent need for environmentally friendly energy sources, the study addresses the problem of developing alternative materials to replace lead-based perovskite materials. Compared to single-perovskite materials, double perovskites offer several advantages, such as improved stability, higher efficiency, and broader absorption spectra. In this research work, we have simulated and analyzed a double-perovskite La2NiMnO6 as an absorbing material in a variety of electron transport layers (ETLs) and hole transport layers (HTLs) to maximize the capacity for high-efficiency power conversion (PCE). It has been observed that for a perovskite solar cells with La2NiMnO6 absorbing layer, C60 and Cu2O provide good ETLs and HTLs, respectively. Therefore, the achieved power conversion efficiency (PCE) is improved. The study demonstrates that La2NiMnO6, as a lead-free double-perovskite material can serve as an effective absorbing layer in perovskite solar cells. The findings of this study contribute to the growing body of research on developing high-efficiency, eco-friendly perovskite solar cell technologies and have important implications for the advancement of renewable energy production.
APA, Harvard, Vancouver, ISO, and other styles
12

Wei, Fengxia, Yue Wu, Shijing Sun, et al. "Variable Temperature Behaviour of the Hybrid Double Perovskite MA2KBiCl6." Molecules 28, no. 1 (2022): 174. http://dx.doi.org/10.3390/molecules28010174.

Full text
Abstract:
Perovskite-related materials show very promising properties in many fields. Pb-free perovskites are particularly interesting, because of the toxicity of Pb. In this study, hybrid double perovskite MA2KBiCl6 (MA = methylammonium cation) was found to have interesting variable temperature behaviours. Both variable temperature single crystal X-ray diffraction, synchrotron powder diffraction, and Raman spectroscopy were conducted to reveal a rhombohedral to cubic phase transition at around 330 K and an order to disorder transition for inorganic cage below 210 K.
APA, Harvard, Vancouver, ISO, and other styles
13

Olanrewaju, Yusuf A., Richard K. Koech, Omolara V. Oyelade, et al. "Thermally induced failure mechanisms in double and triple cations perovskite solar cells." AIP Advances 12, no. 8 (2022): 085014. http://dx.doi.org/10.1063/5.0100183.

Full text
Abstract:
The control of the cation composition of formamidinium (FA), methylammonium (MA), and cesium (Cs) has been used to engineer significant improvements in organic–inorganic perovskite solar cells. However, the thermal stability of mixed-cation perovskite solar cells is not fully understood. In this work, we present the results of an experimental study of the stability of double-cation perovskites [(FAPbI3)0.97(MAPbBr3)0.03] [(FAMA)-perovskite solar cells (PSCs)] and triple-cation based-perovskites [Cs0.05(FA0.95MA0.05)0.95Pb(I0.95Br0.05)3] [(CsFAMA)-PSCs] operated between 40 and 60°C. The thermally induced changes in the film microstructure are elucidated via scanning electron microscopy and x-ray diffraction analyses, and these are related to changes in optoelectronic properties, charge transport, and current–voltage characteristics of (FAMA)-PSCs and (CsFAMA)-PSCs. The implications of the observed degradation mechanisms are also discussed for the future development of efficient and stable PSCs.
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Jionghua, Yusheng Li, Yiming Li, et al. "Using hysteresis to predict the charge recombination properties of perovskite solar cells." Journal of Materials Chemistry A 9, no. 10 (2021): 6382–92. http://dx.doi.org/10.1039/d0ta12046d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Junya, Pengcheng Xu, Xiaobo Ji, Minjie Li, and Wencong Lu. "Feature Selection in Machine Learning for Perovskite Materials Design and Discovery." Materials 16, no. 8 (2023): 3134. http://dx.doi.org/10.3390/ma16083134.

Full text
Abstract:
Perovskite materials have been one of the most important research objects in materials science due to their excellent photoelectric properties as well as correspondingly complex structures. Machine learning (ML) methods have been playing an important role in the design and discovery of perovskite materials, while feature selection as a dimensionality reduction method has occupied a crucial position in the ML workflow. In this review, we introduced the recent advances in the applications of feature selection in perovskite materials. First, the development tendency of publications about ML in perovskite materials was analyzed, and the ML workflow for materials was summarized. Then the commonly used feature selection methods were briefly introduced, and the applications of feature selection in inorganic perovskites, hybrid organic-inorganic perovskites (HOIPs), and double perovskites (DPs) were reviewed. Finally, we put forward some directions for the future development of feature selection in machine learning for perovskite material design.
APA, Harvard, Vancouver, ISO, and other styles
16

Kung, Po-Kai, Ming-Hsien Li, Pei-Ying Lin, et al. "Lead‐Free Double Perovskites for Perovskite Solar Cells." Solar RRL 4, no. 2 (2019): 1900306. http://dx.doi.org/10.1002/solr.201900306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yao, Yunpeng, Bo Kou, Yu Peng, et al. "(C3H9NI)4AgBiI8: a direct-bandgap layered double perovskite based on a short-chain spacer cation for light absorption." Chemical Communications 56, no. 21 (2020): 3206–9. http://dx.doi.org/10.1039/c9cc07796k.

Full text
Abstract:
A new iodide layered double perovskite (C<sub>3</sub>H<sub>9</sub>NI)<sub>4</sub>AgBiI<sub>8</sub> (IPAB) has been developed based on a short-chain spacer cation, which is the first homologous compound in iodide double perovskites that adopt the Ruddlesden–Popper structure type.
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Shizhe, Dan Han, Clément Maheu, et al. "Room-temperature synthesis of lead-free copper(I)-antimony(III)-based double perovskite nanocrystals." APL Materials 11, no. 4 (2023): 041110. http://dx.doi.org/10.1063/5.0144708.

Full text
Abstract:
In the field of perovskite solar cells, explorations of new lead-free all-inorganic perovskite materials are of great interest to address the instability and toxicity issues of lead-based hybrid perovskites. Recently, copper-antimony-based double perovskite materials have been reported with ideal band gaps, which possess great potential as absorbers for photovoltaic applications. Here, we synthesize Cs2CuSbCl6 double perovskite nanocrystals (DPNCs) at ambient conditions by a facile and fast synthesis method, namely, a modified ligand-assisted reprecipitation method. We choose methanol as a solvent for precursor salts as it is less toxic and easily removed in contrast to widely used dimethylformamide. Our computational structure search shows that the Cs2CuSbCl6 structure containing alternating [CuCl6]5− and [SbCl6]3− octahedral units is a metastable phase that is 30 meV/atom higher in energy compared to the ground state structure with [CuCl3]2− and [SbCl6]3− polyhedra. However, this metastable Cs2CuSbCl6 double perovskite structure can be stabilized through solution-based nanocrystal synthesis. Using an anion-exchange method, Cs2CuSbBr6 DPNCs are obtained for the first time, featuring a narrow bandgap of 0.9 eV. Finally, taking advantage of the solution processability of DPNCs, smooth and dense Cs2CuSbCl6 and Cs2CuSbBr6 DPNC films are successfully fabricated.
APA, Harvard, Vancouver, ISO, and other styles
19

Tang, Tian-Yu, Xian-Hao Zhao, Xiao-Nan Wei, De-Yuan Hu, Li-Ke Gao, and Yan-Lin Tang. "Study on Electronic, Mechanical and Optical Properties of Perovskite Cs2AgGaX6 (X = Cl, Br)." Journal of Nanoelectronics and Optoelectronics 16, no. 10 (2021): 1521–27. http://dx.doi.org/10.1166/jno.2021.3100.

Full text
Abstract:
Recently, halide double perovskite materials have attracted more and more attention due to their structural stability and excellent photoelectric properties. In this work, the electronic, mechanical and optical properties of halide double perovskite Cs2AgGaX6 (X = Cl, Br) have been studied by first-principle calculations. The results show that the Goldschmidt’s tolerance factor t of these compounds is close to 1, which is the ideal value of structurally stable cubic perovskite. Moreover, their thermodynamic stability is also ensured by the calculated negative formation energy. The Cs2AgGaX6 (X = Cl, Br) is a direct band-gap semiconductor with values of 2.038 eV and 0.967 eV, respectively. Compared with many halide double perovskites, both Cs2AgGaX6 (X = Cl, Br) compounds exhibit the advantage of low effective carrier mass. Finally, their reflectance, absorption coefficient and dielectric function in the range of 0~30 eV were studied. The results show that these compounds have certain application value in optoelectronic devices.
APA, Harvard, Vancouver, ISO, and other styles
20

Peng, Meiting, Fan Zhang, Liyong Tian, et al. "Modified Fabrication of Perovskite-Based Composites and Its Exploration in Printable Humidity Sensors." Polymers 14, no. 20 (2022): 4354. http://dx.doi.org/10.3390/polym14204354.

Full text
Abstract:
Organic perovskites are promising optoelectronic semiconductor materials with photoelectric applications. It is known that the luminescence of perovskites is highly sensitive to hydron molecules due to its low moisture resistance of crystal structure, indicating its potential application on humidity-sensing. Herein, a novel perovskite-based compound (PBC) with minimal defects was developed to promote the photoluminescence performance via optimization of the drying method and precursor constitutions. Perovskite materials with good structural integrity and enhanced fluorescence performance up to four times were obtained from supercritical drying. Moreover, the hydrophilic polymer matrix, polyethylene oxide (PEO), was added to obtain a composite of perovskite/PEO (PPC), introducing enhanced humidity sensitivity and solution processibility. These perovskite/PEO composites also exhibited long-term stability and manifold cycles of sensitivity to humidity owing to perovskite encapsulation by PEO. In addition, this precursor solution of perovskite-based composites could be fancily processed by multiple methods, including printing and handwriting, which demonstrates the potential and broaden the applications in architecture decoration, logos, trademarks, and double encryption of anti-fake combined with humidity.
APA, Harvard, Vancouver, ISO, and other styles
21

He, Yizhou, Liyifei Xu, Cheng Yang, Xiaowei Guo, and Shaorong Li. "Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4CuSb2Cl12 Nanocrystal Solar Cell by SCAPS-1D." Nanomaterials 11, no. 9 (2021): 2321. http://dx.doi.org/10.3390/nano11092321.

Full text
Abstract:
In the last decade, perovskite solar cells have made a quantum leap in performance with the efficiency increasing from 3.8% to 25%. However, commercial perovskite solar cells have faced a major impediment due to toxicity and stability issues. Therefore, lead-free inorganic perovskites have been investigated in order to find substitute perovskites which can provide a high efficiency similar to lead-based perovskites. In recent studies, as a kind of lead-free inorganic perovskite material, Cs4CuSb2Cl12 has been demonstrated to possess impressive photoelectric properties and excellent environmental stability. Moreover, Cs4CuSb2Cl12 nanocrystals have smaller effective photo-generated carrier masses than bulk Cs4CuSb2Cl12, which provides excellent carrier mobility. To date, there have been no reports about Cs4CuSb2Cl12 nanocrystals used for making solar cells. To explore the potential of Cs4CuSb2Cl12 nanocrystal solar cells, we propose a lead-free perovskite solar cell with the configuration of FTO/ETL/Cs4CuSb2Cl12 nanocrystals/HTL/Au using a solar cell capacitance simulator. Moreover, we numerically investigate the factors that affect the performance of the Cs4CuSb2Cl12 nanocrystal solar cell with the aim of enhancing its performance. By selecting the appropriate hole transport material, electron transport material, thickness of the absorber layer, doping density, defect density in the absorber, interface defect density, and working temperature point, we predict that the Cs4CuSb2Cl12 nanocrystal solar cell with the FTO/TiO2/Cs4CuSb2Cl12 nanocrystals/Cu2O/Au structure can attain a power conversion efficiency of 23.07% at 300 K. Our analysis indicates that Cs4CuSb2Cl12 nanocrystals have great potential as an absorbing layer towards highly efficient lead-free all-inorganic perovskite solar cells.
APA, Harvard, Vancouver, ISO, and other styles
22

Oku, Takeo. "Crystal structures of perovskite halide compounds used for solar cells." REVIEWS ON ADVANCED MATERIALS SCIENCE 59, no. 1 (2020): 264–305. http://dx.doi.org/10.1515/rams-2020-0015.

Full text
Abstract:
AbstractThe crystal structures of various types of perovskite halide compounds were summarized and described. Atomic arrangements of these perovskite compounds can be investigated by X-ray diffraction and transmission electron microscopy. Based on the structural models of basic perovskite halides, X-ray and electron diffractions were calculated and discussed to compare with the experimental data. Other halides such as elemental substituted or cation ordered double perovskite compounds were also described. In addition to the ordinary 3-dimensional perovskites, low dimensional perovskites with 2-, 1-, or 0-dimensionalities were summarized. The structural stabilities of the perovskite halides could be investigated computing the tolerance and octahedral factors, which can be useful for the guideline of elemental substitution to improve the structures and properties, and several low toxic halides were proposed. For the device conformation, highly crystalline-orientated grains and dendritic structures can be formed and affected the photo-voltaic properties. The actual crystal structures of perovskite halides in the thin film configuration were studied by Rietveld analysis optimizing the atomic coordinates and occupancies with low residual factors. These results are useful for structure analysis of perovskite halide crystals, which are expected to be next-generation solar cell materials.
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Weichuan, Maochun Hong, and Junhua Luo. "Halide Double Perovskite Ferroelectrics." Angewandte Chemie 132, no. 24 (2020): 9391–94. http://dx.doi.org/10.1002/ange.201916254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, Weichuan, Maochun Hong, and Junhua Luo. "Halide Double Perovskite Ferroelectrics." Angewandte Chemie International Edition 59, no. 24 (2020): 9305–8. http://dx.doi.org/10.1002/anie.201916254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Choudhary, Shaily, Shalini Tomar, Depak Kumar, Sudesh Kumar, and Ajay Singh Verma. "Investigations of Lead Free Halides in Sodium Based Double Perovskites Cs2NaBiX6(X=Cl, Br, I): an Ab Intio Study." 3, no. 3 (September 28, 2021): 74–80. http://dx.doi.org/10.26565/2312-4334-2021-3-11.

Full text
Abstract:
Despites the excellent merits of lead based perovskite optoelectronic devices; their unstable nature and toxicity still present a bottleneck for practical applications. Double perovskite has emerged as a candidate for optoelectronics and photovoltaic application because of its nontoxic behaviour and stability in air. We have presented ab-initio study of Cs2NaBiX6(X=Cl, Br, I) lead free halide double perovskites. The calculation is carried out using the FP-LAPW method in the DFT framework within PBE potential using the WIEN2k code. The structural, electronic and optical properties of Cs2NaBiI6, Cs2NaBiBr6 and Cs2NaBiCl6 have been analysed. We have obtained the band gap of 2.0, 2.6 and 3.7 for Cs2NaBiI6, Cs2NaBiBr6 and Cs2NaBiCl6 respectively. Throughout the study, we have shown that the variation in the structure of double perovskite within Cs2NaBiX6(X=Cl, Br, I) that leads to the variation in band gap, density of states and in optical properties such as extinction coefficient, absorption spectra, optical reflectivity, dielectric coefficient, refractive index that shows the variety of this material for optoelectronic devices and other purposes.
APA, Harvard, Vancouver, ISO, and other styles
26

Evans, Hayden A., Lingling Mao, Ram Seshadri, and Anthony K. Cheetham. "Layered Double Perovskites." Annual Review of Materials Research 51, no. 1 (2021): 351–80. http://dx.doi.org/10.1146/annurev-matsci-092320-102133.

Full text
Abstract:
Successful strategies for the design of crystalline materials with useful function are frequently based on the systematic tuning of chemical composition within a given structural family. Perovskites with the formula ABX3, perhaps the best-known example of such a family, have a vast range of elements on A, B, and X sites, which are associated with a similarly vast range of functionality. Layered double perovskites (LDPs), a subset of this family, are obtained by suitable slicing and restacking of the perovskite structure, with the additional design feature of ordered cations and/or anions. In addition to inorganic LDPs, we also discuss hybrid (organic-inorganic) LDPs here, where the A-site cation is a protonated organic amine. Several examples of inorganic LDPs are presented with a discussion of their ferroic, magnetic, and optical properties. The emerging area of hybrid LDPs is particularly rich and is leading to exciting discoveries of new compounds with unique structures and fascinating optoelectronic properties. We provide context for what is important to consider when designing new materials and conclude with a discussion of future opportunities in the broad LDP area.
APA, Harvard, Vancouver, ISO, and other styles
27

Mashot Jafar, Aqel, Kawther A. Khalaph, and Amar Moula Hmood. "Lead-free perovskite and double perovskite solar cells." IOP Conference Series: Materials Science and Engineering 765 (March 17, 2020): 012047. http://dx.doi.org/10.1088/1757-899x/765/1/012047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Morrow, Ryan, and Patrick Woodward. "Competing Superexchange Interactions in Double Perovskite Osmates." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1366. http://dx.doi.org/10.1107/s2053273314086331.

Full text
Abstract:
Double perovskites, A2BB'O6, containing mixed transition metal ions have exhibited numerous desirable properties such as colossal magnetoresistance, half metallic transport, and high temperature ferrimagnetism. However, a predictive understanding of the superexchange mechanisms which control the magnetism of these materials when they are insulating and B is 3d transition metal and B' is a 4d or 5d transition metal has remained elusive. In this work, a number of insulating double perovskite osmates, A2BOsO6 (A=Sr,Ca,La; B=Cr,Fe,Co,Ni) have been chosen and studied using magnetometry, specific heat, XMCD, and neutron powder diffraction techniques in order to systematically probe the effects of electronic configuration and bonding geometry on the magnetic ground state. It is concluded that the magnetic properties of these materials are controlled by a competition between short range B–O–Os and long range superexchange interactions which are sensitive to bonding geometry resulting in tunability of the magnetic ground state.
APA, Harvard, Vancouver, ISO, and other styles
29

Kumar, Saranya, and Malathi Murugesan. "Lead-Free and Stable Potassium Titanium Halide Perovskites: Synthesis, Characterization and Solar Cell Simulation." Energies 15, no. 19 (2022): 6963. http://dx.doi.org/10.3390/en15196963.

Full text
Abstract:
Titanium based double perovskites have shown good optical properties along with remarkable stability, making them promising lead-free perovskites for optoelectronic applications. In this work, Potassium Titanium Halide (K2TiBr6, K2TiI6 and K2TiI2Br4) double perovskites are synthesized for the first time. Surface topology and chemical composition are studied. Photoluminescence characterization shows a peak in the UV region. The perovskites exhibit quasi bandgap with K2TiI6 having 1.62 eV direct bandgap, conducive for single junction solar cell fabrication. K2TiBr6 and K2TiI2Br4 have bandgaps 2.14 eV and 2.44 eV, respectively, which is favorable for tandem solar cell application. The decomposition temperature of K2TiI6 is notable at 678 °C, bestowing it with stability in ambient atmosphere. Inherent to its optical properties, Solar Cell Capacitance Simulator-1D (SCAPS-1D) is used to simulate perovskite solar cell (PSC) with K2TiI6 as the absorber. Utilizing the absorption data from UV-Vis spectroscopy, these PSCs are designed to give maximum efficiency. Upon numerical optimization of perovskite layer thickness, we propose an efficient, practically realizable PSC with a power conversion efficiency of 4.382%. Besides, various electron and hole transport layers are investigated and the effect of their thickness on the PSC performance are studied.
APA, Harvard, Vancouver, ISO, and other styles
30

Ali, Md Hazrat, Pritish Haldera Md Siam Hossain, Julian Pretom Biswas, et al. "A study on pseudo-potential effect, electronic structure, aquatic toxicity, and optical properties of perovskites solar cell of Cs2NiCl6, Cs2NiBr6, and Cs2PtBr6: Through DFT methods." Current Chemistry Letters 12, no. 3 (2023): 557–66. http://dx.doi.org/10.5267/j.ccl.2023.2.007.

Full text
Abstract:
The main impediment to practical application is the toxicity of lead ions in halide perovskite absorbing materials. Computing tools based on density functional theory (DFT) were used to predict the intrinsic properties of potential for double perovskites to be effective and suitable for optoelectronic applications, replacing the conventional lead halide perovskites with environmentally friendly elements. The Generalized Gradient Approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional was used to screen homovalent alternatives for B and X-site ions in vacancy-ordered double perovskite Cs2BX6 (B=Pt, Ni, X= Cl, Br) for solar cell applications. Using the GGA with PBE functional, the band gap was calculated to be 1.411 eV, 0.482 eV, and 0.378 eV for the Cs2PtBr6, Cs2NiCl6, and Cs2NiBr6, respectively. The experimental band gap value of mother crystal's (Cs2PtBr6) was at 1.42 eV. Next, the DOS, PDOS and optical properties were computed using GGA with PBE functional. Then, the local density approximation (LDA) with Ceperley and Alder with Perdew and Zunger (CA-PZ) was executed to compare the GGA with PBE for electronic band structure. In addition, the OTFG ultra soft, OTFG norm conserving, ultra soft and norm conserving methods of pseudopotential were used for both GGA with PBE and LDA with CA-PZ to make and ensure the right or accurate DFT functional for those crystals. At last, the optical properties and their toxicity have been evaluated for their rational design of potential double perovskite materials with improved optoelectronic properties.
APA, Harvard, Vancouver, ISO, and other styles
31

Faghihnasiri, Mahdi, Javad Beheshtian, Farzaneh Shayeganfar, and Rouzbeh Shahsavari. "Phase transition and mechanical properties of cesium bismuth silver halide double perovskites (Cs2AgBiX6, X = Cl, Br, I): a DFT approach." Physical Chemistry Chemical Physics 22, no. 10 (2020): 5959–68. http://dx.doi.org/10.1039/c9cp05342e.

Full text
Abstract:
Double perovskite-based silver and bismuth Cs<sub>2</sub>AgBiX<sub>6</sub> (X = Cl, Br, I) have shown a bright future for the development of low-risk photovoltaic devices due to their high stability and non-toxicity of their elements, unlike Pb-based perovskites.
APA, Harvard, Vancouver, ISO, and other styles
32

Li, Xinlong, Suxian Fu, Mengyan Li, Kuan Cheng, and Shujuan Xiao. "Effect of Bimetallic and Halogen Ions on Performance in Inorganic Double Perovskites." Academic Journal of Science and Technology 2, no. 2 (2022): 68–77. http://dx.doi.org/10.54097/ajst.v2i2.1164.

Full text
Abstract:
In the context of low-carbon environmental protection, the de-leading of perovskite materials has become a hot spot in research, and replacing the position of lead in perovskites with suitable low-toxic elements is particularly important for improving the toxicity of perovskites. The proposal of all-inorganic bimetallic perovskites provides a new direction for the crystal structure composition of perovskites, and the substitution of lead ions by bimetallic ions greatly reduces the toxicity of perovskites and improves the stability of the material. However, new problems have also arisen, bimetallic perovskites have indirect band gaps will reduce the optical properties of perovskites, adjusting the band gap of compounds has become the main problem in the study of bimetallic perovskites, this paper reviews the impact of adjusting different B-bit ions and X-bit halogen ions on the performance of perovskites, and makes an outlook on the development prospects of perovskites.
APA, Harvard, Vancouver, ISO, and other styles
33

Feraru, Simona, Adrian I. Borhan, Petrisor Samoila, Gigel G. Nedelcu, Alexandra R. Iordan, and Mircea N. Palamaru. "Influence of A-site Cation on Structure and Dielectric Properties in A2DyBiO6 (A=Mg, Ca, Sr, Ba) Double Perovskites." Australian Journal of Chemistry 67, no. 2 (2014): 250. http://dx.doi.org/10.1071/ch13300.

Full text
Abstract:
Double perovskite metal oxides with formula A2DyBiO6 (A = Mg, Ca, Sr, Ba) were synthesised by a sol–gel auto-combustion method, using citric acid as the combustion agent. The effects of A-site cation on the structure, morphology, and dielectric properties were examined. The synthesis was monitored using Fourier transform infrared spectroscopy (FTIR) to indicate the absence of organic phase. X-ray diffraction (XRD) analysis showed that the compounds have three different perovskite structures. Structural characterisation of the samples was evaluated using XRD patterns. Scanning electron microscopy showed that all samples are formed by agglomerated particles. Dielectric properties were evaluated using dielectric permittivity and dielectric losses. Cole–Cole plots show a single semicircle for all materials, indicating that the double perovskites obtained are composed of well conducting grain boundaries and poorly conducting grains.
APA, Harvard, Vancouver, ISO, and other styles
34

Arab Pour Yazdi, Lizarraga, Vernoux, Billard, and BRIOIS. "Catalytic Properties of Double Substituted Lanthanum Cobaltite Nanostructured Coatings Prepared by Reactive Magnetron Sputtering." Catalysts 9, no. 4 (2019): 381. http://dx.doi.org/10.3390/catal9040381.

Full text
Abstract:
Lanthanum perovskites are promising candidates to replace platinum group metal (PGM), especially regarding catalytic oxidation reactions. We have prepared thin catalytic coatings of Sr and Ag doped lanthanum perovskite by using the cathodic co-sputtering magnetron method in reactive condition. Such development of catalytic films may optimize the surface/bulk ratio to save raw materials, since a porous coating can combine a large exchange surface with the gas phase with an extremely low loading. The sputtering deposition process was optimized to generate crystallized and thin perovskites films on alumina substrates. We found that high Ag contents has a strong impact on the morphology of the coatings. High Ag loadings favor the growth of covering films with a porous wire-like morphology showing a good catalytic activity for CO oxidation. The most active composition displays similar catalytic performances than those of a Pt film. In addition, this porous coating is also efficient for CO and NO oxidation in a simulated Diesel exhaust gas mixture, demonstrating the promising catalytic properties of such nanostructured thin sputtered perovskite films.
APA, Harvard, Vancouver, ISO, and other styles
35

Causa, M. T., A. Butera, M. Tovar, and J. Fontcuberta. "ESR of double-perovskite Sr2FeMoO6." Physica B: Condensed Matter 320, no. 1-4 (2002): 79–82. http://dx.doi.org/10.1016/s0921-4526(02)00625-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Baliteau, S., F. Mauvy, S. Fourcade, and J. C. Grenier. "Investigation on double perovskite Ba4Ca2Ta2O11." Solid State Sciences 11, no. 9 (2009): 1572–75. http://dx.doi.org/10.1016/j.solidstatesciences.2009.06.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Amador, U., C. J. D. Hetherington, E. Moran, and M. A. Alario-Franco. "Ba2PrPtO6: A novel double perovskite." Journal of Solid State Chemistry 96, no. 1 (1992): 132–40. http://dx.doi.org/10.1016/s0022-4596(05)80305-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bouadjemi, Bouabdellah, Mohamed Matougui, Mohamed Houari, Samir Bentata, Tayeb Lantri, and Slimane Haid. "Magnetism in double perovskite Ba2CrMoO6." Acta Crystallographica Section A Foundations and Advances 75, a2 (2019): e339-e339. http://dx.doi.org/10.1107/s2053273319092179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhou, Yuqiao, Abdelrahman M. Askar, Jan-Hendrik Pöhls, et al. "Hexagonal Double Perovskite Cs2 AgCrCl6." Zeitschrift für anorganische und allgemeine Chemie 645, no. 3 (2018): 323–28. http://dx.doi.org/10.1002/zaac.201800351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Palummo, Maurizia, Daniele Varsano, Eduardo Berríos, Koichi Yamashita, and Giacomo Giorgi. "Halide Pb-Free Double–Perovskites: Ternary vs. Quaternary Stoichiometry." Energies 13, no. 14 (2020): 3516. http://dx.doi.org/10.3390/en13143516.

Full text
Abstract:
In view of their applicability in optoelectronics, we review here the relevant structural, electronic, and optical features of the inorganic Pb-free halide perovskite class. In particular, after discussing the reasons that have motivated their introduction in opposition to their more widely investigated organic-inorganic counterparts, we highlight milestones already achieved in their synthesis and characterization and show how the use of ab initio ground and excited state methods is relevant in predicting their properties and in disclosing yet unsolved issues which characterize both ternary and quaternary stoichiometry double-perovskites.
APA, Harvard, Vancouver, ISO, and other styles
41

Allalla, Madhu, Naman Shukla, Sweta Minj, and Sanjay Tiwari. "Study of Design and Device Modeling of Double layered Perovskite Solar Cells." Journal of Ravishankar University (PART-B) 35, no. 1 (2022): 35–41. http://dx.doi.org/10.52228/jrub.2022-35-1-5.

Full text
Abstract:
Recently, organic-inorganic perovskite-based solar cells have become a revolution in photovoltaic field due to their unique properties. Several studies were focused on perovskite solar cells based on Pb perovskite layer as lead provides strong absorption of photons and have high efficiency. However, the factor of toxicity, stability and ecological challenges of these devices is the main challenge to the progress in commercial production. In this, study and numerical modeling of perovskite solar cells using an alternative candidate which is tin as a perovskite material has been carried out. This later is investigated in order to overcome the toxicity, stability and ecological challenges effects on perovskite solar cells, as they exhibit similar photovoltaic performances as Pb-perovskite solar cells. Therefore, the effect of single and double absorbent i.e. CH3NH3SnI3 and CH3NH3SnBr3 and no Hole Transport Layer is studied and investigated to enhance the conversion efficiency of perovskite devices. The obtained simulation results illustrate that perovskite solar cells based on no HTL and double absorbent layer exhibit 21.3% of power conversion efficiency compared to that with other HTL materials. Thus, adding double absorbent layer in perovskite solar cell design possibly will be considered as novel designing for future Sn-perovskite solar cells. The numerical simulation was performed using 1DSolar Cell Capacitance Simulator (1D- SCAPS).
APA, Harvard, Vancouver, ISO, and other styles
42

Alanazi, Tarek I. "Design and Device Numerical Analysis of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell." Crystals 13, no. 2 (2023): 267. http://dx.doi.org/10.3390/cryst13020267.

Full text
Abstract:
The advancement of lead-free double perovskite materials has drawn great interest thanks to their reduced toxicity, and superior stability. In this regard, Cs2AgBiBr6 perovskites have appeared as prospective materials for photovoltaic (PV) applications. In this work, we present design and numerical simulations, using SCAPS-1D device simulator, of Cs2AgBiBr6-based double perovskite solar cell (PSC). The initial calibrated cell is based on an experimental study in which the Cs2AgBiBr6 layer has the lowest bandgap (Eg = 1.64 eV) using hydrogenation treatment reported to date. The initial cell (whose structure is ITO/SnO2/Cs2AgBiBr6/Spiro-OMeTAD/Au) achieved a record efficiency of 6.58%. The various parameters that significantly affect cell performance are determined and thoroughly analyzed. It was found that the conduction band offset between the electron transport layer (ETL) and the Cs2AgBiBr6 layer is the most critical factor that affects the power conversion efficiency (PCE), in addition to the thickness of the absorber film. Upon engineering these important technological parameters, by proposing a double ETL SnO2/ZnO1-xSx structure with tuned absorber thickness, the PCE can be boosted to 14.23%.
APA, Harvard, Vancouver, ISO, and other styles
43

Winterhalder, Franziska Elisabeth, Yousef Alizad Farzin, Olivier Guillon, Andre Weber, and Norbert H. Menzler. "Perovskite-Based Materials As Alternative Fuel Electrodes for Solid Oxide Electrolysis Cells (SOECs)." ECS Transactions 111, no. 6 (2023): 1115–23. http://dx.doi.org/10.1149/11106.1115ecst.

Full text
Abstract:
Perovskites show high potential as alternative fuel electrodes in solid oxide electrolysis cells (SOECs) due to their high chemical stability, high conductivity, good catalytic activity and cost-effectiveness. In this work, four perovskites (strontium-iron-niobate double perovskite (SFN), strontium-iron-titanate (STF), lanthanum-strontium-titanate (LST), and lanthanum-strontium-iron-manganese (LSFM)) were examined as fuel electrode materials for SOECs. First, the chemical stability of the perovskites in a reducing atmosphere and the reactivity between the electrode and electrolyte material were analyzed. Besides featuring good chemical stability under reducing conditions, SFN double perovskite and LST exhibit the lowest interaction with the electrolyte (yttria-stabilized zirconia, 8YSZ) after thermal treatment. The results indicate a need for a barrier layer between the tested electrode materials and the YSZ electrolyte to achieve sufficient cell performance throughout its operation in the electrolysis mode. After thoroughly evaluating all preliminary tests, STF was chosen for the first subsequent electrochemical tests. Initial impedance measurements of symmetrical electrolyte-supported cells consisting of pure STF-based electrodes with and without a barrier layer between the electrodes and the electrolyte were conducted to obtain a base for further optimization. For the 5STF fuel electrode, the obtained EIS data confirm the conclusion from the reactivity experiments. Applying a barrier layer at the 5STF fuel electrode/ electrolyte interface is needed to reduce the cell´s ohmic and polarization resistances.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Hongdan, Ludan Zhu, Jun Cheng, Long Chen, Chuanqi Liu, and Shuanglong Yuan. "Photoluminescence Characteristics of Sn2+ and Ce3+-Doped Cs2SnCl6 Double-Perovskite Crystals." Materials 12, no. 9 (2019): 1501. http://dx.doi.org/10.3390/ma12091501.

Full text
Abstract:
In recent years, all-inorganic lead-halide perovskites have received extensive attention due to their many advantages, but their poor stability and high toxicity are two major problems. In this paper, a low toxicity and stable Cs2SnCl6 double perovskite crystals were prepared by aqueous phase precipitation method using SnCl2 as precursor. By the XRD, ICP-AES, XPS, photoluminescence and absorption spectra, the fluorescence decay curve, the structure and photoluminescence characteristics of Ce3+-doped and undoped samples have been investigated in detail. The results show that the photoluminescence originates from defects. [ S n S n 4 + 2 + +VCl] defect complex in the crystal is formed by Sn2+ substituting Sn4+. The number of defects formed by Sn2+ in the crystal decreases with Ce3+ content increases. Within a certain number of defects, the crystal luminescence is enhanced with the number of [ S n S n 4 + 2 + +VCl] decreased. When Ce3+ is incorporated into the crystals, the defects of [ C e 3 + S n 4 + +VCl] and [ S n S n 4 + 2 + +VCl] were formed and the crystal show the strongest emission. This provides a route to enhance the photoluminescence of Cs2SnCl6 double perovskite crystals.
APA, Harvard, Vancouver, ISO, and other styles
45

Li, Xiaoyan, Junzhe Shi, Jianjun Chen, Zuojun Tan, and Hongwei Lei. "Lead-Free Halide Double Perovskite for High-Performance Photodetectors: Progress and Perspective." Materials 16, no. 12 (2023): 4490. http://dx.doi.org/10.3390/ma16124490.

Full text
Abstract:
Lead halide perovskite has become a promising candidate for high-performance photodetectors (PDs) due to its attractive optical and electrical properties, such as high optical absorption coefficient, high carrier mobility, and long carrier diffusion length. However, the presence of highly toxic lead in these devices has limited their practical applications and even hindered their progress toward commercialization. Therefore, the scientific community has been committed to searching for low-toxic and stable perovskite-type alternative materials. Lead-free double perovskite, which is still in the preliminary stage of exploration, has achieved inspiring results in recent years. In this review, we mainly focus on two types of lead-free double perovskite based on different Pb substitution strategies, including A2M(I)M(III)X6 and A2M(IV)X6. We review the research progress and prospects of lead-free double perovskite photodetectors in the past three years. More importantly, from the perspective of optimizing the inherent defects in materials and improving device performance, we propose some feasible pathways and make an encouraging perspective for the future development of lead-free double perovskite photodetectors.
APA, Harvard, Vancouver, ISO, and other styles
46

Hussain, Syed Sajjad, Saira Riaz, Ghazi Aman Nowsherwan, et al. "Numerical Modeling and Optimization of Lead-Free Hybrid Double Perovskite Solar Cell by Using SCAPS-1D." Journal of Renewable Energy 2021 (July 16, 2021): 1–12. http://dx.doi.org/10.1155/2021/6668687.

Full text
Abstract:
The highest power conversion efficiency (PCE) for organic-inorganic perovskite solar cells based on lead is reported as 25.2% in 2019. Lead-based hybrid perovskite materials are used in several photovoltaics applications, but these are not highly favored due to the toxicity of lead and volatility of organic cations. On the other hand, hybrid lead-free double perovskite has no such harm. In this research study, SCAPS numerical simulation is utilized to evaluate and compare the results of perovskite solar cell based on double perovskite FA 2 BiCuI 6 and standard perovskite CH 3 NH 3 PbI 3 as an active layer. The results show that the power conversion efficiency obtained in the case of FA 2 BiCuI 6 is 24.98%, while in the case of CH 3 NH 3 PbI 3 , it is reported as 26.42%. This indicates that the hybrid organic-inorganic double perovskite FA 2 BiCuI 6 has the ability to replace hybrid organic-inorganic perovskite CH 3 NH 3 PbI 3 to expand next-generation lead-free harmless materials for solar cell applications.
APA, Harvard, Vancouver, ISO, and other styles
47

Sechenykh, P. A. "Mathematical modeling of the perovskite and double perovskite crystal structures." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 24, no. 4 (2022): 255–59. http://dx.doi.org/10.17073/1609-3577-2021-4-255-259.

Full text
Abstract:
The paper considers the problem of modeling materials with the crystal structure of perovskite and double perovskite. Due to the high complexity of obtaining micro- and nanoscale objects, data on the structure and properties of such materials are especially important. This makes it relevant to use computer modeling to predict the required characteristics of materials. Electronic, magnetic, mechanical and other properties of crystalline substances are determined by the specificity of their structure – the periodicity and symmetry of the lattice. The paper considers compounds with the common chemical formulas ABO3 and A2BB’O6 and the crystal lattice of cubic symmetry type are the structural types Perovskite and Double Perovskite. The model of ion-atomic radii, widely used in modeling various crystal structures, is applied. The application of the annealing simulation algorithm to calculate the metric parameters of the compounds under consideration is shown. The software implementation of the algorithm used in the work makes it possible to calculate the coordinates of the atoms included in the elementary cell of the crystal lattice, the lattice constant and the packing density of atoms in the crystal cell according to the given chemical formula and the spatial symmetry group. The listed structural characteristics can be used for the subsequent determination of the electronic, magnetic, and thermal properties of perovskite-like compounds. The article presents a comparison of the values of the lattice constants obtained as a result of numerical modeling with the data published in open sources.
APA, Harvard, Vancouver, ISO, and other styles
48

Zinenko V. I. and Shinkorenko A. S. "Lattice dynamics and phase transitions in a crystal Ba-=SUB=-2-=/SUB=-ZnTeO-=SUB=-6-=/SUB=-." Physics of the Solid State 64, no. 12 (2022): 1986. http://dx.doi.org/10.21883/pss.2022.12.54395.445.

Full text
Abstract:
The lattice dynamics of Ba2ZnTeO6 double perovskite in three phases has been studied. Vibrational spectra and dynamic charges are calculated. In the rhomobohedral phase R3m, soft modes were found; after their condensation, the C2/m phase was obtained, which agrees with the experiment. An assessment was made of the dependence of the enthalpy of different phases on pressure; it showed that the monoclinic phase is more favorable at 0 pressure, but as the pressure increases to 2.9 GPa, the cubic phase Fm3m becomes advantageous. Keywords: Lattice dynamics, phase transitions, double perovskites.
APA, Harvard, Vancouver, ISO, and other styles
49

Bhawna, Aftab Alam, and M. Aslam. "Anion/cation substitution in lead-free halide double perovskite films: towards bandgap optimization." Nanomaterials and Energy 12, no. 1 (2023): 1–7. http://dx.doi.org/10.1680/jnaen.23.00001.

Full text
Abstract:
During the past few years, halide double perovskites have been extensively explored for designing eco-friendly and stable perovskite-family absorber materials. In this work, thin films of Cs2AgBiBr6 double perovskites are successfully fabricated with the aim to achieve lead-free system. The optical studies confirm the large bandgap of 2.33 eV for Cs2AgBiBr6 films. The post-synthetic vapour treatment of Cs2AgBiBr6 thin film, with tin iodide (SnI4; SI), has been performed to engineer the optical response. The structural and optical studies confirm the phase-purity of the various SI-treated films. X-ray Diffraction (XRD) studies further show systematic shift towards lower 2θ values which signifies the expansion of lattice parameters on SI-substitution in Cs2AgBiBr6 structure. The as-prepared pristine and SI-treated films show good coverage with reasonably large grain size. Furthermore, the optical studies reveal a 0.47 eV reduction in the bandgap for SI-treated film, as opposed to a small bandgap change of ca 0.22 eV when pristine Cs2AgBiBr6 film is treated with CsI. This shows the role of combined effects of charge-balancing defects and compositional substitution on bandgap lowering in Cs2AgBiBr6. The controlled doping in lead-free double perovskites for improved optical properties might help in strengthening their use for future opto-electronic applications.
APA, Harvard, Vancouver, ISO, and other styles
50

Ünlü, Feray, Ashish Kulkarni, Khan Lê, et al. "Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?" Journal of Materials Research 36, no. 9 (2021): 1794–804. http://dx.doi.org/10.1557/s43578-021-00155-z.

Full text
Abstract:
Abstract Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH3NH3+ (methylammonium, MA+) in MA3Bi2I9 with various organic cations such as CH(NH2)2+ (formamidinium, FA+), (CH3)2NH2+ (dimethylammonium, DMA+), C(NH2)3+ (guanidinium, GA+) and inorganic cations such as cesium (Cs+), rubidium (Rb+), potassium (K+), sodium (Na+) and lithium (Li+) and (2) partially replacing MA+ with Cs+ in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance. Graphic Abstract
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography